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1. Introduction

Let F : X → Y be a mapping between Banach spaces X and Y . Having x0 ∈ X
and y0 = F (x0), consider the level set

M = { x ∈ X | F (x) = y0 } = F−1(y0).

An important question is to estimate dist (x, M) for all x from a neighborhood
of the point x0. Historically, this question first arose in the theory of problems
of conditional extremum:

ϕ(x) → min, subject to F (x) = 0. (1)

For such problems, in this general setting, the first order necessary condition
for a local minimum (Lagrange multipliers rule) was proved by L.A. Lyusternik
in his famous paper (Lyusternik, 1934). In that paper he actually obtained the
following result:
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Theorem 1.1 (on the distance estimate to the level set) Suppose that F is
strictly differentiable at x0 and its derivative F ′(x0) maps X onto Y . Then
there exists a constant L such that in some neighborhood O(x0) of the point x0

the following estimate holds:

dist (x, M) ≤ L ||F (x) − y0||, ∀x ∈ O(x0). (2)

Recall that the mapping F : X → Y is strictly differentiable at x0 if there
exists a bounded linear operator A : X → Y such that ∀ ε > 0 there exists a
neighborhood U(x0) such that ∀x′, x′′ ∈ U(x0)

||F (x′′) − F (x′) − A(x′′ − x′)|| ≤ ε ||x′′ − x′||.
The linear operator A is called the strict derivative of the mapping F at the point
x0 and is denoted by A = F ′(x0). Clearly, if F has at x0 a strict derivative
F ′(x0), then it is also its Fréchet derivative. On the other hand, if F has
at x0 a Fréchet derivative, then its strict differentiability is not guaranteed.
However, if F has a Fréchet derivative F ′(x) at each point in some neighborhood
O(x0), and this derivative is continuous at x0 w.r.t. x in the operator norm (i.e.,
||F ′(x) − F ′(x0)|| → 0 as x → x0), then one can easily show that F ′(x0) is a
strict derivative of F at x0.

Theorem 1.1 readily yields the following “theorem on the tangent subspace”,
the one often used in deriving necessary conditions for an extremum.

Recall that a vector h ∈ X is tangent to a set C ⊂ X at a point x0 ∈ C if
dist (x0 + εh, C) = o(ε) as ε → 0+. The set of all such vectors (it is always a
closed cone) is denoted by Tx0 C.

Theorem 1.2 (Lyusternik) Let F ′(x0) be onto (the Lyusternik condition). Then
Tx0 M = ker F ′(x0), i.e., a vector x̄ is tangent to the level set M at x0 iff
F ′(x0) x̄ = 0.

The inclusion ⊂ here is obvious, and it holds even without the assumption
about surjectivity of F ′(x0). The reverse inclusion follows readily from the
distance estimate (2): if F ′(x0) x̄ = 0, then F (x0 + εx̄) = F (x0) + o(ε), and so

dist (x0 + εx̄, M) ≤ L ||F (x0 + εx̄) − F (x0)|| = o(ε).

2. Covering and metric regularity

Analyzing more thoroughly the proof in Lyusternik (1934), one can see that,
under the conditions of Theorem 1.1, a stronger assertion actually holds.

Theorem 2.1 (on the distance estimate to variable level sets) Let the condi-
tions of Theorem 1.1 be fulfilled. Then there exist a constant L and neigh-
borhoods U(x0) and V (y0) (of the points x0 and y0 respectively) such that
∀x ∈ U(x0), ∀ y ∈ V (y0)

dist (x, F−1(y)) ≤ L ||F (x) − y||. (3)
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This property of the mapping F (noted by many researchers) has been re-
cently named metric regularity with constant L. One can easily see that it is
equivalent to the following property: there exist a number a > 0 and a neigh-
borhood O(x0) such that for any closed ball Br(x) ⊂ O(x0)

F (Br(x)) ⊃ Bar(F (x)). (4)

The last property is called covering with (or openness at) linear rate a in the
neighborhood O(x0).

