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ON A NONLINEAR CONGRUENTIAL
PSEUDORANDOM NUMBER GENERATOR

TAKASHI KATO, LI-MING WU, AND NIRO YANAGIHARA

Abstract. A nonlinear congruential pseudorandom number generator with
modulus M = 2w is proposed, which may be viewed to comprise both linear
as well as inversive congruential generators. The condition for it to generate
sequences of maximal period length is obtained. It is akin to the inversive one
and bears a remarkable resemblance to the latter.

1. Introduction

A standard method of generating uniform pseudorandom numbers in the interval
I = [0, 1) (denoted as PRN) is the linear congruential one, which is given as follows:
For a large modulus M , let

ZM =
{

0, 1, ...,M − 1
}

= Z/M.

A sequence {yn} of integers in ZM is generated by the linear recursion

(1.1) yn+1 ≡ cyn + b (mod M), n = 0, 1, ...,

where c, b ∈ ZM . The PRN are obtained by the normalization

(1.2) xn = yn/M.

This linear method is widely used, and has been investigated by several authors
[9]. However, there is some drawback owing to the linearity of the recursion, e.g.,
so-called coarse lattice structure. This state of affairs provided the motivation for
several recent proposals of nonlinear congruential generators [1, 5, 9, 12].

Among them, one of the most interesting is the inversive congruential method
[12], with prime modulus (M = p for a prime p) or power of two modulus (M = 2w

for a large integer w). The latter is described as follows: For M = 2w, let

GM =
{

1, 3, ...,M − 1
}

=
{

positive odd integers less than M
}
.

For any u ∈ GM , there is a unique u ∈ GM such that uu ≡ 1 (mod M). Now a
sequence {yn} ⊂ GM is generated by the inversive recursion

(1.3) yn+1 ≡ ayn + b (mod M), n = 0, 1, ...,
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in which a, b ∈ ZM are chosen so that yn ∈ GM implies yn+1 ∈ GM .
In the present note, we propose another nonlinear method similar to (1.3), i.e.,

for the modulus M = 2w, we put with y0 ∈ GM ,

(1.4) yn+1 ≡ ayn + b+ cyn (mod M), n = 0, 1, ...,

in which of course a, b, c ∈ ZM should be chosen so that yn ∈ GM implies yn+1 ∈
GM . The PRN {xn} is defined by (1.2).

We will show that the modified inversive method (1.4) bears a close resemblance
to (1.3). That is, we prove the following theorem.

Theorem. Let M = 2w, w ≥ 3. Then the PRN {xn} derived from (1.4) is purely
periodic with period M/2 if and only if

a+ c ≡ 1 (mod 4) and b ≡ 2 (mod 4).

Among the constants in the theorem, one of a or c may be zero, hence (1.4) can
be viewed as to comprise both (1.1) and (1.3).

The discrepancy as well as lattice structure of the sequence {xn} , generated by
(1.4), will be studied in future papers.

Our proof of the theorem is very similar to the proofs in [5, Theorem] and [12,
Theorem 8.9]. But we hope that the modified method (1.4) would be of some
interest. By the way, we note that the difference equation

y(t+ 1) = y(t) + b+ a/y(t)

has been studied from the viewpoint of complex analytic theory [7, 8, 13, 14, 15].
Its solutions exhibit distinctly fractal features.

2. Proof of Theorem

We divide the proof into three subsections (I),(II),(III).

(I) Necessity. Write the period of {xn} as per(xn). Obviously, per(xn) ≤M/2.
Suppose that {xn} is purely periodic with per(xn) = M/2. Then

{
y0, y1, ...,

yM/2−1

}
= GM , so we can assume that y0 = 1. If we consider the sequence {yn}

modulo 4, then it has period 2; hence y2 ≡ 1 (mod 4). If this sequence is taken
modulo 8, then it has period 4; hence y2 6= 1 (mod 8), and so y2 ≡ 5 (mod 8). Since
ū ≡ u (mod 8) for u ∈ GM , it follows from (1.4) that

y2 ≡ c(a+ b+ c) + b+ a(a+ b+ c) = (a+ c)2 + (a+ c+ 1)b mod 8.

Suppose a+ c is even. Then b must be odd since y1 ≡ a+ b+ c (mod 8) ∈ GM . Put
a+ c = 2r, b = 1 + 2s. Then y2 = 4r2 + (1 + 2r)(1 + 2s) = 1 + 2(r+ s) + 4rs+ 4r2,
which must be ≡ 1 (mod 4). Hence, r+s = 2t, t ∈ Z. Then y1 = 1+4t ≡ 1 (mod
4), which contradicts that {yn} has period 2 (mod 4). Therefore, a + c must be
odd. Hence, (a+ c)2 ≡ 1 (mod 8), and we have

y2 ≡ 1 + (a+ c+ 1)b (mod 8),

so (a+ c+ 1)b ≡ 4 (mod 8). This implies a+ c ≡ 1 (mod 4), b ≡ 2 (mod 4).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON A NONLINEAR CONGRUENTIAL PSEUDORANDOM NUMBER GENERATOR 229

(II) Sufficiency for the case where c is an even number. Suppose a+ c ≡ 1
(mod 4) and b ≡ 2 (mod 4). Consider first the case y0 = 1. For M = 8, it is checked
by the above arguments that per(yn) = 4. Now let M = 2w with w ≥ 4.

