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Abstract. In this paper, a nonhomogeneous system of pressureless flow

Pt + {pu)x = 0, (pu)t + (pu2)x = px

is investigated. It is found that there exists a generalized variational principle from which
the weak solution is explicitly constructed by using the initial data; i.e.,

d2 <92
p(x,t) = --r-^minF(y;x,t), p(x,t)u{x,t) = - minF(y;x,t)

ox y oxot y
hold in the sense of distributions, where F(y; x, t) is a functional depending on the
initial data. The weak solution is unique under an Oleinik-type entropy condition when
the initial data is of measurable function. It is further shown that the solution u(x, t)
converges to x as t tends to infinity. The proofs are based on the generalized variational
principle and careful studies on the generalized characteristics introduced by Dafermos

[5],

1. Introduction. In this paper, we consider a nonhomogeneous system of pressure-
less flow

pt + (pu)x = 0,
(1.1)

{pu)t + (pu2)x = px,
with the initial data

p0{x) £ L}oc{R), u0(x) e L°°(R), p0(x) > 0, a.e. (1.2)

Here p and u denote the density of mass and velocity respectively and px should be
considered as the external force.

Recently, the problem of pressureless type system has attracted a great deal of at-
tention since [1,4,9]. We refer to [1,3,4,9,11,12,15,16] and references therein. The main
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feature of such a system is the formulation of the delta wave, no matter how smooth the
initial data are. This poses new challenges to the analysis of the solutions. An interesting
phenomena is that a generalized variational principle (GVP) exists for the homogeneous
pressureless flow (cf [9,11,15]). By the procedure of GVP, the measured value solution
can be explicitly constructed using the initial data, although the pressureless flow is es-
sentially a coupled system. It is worthwhile to point out that neither the usual Lax nor
Oleinik entropy condition is enough to ensure the uniqueness of weak solution under the
usual initial condition. An additional initial condition, called the energy condition (see
[11]), needs to be imposed, which together with the Oleinik entropy condition, guarantee
the well-posedness for the homogeneous pressureless flow.

In this paper we consider a nonhomogeneous system of pressureless flow (1.1) and
are interested in whether the GVP still exists so that the weak solution can be exactly
constructed by the initial data. We stress the fact that the velocity u(x,t) is unbounded
in any strip [0,T] due to the effect of the nonhomogeneous term; even the initial velocity
u0(x) is uniformly bounded and thus beyond the scope of the investigations by Oleinik
[13]. This kind of nonhomogeneous system was also investigated in [7], where the solu-
tion to a nonhomogeneous Burger's equation was clearly constructed by using Hopf-Cole
transformation. It is shown in [8] that the solution constructed in [7] converges to the
weak solution of the corresponding Hopf's equation when the viscosity vanishes. Unlike
the scalar equation of [7] and [8], our system (1.1) is a coupled system and its solution
has more singularity due to the delta wave. We show in present paper that the GVP
indeed exists for the nonhomogeneous system (1.1) and the weak solution is explicitly
constructed by a careful study of the generalized characteristics introduced by Dafermos
[5]. It is also proved that the weak solution is unique under an Oleinik-type entropy con-
dition when the initial data is of measurable function. Compared with the homogeneous
pressureless flow, we need more subtle analysis of generalized characteristics to establish
the uniqueness of solution due to the fact that the back generalized characteristic is no
longer a straight line. A byproduct of our result is that the solution u(x, t) converges to
x as t tends to infinity.

Before formulating our main result, we first give the definition of the entropy solu-
tion proposed by Wang, Huang, and Ding [11,15]. If p and u are bounded measurable
functions, then m(x, t) = pdx — pudt is independent of integral path and satisfies
mx = p due to the fact that the first equation of (1.1) is conserved. Therefore the system
(1.1) becomes, by the new variable m(x,t),

{mt + umx = 0,
x (L3)(mxu)t + (mxuz)x = mxx.

We focus our attention on the system (1.3) instead of (1.1).

Definition 1. Let m(x, t) be of bounded variation locally in x and u(x, t) be bounded
and measurable to mx. Assume that the measures mx and umx are weakly continuous
in t. (p,u) = (mx,u) is called a weak solution of (1.1) or (m,u) is called a weak solution



NONHOMOGENEOUS SYSTEM OF PRESSURELESS FLOW 511

of (1.3), if

/ / iptm dx dt — / / (pu dm dt = 0,
(1.4)

tptu + + xif) dm dt = 0,

holds for all ip, tp G Co°(ii+). Here f f ■ ■ ■ dmdt denotes Lebesgue-Stieltjes integral. The
initial value is understood in the following sense: as t —* 0+,

F<Jo
m(x,t) -> I p0dr), in L%C{R), (1.5)

px±0 nx

/ udm —> / p0u0dr], in Lf£c(R). (1.6)
J0±0 J0

Definition 2. Let (p, u) be a weak solution of (1.1). (p,u) is called an entropy solution
of (1.1) if it satisfies an Oleinik-type entropy condition; i.e., for any xi < X2 and almost
everywhere t > 0,

u(x2,t) - u{xut) < el + e~*
X2 — X\ ~ e4 — e~t

Remark 1. The right-hand side of (1.7) is due to the effect of the nonhomogeneous
term, while it is exactly 1/t for the homogeneous one. It is noted that the RHS of (1.5)
behaves like 1/t as t —► 0+.