The equivalence of these two properties for an arbitrary continuous F means
that, first, if F covers in a neighborhood O(x0) with a rate a > 0, then for
some neighborhoods U(x0) and V (y0) it is metrically regular with the constant
L = 1/a, and, second, if F is metrically regular with a constant L for some
neighborhoods U(x0) and V (y0), then in some neighborhood O(x0) it covers
with any rate a < 1/L.

In the simplest case when F : IR → IR is a scalar function of one variable,
both properties – covering and metric regularity in a neighborhood – mean that
in this neighborhood F ′(x) ≥ a, F ′(x) ≥ 1/L, and a = 1/L. A slight
difference occurs in the general case because the dist (x, F−1(y)) may be not
attained.

The author’s opinion is that among these two properties, the more convenient
for application, i.e., for usage in concrete situations, is metric regularity (the
distance estimate to the level sets), whereas the more convenient to prove is
covering.

Different versions and generalizations of Theorem 2.1 (including those for
metric and quasimetric spaces, for nonsmooth and set-valued mappings) were
considered by many authors. We do not give here a survey of this; see e.g. papers
Dmitruk, Milyutin and Osmolovskii (1980), Borwein and Zhuang (1988), Penot
(1989), Ioffe (2000, 2001), Dontchev and Rockafellar (2004) providing a large
number of references.

One of the most convenient and useful generalizations is the abstract version
of Lyusternik theorem proposed by A.A. Milyutin. (Note that Milyutin himself
said that he did not generalize the Lyusternik’s theorem, but only put it in a
proper formulation, purifying it from inessential details.) His formulation is as
follows:

Let X be a complete metric space, Y be a vector space with a metric invariant
w.r.t. translation (e.g., a normed space), G be a set in X , and T : X → Y be
a mapping. (We denote the metrics in X and Y by the same letter d, and the
ball Br(x) is sometimes denoted by B(x, r).)

Definition 2.1 The mapping T covers on G with rate a > 0 if

∀Br(x) ⊂ G T (Br(x)) ⊃ Bar(T (x)). (5)

Now, let another mapping S : X → Y be also given.
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Definition 2.2 The mapping S contracts on G with rate b ≥ 0 if

∀Br(x) ⊂ G S(Br(x)) ⊂ Bbr(S(x)). (6)

(Obviously, any such mapping is continuous on G. On the other hand, any
mapping b-Lipschitzian on G contracts on G with rate b.)

Theorem 2.2 (Milyutin, see Dmitruk, Milyutin and Osmolovskii, 1980) Let T
be continuous on G and cover on G with a rate a > 0, and let S contract on
G with the rate b < a. Then their sum F = T + S covers on G with the rate
a−b > 0. (The assumption of continuity of T can be weakened to the closedness
of its graph on G. In this case the graph of F on G is also closed.)

Proof. The proof is so important and at the same time transparent, that it worth
to be given here completely. Take any ball B(x0, ρ) ⊂ G. We must show that

F (B(x0, ρ)) ⊃ B(F (x0), (a − b)ρ).

Without loss of generality, assume that a = 1 and b < 1. Denote for brevity
y0 = F (x0), r = (1 − b)ρ. Take any ŷ ∈ B(y0, r). We have to show that
∃ x̂ ∈ B(x0, ρ) such that F (x̂) = ŷ.

The point x̂ will be obtained as the limit of a sequence {xn}, which will be
generated now by a special iteration process.