In this subsection we suppose that c is an even number.
Define a sequence {αn} ⊂ GM , n = 0, 1, 2, ..., by

(2.1) αn+2 ≡ αn(aαn
2 + bαnαn+1 + cαn+1

2) (mod M).

Put α0 = α1 = 1. By induction on n, we obtain

(2.2) yn ≡ αnαn+1 (mod M), n = 0, 1, ....

Write (2.1) as

(2.3) αn+2 ≡ (a+ c)αn + bαn+1 + cβn (mod M),

(2.3’) βn = αn(αn+1
2 − αn2).

With the integer matrix

A =

(
0 1

a+ c b

)
we see, from (2.3), that(

αn+1

αn+2

)
≡ A

(
αn
αn+1

)
+ c

(
0
βn

)
,

and so

(2.4)

(
αn
αn+1

)
≡ An

(
α0

α1

)
+Rn (mod M),

where

Rn = c

(
0

βn−1

)
+ cA

(
0

βn−2

)
+ · · ·+ cAn−1

(
0
β0

)
.

By induction on h ≥ 2, using a+ c ≡ 1 (mod 4), b ≡ 2 (mod 4), it is shown, as in
[12, p.188], that for m = 2h

(2.5) Am ≡
(

2mp+m+ 1 2mq + 3m
2mq + 3m 2mp+ 3m+ 1

)
mod 4m = 2h+2,

for all h ≥ 2, with some integers p, q.
We will show that, for m = 2h (2 ≤ h ≤ w − 1),

(2.6) Rm = 4mSm

for an integer vector Sm . Equation (2.6) holds for h = 2, since c is assumed to be
even. Now suppose it holds for m = 2h. Then

αm = 1 + 2m(p+ q) + 4m+ 4mT0 + 4mSm
(0) + smM,
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αm+1 = 1 + 2m(p+ q) + 6m+ 4mT1 + 4mSm
(1) + sm+1M

with integers T0, T1, sm, sm+1, where we write Sm = t(Sm
(0), Sm

(1)). Hence, we
have

αm = α0 + 2mU0, αm+1 = α1 + 2mU1

with integers U0, U1. Then

βm = αm
{

(1 + 2mU0)2 − (1 + 2mU1)2
}

= 4mW0 = β0 + 4mW0

for an integer W0. Thus,

αm+2 = (a+ c)(α0 + 2mU0) + b(α1 + 2mU1) + cβm = α2 + 2mU2,

with an integer U2. It is easy to see that

αm+1 = α1 + 2mV1, αm+2 = α2 + 2mV2.

Then

βm+1 = αm+1

{
(α2 + 2mU2)2 − (α1 + 2mU1)2

}
= 4mαm+1(α2U2 − α1U1 +mU2

2 −mU1
2)

+ (αm+1 − α1)(α2
2 − α1

2) + α1(α2
2 − α1

2)

= β1 + 4mW1

with an integer W1, since αk+1
2 − αk2 is divided by 8 for any k.

Repeating this procedure, we get

(2.7) αm+k = αk + 2mUk with some integer Uk, k = 0, ...,m− 1,

(2.8) αm+k = αk + 2mVk with some integer Vk, k = 0, ...,m− 1,

(2.9) βm+k = βk + 4mWk with some integer Wk, k = 0, ...,m− 1.

Now (
α2m

α2m+1

)
= A2m

(
α0

α1

)
+R2m,

in which we obtain by (2.9)

R2m = c

(
0

β2m−1

)
+ cA

(
0

β2m−2

)
+ · · ·+ cAm−1

(
0
βm

)
+ cAm

(
0

βm−1

)
+ cAm+1

(
0

βm−2

)
+ · · ·+ cA2m−1

(
0
β0

)
= c

(
0

βm−1

)
+ cA

(
0

βm−2

)
+ · · ·+ cAm−1

(
0
β0

)
+Am

{
c

(
0

βm−1

)
+ cA

(
0

βm−2

)
+ · · ·+ cAm−1

(
0
β0

)}
+ 4mc

{(
0

Wm−1

)
+A

(
0

Wm−2

)
+ · · ·+Am−1

(
0
W0

)}
= (I +Am)Rm + 4mcW,
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thus by (2.5) and (2.6) we have, with an integer vector W ,

R2m = 8m {(I +Am)/2}Sm + 8m(c/2)W = 4(2m)S2m,

since c is even by our assumption. Hence (2.6) holds for 2m = 2h+1. Thus, we
obtain (2.6) for any m = 2h (2 ≤ h ≤ w − 1), from which we see by the above
arguments that (2.7) holds for any m = 2h (2 ≤ h ≤ w − 1).