Our main result is

Theorem 1 (Existence theorem). Let the initial data po(x) and u${x) satisfy condition
(1.2). Then

p(x,t) = ^~~ = -~mmF(y-x,t), (1.8)

p(x, t)u(x, t) = dm^X,t\(x, t) = min F(y; x, t) (1.9)
ox oxot y

is the entropy solution of the system (1.1), where the derivatives in (1.8) and (1.9) are
understood in the sense of distributions and

F(y\x,t) = [ p0(rj)(r]cht + wo(r/)sht - x)drj, (1-10)
Jo

cht = £±£2. sht = e'-e''. (1.11)
2 2

Furthermore, u(x,t) converges to x as t —> oo.

THEOREM 2 (Uniqueness theorem). Let (mi,«i) and (to2,U2) be any two entropy solu-
tions of (1.1) with the same initial data po,Uo in the sense of Definition 2. Then

mi = TO2 a.e., Mi = i/2 a.e (1-12)

with respect to the measure m\x — m2X-

Remark 2. Our initial condition (1.5-1.6) is stronger than the usual initial condition;
i.e., as t —» +0, the measures p and pu weakly converge to po, pqUq respectively. This is
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because our initial data is of measurable function, not Radon measure. It is noted that
the solution constructed in Theorem 1 satisfies the initial condition (1.5-1.6) and such
solution is unique in Theorem 2.

Remark 3. Since the solution of (1.1) is usual a Radon measure, it is natural to study the
general case when the initial data is a Radon measure. We conjecture that the solution
for the measure initial data can also be constructed by a similar procedure as in Theorem
1. Since the initial data is no longer a measurable function, the initial condition (1.5-1.6)
is too strong and the usual initial condition should be introduced instead. Similar to the
homogeneous pressureless flow, we guess that the Oleinik-type entropy condition (1.7)
and an energy condition introduced by [11] (i.e., the measure pu2 weakly converges to
PoUq as t —> 0) are enough to guarantee the uniqueness for the nonhomogeneous system
(1.1). This will be investigated in the future.

An outline of this paper is as follows. In Sec. 2, we introduce the GVP and construct
an entropy solution using the initial data. In Sec. 3, we prove the solution constructed in
Sec. 2 is indeed an entropy solution. In Sec. 4, we establish the uniqueness of the entropy
solution.

2. Construction of the entropy solution. We observe that for smooth solution,
the system (1.1) is equivalent to

f Pt + {pu)x = 0,
{ (2-1)

Ut + uux = X.

Direct computation yields the characteristic for (2.1)2 from the point (#o,0) is

x(xq, t) = Zocht + u0(xo)sht. (2.2)

We expect that the solution u(x,t) of (1.1) has the similar structure as that of the scalar
equation (2.1)2- Motivated by this observation, we define for any fixed (x,t),

F(y;x,t)= [ p0(ri){r)cht + u0(ri)sh.t - x)dr), (2.3)
J 0

which only depends on the initial data. Motivated by [11,15], we also expect that the
entropy solution of (1.1) can be constructed by a procedure of taking the minimum of
F(y;x,t). To achieve this goal, we need careful studies on the functional F(y;x,t). We
first have

Lemma 2.1. For any point (x, t), as a function of y, F(y; x, t) has a finite low bound and
achieves its minimum at some points.

Proof. Let M = ||u0||l°°- For any yx < y2 < ^j(x - Afsht), or yx > y2 > ^(x +
Msht), we have

ry 1

F(yi;x,t) - F(y2\x,t) = / p0(r?)(r;cht + w0(r?)sht - x)drj > 0, (2.4)
Jyi

which implies the Lemma. □
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Let
v(x, t) = miny F(y; x, t), S(x, t) = {y; F(y; x, t) = v{x, t)},
y*(x, t) = minyeS(x,t){y}, y*(x,t) = maxyes(x,t){y}-

It is easy to verify that

(2.5)

— (a; — Afsht) < y«(x, t) < y*(x, t) < — (x + Msht). (2.6)
cht cht

Furthermore, we have

LEMMA 2.2. y*, y* are increasingly monotonic in x. In particular, y*{x\,t) < y*(x2,t)
holds for any X\ < x-i-

Proof. For any y\ £ S(xi,t),y2 € S(x2,t), we calculate

ry 2
F{y2;xi,t)-F(yi;x1,t) = / p0{r))(r)cht + u0(7?)sht - xi)drj > 0, (2.7)

Jyi

and
ry i

F{y1\x2,t) - F(y2m,x2,t) = / p0(r))(richt + u0(r])sht - x2)drj > 0. (2.8)
Jy2

Combining the above two inequalities, we obtain

rV2
(x2-xi) po(r])dri > 0. (2.9)' yi

This implies y2 > y\ and then Lemma 2.2 is proved. □

Lemma 2.3. As a function of x and t, y*(x, t) and y*(x, t) are lower- and super-semicon-
tinuous, respectively. Furthermore, at the point where y*(x,t) = y*(x,t), both functions
are continuous.

Proof. We omit the proof because it is quite similar to that of Lemma 2.2 in [15]. □
Since for smooth solution, the system (1.1) can be reduced to a decoupled system (2.1),

the generalized characteristic method introduced by Dafermos [5] could be applied here.
For each point (xq, to), we define the left and right backward generalized characteristics
Ci, C2 as follows:

sh t sh t
C\ : x = —— x0 + y*(x0,t0){cht - —-cht0), for t<t0, (2.10)

snto shco
s\it sht

C2:x = -—x0 + y*{xo,to)(cht-—-chto), for t < t0. (2.11)
Sato snio

We have the following properties of the backward generalized characteristics.