At the beginning, we have the following situation:

T (x0) + S(x0) = y0 , (7)

and we need to obtain T (x̂) + S(x̂) = ŷ. Rewrite equation (7) in the form
T (x0) = y0 − S(x0) and use the 1-covering of mapping T . Since

d (ŷ − S(x0), y0 − S(x0)) = d (ŷ, y0) ≤ r,

and B(x0, r) ⊂ G, there exists x1 ∈ B(x0, r), such that T (x1) = ŷ − S(x0), i.e.,

T (x1) + S(x0) = ŷ . (8)

Now, replace here S(x0) by S(x1). Since the mapping S is b-contracting on the
ball B(x0, r), we have d(S(x1), S(x0)) ≤ br, and so

T (x1) + S(x1) = y1 , (9)

where d(ŷ, y1) ≤ br.
So, we moved from equation (7) for a “base” point x0 to equation (9) for a

new “base” point x1, where

d(x0, x1) ≤ r, d(ŷ, y1) ≤ br.
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Consider now equation (9) and try to replace y1 by ŷ. Since

r + br < r (1 + b + b2 + . . .) = r
1

1 − b
= ρ,

the ball B(x1, br) is contained in the ball B(x0, ρ); hence the 1–covering of T
and b-contracting of S hold on B(x1, br). Then, by analogy with the preceding
step, there exists x2 ∈ B(x1, r), such that

T (x2) + S(x2) = y2 , d(ŷ, y2) ≤ b2r,

and so on. Continuing this process infinitely, we obtain a sequence of points
xn, yn such that

F (xn) = T (xn) + S(xn) = yn , (10)

d(xn−1, xn) ≤ bn−1r, d(ŷ, yn) ≤ bnr. (11)

Moreover, we have

d(x0, xn) + bnr ≤ d(x0, x1) + d(x1, x2) + . . . + d(xn−1, xn) + bnr ≤
≤ r + br + . . . + bn−1r + bnr < r

1
1 − b

= ρ, (12)

whence the ball B(xn, bnr) is contained in the initial ball B(x0, ρ), which makes
the next step possible.

Consider the obtained sequence {xn}. The first inequality in (11) implies
that it is fundamental (i.e., a Cauchy sequence), and since X is complete, this
sequence has a limit x̂. By (12) we get d(x0, x̂) ≤ ρ, i.e., x̂ ∈ B(x0, ρ). The
second inequality in (11) implies that yn → ŷ, and then, from (10) and continuity
of F on the initial ball (or from the closedness of its graph) we get F (x̂) = ŷ,
which is exactly what was required.

The iteration process in this proof is much similar to that in the Newton
method: the role of derivative F ′, involved in the Newton method, is played in
our case by the mapping T , and the role of the small nonlinear residual is played
by the mapping S. The covering property of the mapping T allows us to “solve”
equation (8) with respect to x1, while the small additional term S knocks us off
the desired goal ŷ. This abstract Newton-like method is called the Lyusternik
iteration process. Note however, that this process does not completely coincide
with the Newton method, because the mapping T is not one-to-one in general,
and therefore, equation (8) is not solved uniquely, in contrast with the Newton
method. So, the Lyusternik process is more general than the Newton method.
For example, the Lyusternik iteration process is actually used in the standard
proof of the Banach open mapping theorem, whereas the Newton method cannot
be used there.

Note by the way the following simple fact.
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Lemma 2.1 If a space X is complete, T : X → Y is continuous and covers on
G ⊂ X with a rate a > 0, and G has nonempty interior, then Y is complete,
too.
(Thus, in Theorem 2.2 the space Y is also complete.)

Proof. By definition, the set G contains a ball Bε(x0) of radius ε > 0. Let
Tx0 = y0. Since the metric in Y is invariant w.r.t. translation, it is enough to
show that the ball Baε/2(y0) is complete as a metric space in the metric of Y .

Without loss of generality, assume that a = 1. Take any fundamental se-
quence yn ∈ Bε/2(y0). It suffices to show that it has a limit point ŷ ∈ Bε/2(y0)
(then all the sequence yn → ŷ as well). Passing to a subsequence, we can assume
that

∞∑
n=1

d(yn, yn+1) < ε/2 .

Let us show that this sequence has a limit in Bε/2(y0).

Denote rn = d(yn, yn+1). Since y1 ∈ B(y0, ε/2), and T covers with rate 1,
there exists x1 ∈ B(x0, ε/2) such that Tx1 = y1.