By (2.7) with m = M/2 (h = w − 1), we obtain αn+M/2 = αn for any n,
which implies yn+M/2 = yn. Therefore, per(yn) divides M/2. Since we already
know that per(yn)≤M/2, to prove that per(yn) = M/2, it suffices to show that
per(yn)> M/4.

If we had per(yn)≤ M/4 , then yM/4 =y0 = 1, and so αM/4+1≡αM/4 (mod M)
by (2.2). However, by (2.4) with n = M/4, and by (2.5), (2.6) with h = w−2, we
obtain a contradiction αM/4+1 ≡ αM/4 + M/2 (mod M). So per(yn) = M/2 is

proved if y0 = 1. In particular,
{
y0, y1, ..., yM/2−1

}
= GM . If we have an arbitrary

initial value y0 ∈ GM , then the sequence y0, y1, ... is a shifted version of the
sequence with initial value 1, and so again per(xn) = per(yn) = M/2.

(III) Sufficiency for the case where c is an odd number. Now we turn to
the case when c is odd. Then a must be even.

The equation (1.4) can be written as

(2.10) yn+1 ≡ (a+ c)yn + b+ ayn(1− yn2) mod M,

i.e., (
yn+1

1

)
≡
(
a+ c b

0 1

)(
yn
1

)
+ a

(
zn
0

)
mod M,

in which zn = yn(1− yn2). Put

A =

(
a+ c b

0 1

)
.

We obtain that (
yn
1

)
≡ An

(
y0

1

)
+Rn,

where

(2.11) Rn = a

(
zn−1

0

)
+ aA

(
zn−2

0

)
+ · · ·+ aAn−1

(
z0

0

)
.

Since a + c ≡ 1 (mod 4) and b ≡ 2 (mod 4), we see by induction that, for
m = 2h, h ≥ 1,

(2.12) Am =

(
1 + 4mPm 2m+ 4mQm

0 1

)
with integers Pm and Qm . We will show that, for m = 2h, 1 ≤ h ≤ w − 1,

(2.13) Rm = 4mSm,
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with integer vector Sm = t(sm, 0). Equation (2.13) is easily seen to hold for m =
2 (h = 1). Suppose it holds for m = 2h. Then

ym = y0 + 4mPmy0 + 2m+ 4mQm + 4msm = y0 + 2mU0

with an integer U0. Further, it is easy to see that

ym = y0 + 2mV0

with an integer V0. Then

zm = (y0 + 2mV0){1− (y0 + 2mU0)2} = z0 + 4mW0

with an integer W0, since z0 = 0. Then

ym+1 ≡ (a+ c)(y0 + 2mU0) + b+ a(z0 + 4mW0)

= (a+ c)y0 + b+ az0 + 2mU1 = y1 + 2mU1.

Repeating this procedure, we get, for k = 0, 1, ...,m− 1,

(2.14) ym+k = yk + 2mUk,

(2.15) ym+k = yk + 2mVk,

(2.16) zm+k = zk + 4mWk.

Thus, with some integer vector Tm,

R2m = a

(
z2m−1

0

)
+ aA

(
z2m−2

0

)
+ ...+ aAm−1

(
zm
0

)
+ aAm

(
zm−1

0

)
+ aAm+1

(
zm−2

0

)
+ ...+ aA2m−1

(
z0

0

)
= a

(
zm−1

0

)
+ aA

(
zm−2

0

)
+ ...+ aAm−1

(
z0

0

)
+Am

{
a

(
zm−1

0

)
+ aA

(
zm−2

0

)
+ ...+ aAm−1

(
z0

0

)}
+ 4ma

{(
Wm−1

0

)
+A

(
Wm−2

0

)
+ ...+Am−1

(
W0

0

)}
= Rm +AmRm + 4maTm

= 4× (2m)[(I +Am)/2]Sm + 4× (2m)(a/2)Tm

= 4× (2m)S2m,

since a is even, which shows that (2.13) holds for 2m = 2h+1. Therefore, (2.13)
holds for any m = 2h, 1 ≤ h ≤ w − 1.

Hence, (2.14) holds for m = M/2 = 2w−1, i.e., we obtain yM/2 = y0. Thus,
per(yn) divides M/2. Suppose per(yn)≤ M/4. Then yM/4 = y0. But by (2.12)
and (2.13), we obtain yM/4 ≡ y0 +M/2 (mod M), which is absurd. As in (II), we
conclude that per(yn) = M/2.
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