Lemma 2.4. y*(x,t) = y*(x,t) holds along each backward generalized characteristic.
Furthermore ySf(x,t) = y*(x,t) — y*(xo,to) along C\ and y*(x,t) = y*(x,t) = y*(xo,to)
along C2.

Proof. Here we only prove Lemma 2.4 for C\ because the proof for C2 is the same.
Let yo — y*(xo,to). For any point (x,t) located at the curve C\ and any y yo, we
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calculate

F(y;x,t) - F(y0;x,t) = f p0(r))(richt + M0(??)sht - x)drj
Jyo

/ Po(v){v^to + uo(r])shto - x0)dr] (2-12)
J Vn

sh t
sh£o

sh t rv
+ (ch£ - —-cht0) / p0(v)(v - yo)dr).

shfo 'y o

It is noted that the first term on the RHS of (2.12) is non-negative and chi — J^chto

is positive. Hence F(y\x, t) — F(yo; x,t) > 0 if y ^ yo and y*(x, t) = y*(x, t) = yo holds
along the curve C\. □

In terms of Lemmas 2.2-2.4, for any two backward characteristics, either they disjoin
with each other except at the x-axis or a backward characteristic is a subset of another
one. We note that for each point (xo,to), the backward generalized characteristics C±,
C2, and the X-axis form a characteristic area. We denote it by A(xo,to). See Fig. 2.1.
Similarly, we can also show that for any two characteristic areas, either they disjoin with
each other except at the x-axis or a characteristic area is a subset of another one. Thus,
we have the following lemma.

Fig 2.1

Lemma 2.5. Each point (xo,to) at to > 0 uniquely determines a Lipschitz continuous
curve x = x(t), Xq = x(to). In particular, at every t € {r; r > io}.

x{t2)-x{ti)
Inn  =

£2j£i—*£+0 ^2 — 11

— (x(t)cht-y„), if y* — y*,

fy[ Po{r])(vsht + u0(ri)cht)dri # (2'13)

Jy' Po(v)dv
where y* = y*(x(t),t) and y* = y*(x(t),t).

if y* + y*,

Proof. It is observed that for any line t = t± > to, the characteristic areas belonging
to (x,ti),—oo < x < +00 disjoint each other. By this observation, we claim that all
these characteristic areas cover the whole strip 0 < t < t\. Indeed, let A be the set of
points x such that A(x,ti) is located at the left side of (xo,to) and B the set of points
x such that A(x,t\) is located at the right side of (Xo,to). Let xm = sup^g^ja;} and
Xi = infx6s{x}. Then we trivially have xm = Xj = x. If (xo,to) € A(x,ti), then our
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claim is true. If not, without loss of generality, we consider the case that A(x,ti) is
located on the left side of (xo,to)- By (2.10) and (2.11), there is a positive constant 5
such that y*(x,ti) + 5 < y*(y,ti) holds for any y e B. On the other hand, Lemma 2.3
infers that limy^s y*(y, t±) = y*(x,ti). This is a contradiction.

In terms of the above argument, there is a unique point x = x(ti) on the line t = t\
such that the point (xo,£o) e A(x(ti), ti). Since t\ > to is arbitrary, we obtain a curve
x(t) with Xo = x(to) in t > to. See Fig 2.1. Furthermore, x(t) is continuous due to (2.10),
(2.11), and Lemmas 2.2 and 2.3. We now establish (2.13).

Let x' = x(t'), x" = x(t"), t" > t' > t and

y, = y*{x', t'), y' = y*(x',t'), (2.14)
y„ = y*(x",t"), y" = y*(x",t"). (2.15)

(1)
Then Lemmas 2.2 and 2.3 imply

y„ <y, <y* <y* <y' < y", (2.16)
and

y.t-^y*, y"^y* as t" —> t. (2.17)
We first consider the case y* = y*. Let

sht' // , , . sh£' , //,
Xl = sht"X +y"( ~ shf" ^2'18^

Then (xi,t') is located on the left backward characteristic belonging to (x",t') and
satisfies x\ < x'. We calculate

x" — x' ^ x" — X\
t" -1' - t" -1>

„ , „ , , . , „ (2.19)
x shi — sht y„ sht cm — sht cht

~ shi" t" — t' sh t" t" — t'
Let t",t' —> £ + 0; we get that the RHS of (2.19) converges to ^(x(i)cht — y«). Similarly
we get

,»,&+„ TTrf a S(l(1|cht - «">■ (2-20)
Hence we prove (2.13) for the case y* = y*.

Next we consider the case y* < y*. From the definition of y* and y*, we have

F(y"-x", t") - F(y,; x", t") < F(y"; x', t') - F(y,; x', t'). (2.21)

That is
rv rv
/ Poirfivdd" + u0(r])sht" - x") dr/< p0(r))(r]ch.t' + u0(r])sht' - x') drj, (2.22)Jy, J y,

which gives

t" - t
[v , s , ^ [v , \ chi" — chi' sht" — sht'J J Po(r])dri>J p0(r))(r] ^ ^ +m0(t?) )drl■ (2-23)
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Similarly, from the inequality

F{y„; x", t") - F{y'\x", t") < F(y„; x', t') - F(y'; x', t'), (2.24)

we obtain

x" - x' fy , , , fy , ,, cht" - ch£' , , sh£" - sht',
t"

- x' l'y fy cht" - cht' sht" - sht'
zry J Po(v)dv<J Po{v)(ri t„_tl +U0{r/) ^ ^ )dr]. (2.25)

Let £",t' —> £ + 0 in (2.23) and (2.25); we obtain (2.13) for the case y* < y*. Therefore
Lemma 2.5 is proved. □

We now construct the entropy solution of system (1.1). We define

I -^-(xcht-y,), if y* = y*,
py* sht

m(x,t) = Podr], u(x,t) = rv' ( hf + UQcht)dri (2-26)
——7r—; ■ if y* ± y*-

fy, Podv
By Lemma 2.2 and (2.26), both m(x,t) and u(x,t) are of bounded variation locally in
x. We expect that (m(x, t), u(x, t)) or (p(x,t) = m(x,t)x,u(x,t)) is an entropy solution
of the system (1.1) in the sense of Definitions 1 and 2. This will be justified in the next
section.