Further, since d(x0, x1) + r1 < ε, then B(x1, r1) ⊂ Bε(x0), and by the 1-
covering of T (on G) there exists x2 ∈ B(x1, r1) such that Tx2 = y2. Continuing
this process to infinity, we obtain a sequence of points xn ∈ B(xn−1, rn−1) such
that Txn = yn.

Moreover, we have d(xn, xn+1) ≤ rn, therefore

d(x0, xn+1) ≤ d(x0, x1) + d(x1, x2) + . . . + d(xn, xn+1) ≤
≤ ε

2
+ r1 + . . . + rn <

ε

2
+

ε

2
= ε,

and hence the sequence xn is fundamental in the ball Bε(x0). Since X is com-
plete, xn converges to a point x̂ ∈ Bε(x0). But then, from the continuity of T
we get

yn = Txn → ŷ = T x̂,

and since all yn lie in the ball B(y0, ε/2), their limit ŷ lies in the same ball.
Thus, yn → ŷ ∈ B(y0, ε/2), Q.E.D.

The classical Lyusternik theorem (Theorem 2.1) easily follows from Theo-
rem 2.2. Represent F in the form

F (x) = F (x0) + F ′(x0)(x − x0) + S(x),

and set T (x) = F (x0) + F ′(x0)(x − x0). Since F ′(x0) is onto, by the Banach
open mapping theorem ∃ a > 0 such that F ′(x0)B1(0) ⊃ Ba(0), which im-
plies that the affine operator T covers with rate a on the whole space X . The
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strict differentiability of F at x0 exactly means that ∀ ε > 0 the residual S is
ε-Lipschitzian in some neighborhood O(x0). Choosing ε < a, we get by Theo-
rem 2.2 that F covers in O(x0) with rate a − ε > 0, Q.E.D.

The following two features in Theorem 2.2 are important:

a) the covering rate of the resulting mapping F is given explicitly: a − b.
b) the covering of F is obtained on the same set G, not on a smaller set.

These features allow for obtaining the covering and distance estimates not
just in a small neighborhood of a given point (i.e., locally), but on a “large”
set G (nonlocally), and moreover, for obtaining these properties not for a given
single mapping F , but uniformly for a family of mappings (and hence, to pass
to perturbation stability of these properties). We will turn to this issue a bit
later. Now we give yet another generalization of the Lyusternik’s theorem (close
in the spirit to the recent notion of porosity).

Let X be a complete metric space, Y a metric space, F : X → Y , and
G ⊂ X .

We say that a set A ⊂ Y is an ε-net for a set B ⊂ Y , if ∀ b ∈ B ∃ a ∈ A
such that d(a, b) ≤ ε.

Theorem 2.3 (Dmitruk, see Dmitruk, Milyutin and Osmolovskii, 1980) Let
there exist numbers a > b ≥ 0 such that for any ball Bρ(x) ⊂ G the mapping F
is continuous on this ball (or just has a closed graph), and for r = (1 − b/a)ρ
the set F (Br(x)) is a br-net for the ball Bar(F (x)). Then F covers on G with
rate a − b.

Note that here we do not a priori have any covering mapping T and per-
turbing additive S; all the time we have only one mapping F . Theorem 2.3
asserts that its “almost covering” guarantees its real covering. Note also that
Theorem 2.2 follows from Theorem 2.3 (one should apply the last theorem to
the mapping F = T + S). 1

Proof. The proof is similar to that of Theorem 2.2 with some alterations. As
before, set a = 1, r = (1−b)ρ, take any ŷ ∈ B(y0, r) and try to find x̂ ∈ B(x0, ρ)
such that F (x̂) = ŷ. Again, the point x̂ will be obtained as the limit of a
sequence, generated now by the following iteration process.