3. Existence of entropy solution. This section is devoted to the existence of the
entropy solution. Let v{x,t) be the minimum of the functional F(y;x,t). Then we have
the following lemma.

Lemma 3.1.
rx 2

/ m(x, t)dx — t) — is(x2, t), (3-1)
J X1

r-t-2

/ q(x,t)dt = v(x, t2) - v{x,ti), (3.2)
Jti

[V.q(x,t) — / po(i~is\it + uq cht) dr/. (3-3)
J o

Proof. The proof is based on the variational principle. We omit the proof here because
it is similar to that of [11,15]. □

From Lemma 3.1, we know that vx = —m,vt — q holds in the sense of distributions.
In order to establish (1.4)i, we need to investigate the relation between m and q. We
have

Lemma 3.2. dq = udm holds in the sense of Radon-Nikodym derivatives in x.

Proof. Without loss of generality, we assume that y* is not always a constant in any
neighborhood of (a:,t). Let x\ < x < £2, Vi = and y2 = y*(x2,t); then y\ < y2
and

yi -> y*(x,t), y2 -> y*{x,t) as xux-2-+x. (3.4)

where
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To prove Lemma 3.2, we only need to show

q(x2,t) - q(xi,t)
lim —-   - -=u(x,t). (3.5)

x2,xi^>x±o m{x2, t) — m(Xi,t)

When y* < y*, we calculate by (3.4)

q(x2,t) -q(x1,t) /y" Poivsht + u0cht)di)
hm —  —   — = lim —    = u(»t). (3.6)

x2,xi^>x±o m(X2, t) — m{x\, t) x2,x1^x±o J* p0drj

Next we consider the case y* = y*. From the definition of y+, we have

F(V2it) < F(yi,x2, t). (3.7)

That is
fv2 fv2 chte9 - n
/ p0(chtu0 + rjsht)dr] < / p0 — drj. (3.8)

>yi sU
Thus

q(x2,t) - q{xi,t) ^ditx2-y1 ,n ^
m(x2, t) — m(xi, t) sht

Let X\ —> x — 0, x2 —> x + 0. We get

q(x2,t) - q(xut)hm —      -<u(x,t). (3.10)
x2,x1^x±o m(x2,t) — m[xi,t)

Similarly we have
q(x2,l) ■ q{x.\,t)

hm —      ->u(x,t). (3.11)
X2,xi —m(x2, t) — m(xi,t)

Therefore the proof of Lemma 3.2 is completed. □
By Lemmas 3.1 and 3.2, the proof for (1.4)i becomes straightforward and will be

postponed later. We now introduce another functional which is crucial to prove (1.4)2.
By the same method used in Lemma 2.5, there is a Lipschitz curve x = X(r/,t) for each
point (77,0) on the x-axis except, at most, a countable number of points. The curve
satisfies rj = X(r], 0). In terms of Lemma 2.5,

(3.12)

holds for almost every 77 and t. For any constant k > M, we define

fv
G{y,x,t)= Po{r])((v + V2 + l)shi+ (u0(?7) + k)cht)(X(rj,t) - x)drj, (3.13)

Jo
fv

H(y;x,t)= / po(r/)((ri2 + l)sht, + kcht)(X(r),t) - x)drj. (3-14)
Jo

Since X(rj,t) is increasing in rj and X(rj, t) = x as y* < 7/ < y* and 77 + + 1 and
uo(rj) + k are positive, we easily calculate

n(x, t) = minyG(y; x, t) = G(y*;x, t), (3.15)

9(x,t) = min yH(y-,x,t) = H(y*;x,t). (1-16)

Let
E =

ry, 1
/ -poir/sht + u0cht)u(X(ri,t),t)dri. (3-17)

Jo 2
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Similar to Lemma 3.1, we have

fv*
Mx = - / Po(v)({v + v2 + l)shf + {u0(r]) + k)cht)dri =: -(q + qi), (3.18)

JO
ry*

Pt = Po((v + ?72 + l)sh£ + (w0 + k)cht)xi(X(r], £), t)dr]
Jo

fy*
+ Po{(v + V2 + l)cht + (uo + k)sht)(X(r}, t) - x)dr) (3.19)

Jo ry.
=: 2E+ / po{r]cht + uosht)(X(r],t) - x)drj + q2,

Jo

and

9x = ~qi, 0t = q2. (3.20)

In terms of (3.18)—(3.20), we have

kx = — q, Kt — 2E + f po(Tjcht + uosht)(X(r],t) — x)dr/=: 2E + a, (3.21)
Jo

where

K.(x,t) = f po(r]sht + uocht)(X(r],t) — x)dr/. (3.22)
Jo

By the same method as in (3.13)-(3.22), we get

[y*crx = — po(r]cht + uoshtjdr] =: —n. (3.23)
Jo

Proof of Theorem 1. Prom Lemmas 3.1 and 3.2, we know ux — —m(x,t), vt =
and qx = umx. Hence

JJ iptm dx dt — JJ ipu dm dt = J J (m<pt + q<px)dxdt
= jJ(ft<Px - vx<~pt)dxdl = 0

(3.24)

holds for all tp £ Cqc(R\) and (1.4)i is proved.
On the other hand, (3.21) and (3.23) yield

JJ (q<(>t + 2 E<fix + n<j))dxdt = JJ (q<fit + (2 E + a)<j>x)dxdt = 0, (3.25)
for all <f> € Cq°(-R+). In the same way as in Lemma 3.2, we get Ex = \u2mx and
nx = xmx in the sense of Radon-Nikodym derivatives in x. Thus (3.25) gives for any

e C^(R2+)■+/»
2IIiptu + ipxii + xip dm dt

■ f r (3-26)
= - / / (#xt + 2Eipxx + mpx)dxdt = 0.

Thus (1.4)2 is established. Since y*(x, t) and y*(x, t.) converge to x as t —> 0, the formulas
of to and q naturally indicates the initial condition (1.5-1.6). Therefore the functions
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(m(x,t),u(x,t)) constructed in (2.26) is indeed a weak solution of (1.1). By (2.26) and
Lemmas 3.1 and 3.2, it is easy to check that

p(x,t) = = ~J~2 n^inF(y;x,t), (3.27)

p(x,t)u(x,t) = dmif^u{x,t) = -^-min F(y;x,t). (3.28)
ox axot y

It should be noted here that p(x, t) = m(x, t)x is usually a Radon measure.
To show the solution constructed above is an entropy solution, we only need to justify

(1.7). In view of the construction of u(x,t), we have

u(x — 0, t) = —(a;ch£ — y*), u(x + 0, t) = — (xcht — y*). (3.29)
bill' oil 6

On the other hand, (2.19) and (2.20) imply

u(x + 0, t) < u(x, t) < u(x — 0, t). (3.30)

Hence we calculate from (3.29) and (3.30) that

u(x2,t) - u(xi,t) u(x2-0,t)-u{xi+0,t) cht
  <   < ~rz, xi t x2- (3.31)

X2 — X\ X2 — X\ shi

This shows that (p(x, t), u(x, t)) constructed in (3.27) and (3.28) is indeed an entropy
solution of the system (1.1). Finally we point out that from (2.6), \y„{x,t)\ and \y*(x,t)\
are uniformly bounded as t tends to infinity. Therefore (3.29) and (3.30) yield that
u(x, t) —* x as t —* oo. Theorem 1 is proved. □

4. Uniqueness of entropy solution. This section is devoted to the uniqueness
of entropy solution to the nonhomogeneous system (1.1). We shall follow the idea of
[11,16] to establish the uniqueness Theorem 2. Our strategy is to show that any entropy
solution (p,u) coincides with the standard entropy solution constructed in Theorem 1.
This naturally leads to the uniqueness Theorem 2.

Assume that (p, u) or (m, u) is any entropy solution in the sense of Definitions 1 and
2. Then we have

mt + u(x, t)mx = 0, m0(x) = / p{£)d£, (4.1)
Jo

where u(x, t) satisfies
u(x2,t) -u(Xl,t) < e* + e~f

x2 — x\ ~ et — e_t'

for any X\ < x2 and almost all t > 0. Let M = HuqIIl00 and u£ = u*je with the standard
mollifier jE; then |u£| < M and uex < ^r~=i- We denote x = X6(£,t) the characteristic
curve of

— = ii
dt.
x(0) = e (43)

The characteristics x = Xe(£,t) have already been studied in [16]. We state some
properties of them in the following two Lemmas.
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Lemma 4.1. (1) There exists a subsequence X6i(£,t) such that

limXE>(Z,t) = X(t;,t), (4.4)
£i—>0

for all £ and t. Furthermore, X(£, t) is Lipschitz continuous with respect to t and is
increasing with respect to £.

(2) If X(£i,t0) = X(^2,to) holds for some < £2 and to > 0, then X(£i,t) = X(^2,t)
for all t > to.

(3) Let U — {£ : 3t > 0,s.t. X(!; — 0,t) X(£ + 0, i)}; then for any £ e R/U and
almost t > 0,

X'{£,t)=u{X{Z,t),t),
u{X{£,t) - 0,t) < u(X(£,t),t) < u(X(£,t) + 0,t),

where ' denotes the upper derivative with respect to t.
(4) Let £(x,t) = sup{£ : X(£,t) < x}, i](x,t) = inf{£ : X(£,t) > x}; then the set

T = {{x,t) : £,(x,t) ^ r](x,t),t > 0} consists of at most countable Lipschitz continuous
curves. Furthermore,

£(x-0,t)=£{x,t), r](x,t) = £{x + 0,t) =rj(x + 0,t), (4.5)
X(£(x, t) — 0, t) < x < X(£(x, t) + 0, t). (4.6)

(5) For any point (xo,to), there exists at least one curve V through (xo,to) such that
£(x,t) keeps constant along the curve.