At the beginning, we now have the following situation:

F (x0) = y0 , d(y0 , ŷ) ≤ r. (13)

Since F (Br(x0)) is a br-net for the ball Bar(y0)), there exists x1 ∈ B(x0, r) such

1The author, together with A.A. Milyutin and N.P. Osmolovskii, presented Theorems 2.2,
2.3 and other results of Dmitruk, Milyutin and Osmolovskii (1980) to L.A. Lyusternik during
one of his last visits to Mechanical-Mathematical Department of Moscow State University in
1980.
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that

F (x1) = y1 , d(y1 , ŷ) ≤ br. (14)

So, we moved from equation (13) for a “base” point x0 to equation (14) for a
new “base” point x1. Since

d(x0 , x1) + br < r (1 + b + b2 + . . .) = r
1

1 − b
= ρ,

the ball B(x1, br) is contained in the initial ball B(x0, ρ); hence we can iterate
the procedure: the image F (B(x1 , br)) is a b2r-net for the ball B(y1 , br)), and
then there exists x2 ∈ B(x1 , br), such that

F (x2) = y2 , d(y2 , ŷ) ≤ b2r, (15)

and so on. The remaining part of the proof repeats the proof of Theorem 2.2.

A first simple and well known fact about uniform covering of a family of
mappings (or, in other words, the simplest fact about perturbation stability of
covering) is given by the following

Lemma 2.2 If a linear bounded operator F0 : X → Y between Banach spaces X
and Y is onto, then there exist constants ε > 0 and c > 0 such that any linear
operator F with ||F − F0|| < ε covers (on the whole space) with rate c.

Proof. Since F0 is onto, it covers with a rate a > 0, and then, for any ε < a and
any linear F with ||F−F0|| < ε we obtain by Theorem 2.2 that F = F0+(F−F0)
covers with rate a − ε. Taking ε = a/2, we get c = a/2.

As a practically useful corollary, we obtain the following

Theorem 2.4 Let X and Y be Banach spaces, and Fα : X → Y be linear
bounded operators, indexed by α from a topological space A. Suppose that for
some α0 ∈ A the operator Fα0 is onto, and ||Fα − Fα0 || → 0 as α → α0. Then
there exist a neighborhood O(α0) and a constant c > 0, such that ∀α ∈ O(α0)
the operator Fα covers with rate c.

Proof. The proof follows from Lemma 2.2 and the fact that ∀ ε > 0 there exists
a neighborhood O(α0) such that ||Fα − Fα0 || < ε for all α ∈ O(α0).

All the above is rather well known and given here just for completeness of
exposition. Let us now present a connection between the nonlocal covering (i.e.,
covering on a given set G) and the distance estimate to the level set of the
mapping. We confine ourselves to the fixed (zero) level as the most essential
case.
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Theorem 2.5 Let X be a complete metric space, Y a normed space, and a
mapping F : X → Y cover with rate a > 0 on a set G ⊂ X. Suppose that the
set M = { x ∈ G | F (x) = 0 } is nonempty.

Let a bounded set Ω ⊂ G and a number δ > 0 be such that Oδ(Ω) ⊂ G. Then
there exists a constant L such that ∀x ∈ Ω the following estimate holds:

dist (x, M) ≤ L ||F (x)||. (16)

Proof. Take any point x ∈ G. From the a-covering of F it follows that, if the
ball

B(x, ||F (x)||/a) ⊂ G, (17)

then its image contains the ball B(F (x), ||F (x)||), which in turn obviously con-
tains zero, and therefore ∃x′ ∈ B(x, ||F (x)||/a) such that F (x′) = 0. Since this
x′ ∈ M , then

dist (x, M) ≤ d(x, x′) ≤ 1
a
||F (x)||. (18)

Consider now the set Ω with Oδ(Ω) ⊂ G. Take any point x ∈ Ω. Then
Bδ(x) ⊂ G. If for this point ||F (x)|| < δa, then we have B(x, ||F (x)||/a) ⊂
Bδ(x) ⊂ G, so inclusion (17) and hence estimate (18) hold, i.e., the required
estimate (16) holds with L = 1/a.