Lemma 4.2. If the function u(x,t) is given, then the solution of Eq. (4.1) is unique.
Furthermore,

/.{O.t)
m(x, t) = / Po(€)d£. (4.7)

Proof of Theorem 2. Fix time t\ we define

Ct = {x- (x, t) e R/r,X(£(x, t) - 0, r) = X(£(x, t) + 0, t), 0 < r < <}. (4.8)

It is easy to verify that for any 0 < r < t, £(x(t),t) keeps constant along the curve
x(t) = X(£(x,t),r). For any Xi,X2 € Ct satisfying X\ < x2, let £(xi,i) = £1 and
£(x2,t) = £2- Set xi(r) = X(£i,t) and x2(t) = X(£2,t), 0 < r < t. Let <f>\£{x), 4>2e{x) £
C°°(R) satisfy

♦*«-{£ :>o7' (4-9)
For any <p(r) G Cq°[0,<), let ipe = 0e(x,r)</?(r) with

<j)e(x, T) = <t>2e{x ~ X2{t)) - (f>u{x ~ Xi (r)).

Then by (1-4)2, we have

JJ 4>stu + iJJexU2 + xipE dm dt + J ips(x, 0)uopodr] = 0, (4-10)
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which indicates

J J <pT0eU + XlPedmdT + j x/je(x,0)u0p0dr]
ft rxiO)

= ~ <P<f>u(x'i(T) - u)udmdT (4.n)
J 0 J X\{t)—£

nX2 (t)+£ip(f>2e(x'2 (r) — u)udmdm
2 (t)

By Lemma 4.1 (3) and the fact that xi,x2 G Ct, we have for almost every 0 < r < t,

u(xi(r) - 0,r) = z-(t) = u{xi(r) + 0,r), i = 1,2.

Thus the right-hand side of (4.11) tends to zero when s tends to zero. Letting e —> 0 in
(4.11) gives

rt rX2 (t )+0 />£2

/ / ipru + xip dmdr + / (p(0)uopodrj = 0. (4-12)
J0 0 i

For any 0 < s < t, we choose 0 < 5 < t — s. Let <p(r) = ps(t) satisfy

«<->-{£ IV.tt
Then substituting (4.13) into (4.12) and letting S —> 0 yields

ri 2 rs

/ uoPodr/ - X'(r],s)po{r])dr]+ / X(rj, t)p0{ri)dr}dT = 0, (4.14)
hi Jo •/?!

where we have used the fact that for any measurable function / with respect to m(x, s)x,

rX2(s)+0 />£2

/ f(x)dm(x,s)= f(X(ri,s))p0(v)dri (4.15)
Jxi(s)— 0 i

due to Lemma 4.2, £(xi(t),t) = and (t),t) = £2 for any 0 < r < t. Let

h(s)=f [ X(r/,T)pQ(r))dT]dT. (4.16)
Jo J^

Then we have from (4.14)

[ uopodr) — h"(s) + h(s) = 0, h( 0) = 0, h'( 0) = [ r]p0(r])dr]. (4.17)
i J fi

Direct computation on (4.17) gives that for any 0 < s <t,

r€ 2 /*C2/*s2 rt; 2

h'(s)= Po{v)x(v,s)dr]= po(v)[vcb.s + uo(r])shs]dri, (4.18)
Jt i -'Ci

r£ 2

h"(s)= / Po{v)X'(ri, s)dr) = / /90(??)[?7shs + u0(??)chs]dr7. (4.19)

Furthermore, we have □
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Lemma 4.3. For any x\ < x?, let £1 = £(xi,t) and £2 = £(^2,t)\ then for any 0 < s < t,

rZ2 ri2
/ Po(v)X(r],s)dri = / p0(r?)[?7chs + u0(r])shs}drj, (4.20)

/ PQ(v)x\v,s)dil= p0(r])[r]shs + u0{rj)chs]dri. (4.21)
•^1 £1

Proof. Without loss of generality, we assume that £1 £ R/Ct and X2 G Ct■ There are
two subcases.

i) Xi = X(£i — 0, t): Let

Vt = {x; si. X(£ - 0, t) < x < X{£ + 0, i)}. (4.22)

It is easy to see that for any x € V(t),

p(x,t) = mx(x,t) = 0 (4-23)

due to Lemma 4.2. By the definition of Ct and Vt, R/(CtUVt) is a zero measure set. Thus
in this subcase, there exists a sequence of x\n e Ct satisfying X\n < Xi and xin —> X\ as
n-too. Set = £(xin,t); then the equality (4.18) yields

r^2 r(,2
/ p0(r})X(rj,s)dri= p0(r])[richs + u0(r])shs}dr]. (4.24)

J tin Jim

Let n —► 00; we obtain (4.20) due to Lemma 4.1 (4). The equality (4.21) can be obtained
in the same way.

ii) X(£i - 0,t) < xi < X(£1 +0,t): Let x\ = X(^ +0,t). Then we have £(xi,t) =
£(x\,t) = £1. Following the same argument as i), we obtain (4.20) and (4.21). Hence
Lemma 4.3 is proved. □

Now we define
/•£(*,t)

q(x,t) = / po(rj)[risht + uo(ri)cht\dri, (4-25)
Jo

n(x,t)— / p0(r])[r]cht + u0(r])sht\dri. (4-26)
Jo

We have

Lemma 4.4. qx = u(x,t)mx and nx = xmx hold in the sense of Radon-Nykodym in x.

Proof. Let Ft = {x; (x,t) £ T} and A = Ct U Vt U Tt. Then by the definition, R/A
consists of at most countable points where m(x, t) is continuous. It is noted that p is
a vacuum in Vt. Therefore we only need to show that Lemma 4.4 holds in the set Tt
everywhere and the set Ct almost everywhere. Let x € Ct satisfy

L-r Pouodrj
lim—^ =uo(0. f = £0M)-
£-° I^Podv

It is easy to check that such points are dense in Ct. Then there exist two sequences of
xln,x2n € Ct satisfying x £ (xin,x2n), %in ^1 and X2n %2- From Lemma 4.3, we



NONHOMOGENEOUS SYSTEM OF PRESSURELESS FLOW 523

have
r£(.X2n,t) rt(X2n,t)

/ po(r])X'(T), s)drj = / p0^)[rjshs + u0(ri)chs\dTj. (4.27)
JZ(Xln ,t) J£(Xln,t)

Letting n —> oo yields

X'(£, s) = £shs + uo(£)chs, 0 < s < t. (4.28)

Let s = t. We have

qx = u(x,t)mx, u(x,t) — X'(£,t) = £sht + Uo(£)cht. (4.29)

Using the same argument, we obtain that for any x € Ft and 0 < s < t,
rv(x,t) rv(x,t)
/ po(r])X'(ri, s)di) = / p0(rj)[r]shs + w0(??)chs]dr;. (4.30)

Let s = t. Then X'{r\,t) = u(x,t) = po[rjsht + uocht]dr) holds for any ?? £
(£(x,t),r)(x,t)) due to Lemma 4.1. Hence we obtain qx = u(x,t)mx. The relation
nx = xmx can be treated in the same way. Therefore, the proof of Lemma 4.4 is
completed. □

In terms of Lemma 4.4, Eq. (4.1) yields

mt+qx = 0. (4-31)

It is noted that Eq. (4.31) is conserved and m and q are left continuous functions. We
introduce the following generalized potential &(x,t)

f(x,t)
$(2, t) = cp m(x,t)dx — q{x,t)dt. (4-32)

Obviously, the potential &(x, t) is independent of the integral path and <&x = m, <3>t = —q
hold in the sense of distributions. If we can show

$(x,t) = — mmF(y-,§*t), (4.33)
y

where F(y;x,t) is introduced in (1.10), then it is natural to imply the uniqueness The-
orem 2 because F(y-,x,t) only depends on the initial data. We shall establish (4.33) by
two integral paths.

For any point (x0,t0) £ R\, there exists at least one curve L' through (xo,to) and
(£(xo,to)j0) such that £{x,t) keeps constant along L' due to Lemma 4.1 (5). The first
integral path is chosen from (0, 0) to (£(#o> ^0)10) along the x-axis and from (^(a;o, to), 0)
to (xo,to) along the curve L'. Let £0 = £(#o>io)- We compute

rio
Q(xo,to) = / mo(r/)dri + / m(x,t)dx — q(x,t)dt

Jo J L'
/•£ 0 rta /•Jo

= / (€o-v)Podr)- / / [r/shs + uo(r])chs}podrids
Jo Jo Jo

+ (^o -£o) [
Jo

£0

Podr]
(4.34)

Lio

PoN - (?/chi0 + u0sht0)]dr).
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On the other hand, we choose another integral path which is from (0,0) to (yo,0)
along the x-axis and from (yo, 0) to (xq, to) along the curve L : x — x(t) — yacht + vosht,
0 < t < to, where vq — — Vochto). Here yo is any constant. We compute

<l>(xo,io) = / mo{rj)dr]+ / m.dx - qdt
Jo J L

ryo fto
L (4.35)

ryo rt o
/ mo(rj)dT]-\- / x'(t)m(x(t), t) — q(x(t), t)dt.

J 0 ./()
To calculate the last term of (4.35), we use the following lemma, whose proof will be
given at the end of this section.

Lemma 4.5. Let x(t) = j/ochr + woshr and y(r) = £(x(t),t), 0 < r < t. Then for any
0 < r < t,

rV O) ry(r)
/ Po{v)drjx'(T) > / p0(ri)[rishT + u0(r])chT]drj. (4.36)

Jyo Jyo

In terms of Lemma 4.5, we obtain

rvWry(t)
x'(t)m(x(t),t) — q(x(t),t) = / po(x'(t) — rjsht — uocht)drj

Jo,rvo
> / po(x'(t) — rjsht — uocht)drj.

Jo

(4.37)

Substituting (4.37) into (4.35) implies
ryo ryo rto

(4.38)

ryo ryo rt o
^(ar0,t0) > / Po(yo -ri)drj+ / / p0[r]sht + u0cht\dri

J0 Jo Jo
ryo

= / p0{x0-T]cht0-u0sht0)drj.
Jo

Since yo is arbitrary, we have
rv

$(x0,t0) > max / po{xo — ??cht0 — uoshto)dri. (4.39)
y Jo

Combining (4.35) and (4.39), we obtain

$(z0, t0) = maxy /Qy po(xo - rjchto - u0sht0)dri,

= -m\nyF(y,xo,to).
(4.40)

On the other hand, by the existence Theorem 1, we can construct a standard entropy
solution ms,us satisfying ms = qs = — $t, where (qs)x = us(ms)x. Thus by (4.40)
we have m = ms, q = qs a.e. in t > 0. Therefore the uniqueness Theorem 2 is proved.

Proof of Lemma 4-5. Without loss of generality, we assume that yo < x(t). Then we
have X(yo,r) < x(r). We divide our proof into two subcases.

i) For any 0 < s < r, X(yo, s) < x(s). Let

£ —>0

PoUodij

Podv
LP = {Ze R-, lim Je"g. = ti0(O}- (4-41)
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Obviously, the set LP is dense in R. For any y £ (yo, y(r)) HLP/U, where U is introduced
in Lemma 4.1 (3), the curve X(y,s) must intersect with the curve L: x = x(s) at some
time 0 < t(y) < r. See Fig 4.1. Let

£(y)= lim £(X(y,s),s), r]{y) = lim r](X{y,s),s). (4.42)
s—>t(y) s-+t{y)

(x(X), t)

x(s)
(aCKy.JXtty,))^

x(yi,s)
(x(t(y)),t(y))

\ (y) y H (y) I (y,) y, T| (y,) Jl(t) ~X

Fig 4.1

Then we have

Z(y) <y< v{y)- (4-43)
If £(y) — V = v(y)i equality (4.28) implies

X(y, s) = ychs + u0(y)shs, 0 <s<t(y). (4.44)

Since yo < y and

x(t(y)) = yocht(y) +u0(y)sht(y) = X(y,t(y)) = ycht(y) + u0(y)sht(y), (4.45)

we obtain uo{y) < vq. A simple calculation shows that

y — vo sh t(y) chry y - yyJ < —, (4.46)
vo ~ u0(y) cht(y) ~ shr

which indicates
x'(t) > yshr + uo(y)chr. (4-47)

If C(y) 7^ 'y(y); let ly = (€{y)>V{y))- From Lemma 4.4, we have

rv(v) rv(y)
lim X'(y,s) p0(rj)dr) = / p0(rj)[r]shs + u0{ri)chs\dr], (4.48)

s^t(y) Jl;(y) j£(y)

My) rv(y)
lim X(y,s) p0{r))dr) = / p0(r])[r]chs + u0(r])shs}dr]. (4.49)

s^My) Jg(y) Ji(y)

Noting that lims^t(j/) X(y,s) = x(t(y)) and lims_>t(y) X'(y,s) < x'(t(y)), we get

rv(y) rv(y)
Vo Podv< PoVdii

J((y) JZ(y)
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and

vo
rv{y) rviv)
/ p0dri > / PoUodrj.

J£(v) J£(v)'S(v) Ji(y)
Applying the same argument as in (4.46) and (4.47) yields

ni(v) rv(y)rmy) rvyy)
X\T) / Po{v)dr]> / Po{Tl)[rls^T + uo(rj)chT]di~i. (4.50)

h(y) h(y)
On the other hand, it is easy to check that, for all of these intervals, Iy either is

equivalent or disjoint to each other due to Lemma 4.1 (1) and (2). Let A = {y\ \Iy\ ^
0,t/6 (yo,y(T))}; then A consists of at most denumerable open intervals which disjoint
each other. Thus by (4.50), we have

X\T) / Po(v)dr]> / Po(v)[vshT+ u0(ri)chT]dri. (4.51)
J A J A

Since (4.47) holds for any y G {yo,y(T)) fl LP/(A U U), we have

X'(t) / Po{ri)dr]> / po(r/)[r/shr + u0{r])chT}dT]. (4.52)
J (yo,y(-r))/A J(y0,y(T))/&

Combining (4.51) and (4.52) implies (4.36).
ii) 30 < s0 < r, s.t. X{y0,s0) = x(s0).
Suppose that there exists n(n > 2) intersection points between X(yo,s) and x(s),

0 < s < t. We denote these points by (xi, Sj), i = 1, 2, • • • , n with sn = 0 < sn_i < • • ■ <
si < r. See Fig 4.2. Let & = £(xi,Si),r)i = r](xl,si),i = 1, • ■ • ,n - 1 and £„ = r?n = y0
and 77o = y(r).

X(ya,s> _ «t),x)
\ x(s)

0 11 I! y= 7}, ri, y(x) x

Fig 4.2

It is easy to check that {yo,y(T)] = S™=ollVi+hVi]- 's observed that when Si <
s < r, X(yo, s) < x(s) holds. Using the same argument as i), we have

/•v(t) i-v(t)
X'(T) / Po{il)dri> / p0{v)[vshT + u0(v)chT}dr]. (4.53)

J-q i Jt)i
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When S2 < s < si, we have x(s) < X(y0, s). Again using the same argument as i) yields
rv1 rvi

X'(T) / Po(v)dv< / Po{v)[vs^T + u0{T))chT}dr]. (4.54)
Jrj 2 Jr)2

We note that
rv i rvi rVi

z'(si) / po(r])dr] > X'(yo, si) / p0(r])drj = / /00(^7)[?7shsi + M0(?7)chsi]d?7, (4.55)

which indicates
fVi cn i

X'
rm rm

\T) l Po(v)dV> / PoMfashr + M0(?7)chT]d?7. (4.56)

We also note that
rm riJ2

X'(T) Po(v)drl < / PoMfashr + u0(r?)chr](i?7. (4.57)
^2 J ^2

Thus we obtain

X'(t) / Po{rj)dr]> / /90(r?)[??shT + u0(77)chr]dr?. (4.58)
(4i.42)u(tj2,7ji) «'(5i,€a)u(»)2,'7t}

Substituting (4.54) into (4.58) implies that
/•fi /*»ji

x'(t) Po{v)dv> / /9o(?7)[r?shr+ w0(7/)chr]dr?. (4.59)
J 7)2 J r?2

In the same way, we can show for any i = 0, • • • , n — 1,
rm rm

X\T) / Po(v)dv> / Po(j?)[^shr + u0(7?)chr]dr/. (4.60)
•>m+i •'»k+i

Adding all of these inequalities yields
/•vM ry(r)

X'(T) / Po(v)dri> / PoMfashr + tt0(r?)chr]dr?. (4.61)
Jyo Jyo

Therefore Lemma 4.5 is proved. □
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