If, on the contrary, ||F (x)|| ≥ δa, then, since M is nonempty, we take an
arbitrary point x0 ∈ M , and since Ω is bounded, Ω ⊂ B(x0, R) for some radius
R, and hence we obtain a trivial estimate

dist (x, M) ≤ d(x, x0) ≤ R =
R

δa
δa ≤ R

δa
||F (x)||,

i.e., in this case the estimate (16) holds with L = R/(δa). It remains now to set
L = max { 1/a, R/(δa) }.

Now, a natural question arises: how to obtain a nonlocal covering? Let us
pass to this issue.

3. From the local to a nonlocal covering

The following assertion allows one to pass from the local covering (i.e., covering
in a neighborhood of a point) to the covering on a “macro” set.

Lemma 3.1 Let be given a complete metric space X, a normed space Y , a
mapping F : X → Y , and an open set G ⊂ X. Let a > 0 be such that ∀x ∈ G
the following property (a-covering at the point x) holds: ∀ ε > 0 ∃ δ ∈ (0, ε)
such that F (Bδ(x)) ⊃ Baδ(F (x)). Then F covers with this rate a on the whole
set G.
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Proof. Consider any ball Br(x0) ⊂ G, and set F (x0) = y0. We must show that
F (Br(x0)) ⊃ Bar(y0).

Take an arbitrary y1 ∈ Bar(y0). We have to show that ∃x1 ∈ Br(x0), for
which F (x1) = y1. Consider the segment I = [y0, y1] with the parameterization

yt = y0 + t(y1 − y0), 0 ≤ t ≤ 1.

By this, the segment I is equipped with a linear order. In the product Br(x0)×I
define the set Q consisting of all pairs (x, y) for which F (x) = y and ρ(x0, x) ≤
1
a ρ(y0, y) (the corresponding points y can be called “properly covered”). On
the set Q define the following partial order relation:

(x′, y′) 	 (x′′, y′′), if y′ ≤ y′′ and ρ(x′, x′′) ≤ 1
a

ρ(y′, y′′).

(Its transitivity is obvious.) Since the segment I is compact, the space X is
complete, the ball Br(x0) is closed, and the mapping F is continuous, then any
increasing chain {(xα, yα)} w.r.t. this order has an upper bound. (Passing to a
countable cofinal subchain {(xαn , yαn)}, we obtain a fundamental sequence yαn ,
whence the sequence xαn is fundamental too, and so we can take their limits.)
Then, by the Zorn lemma, Q contains a maximal element (x̂, ŷ). We claim that
ŷ = y1.

Indeed, by the assumption of the lemma, for the point x̂ the a-covering of F
holds: there exist arbitrarily small δ > 0, such that the image of Bδ(x̂) contains
the ball Baδ(ŷ). If we suppose ŷ < y1, then one can take such a small δ > 0 that
a bit “farther” point y′ = ŷ + aδ(y1 − y0)/||y1 − y0|| still belongs to the segment
I. Then one obtains an x′ ∈ Bδ(x̂) such that F (x′) = y′. Since (x̂, ŷ) ∈ Q and
ρ(x′, x̂) ≤ 1

a ρ(y′, ŷ), the pair (x′, y′) ∈ Q. Moreover, this pair is strictly greater
than the pair (x̂, ŷ), which contradicts the maximality of the last one.

Thus, the point (x̂, ŷ) ∈ Q is such that ŷ = y1, and then, by the definition
of Q, for x1 = x̂ we have F (x1) = y1 and ρ(x0, x1) ≤ 1

a ρ(y0, y1), Q.E.D.

Replacing the assumption of a-covering at each point x in this lemma by a
stronger assumption of local a-covering, we get the following assertion, simpler
in formulation and quite enough for practical use.

Theorem 3.1 Suppose ∃ a > 0, such that any point x ∈ G has a neighborhood
O(x), in which F covers with rate a. Then F covers with this rate a on the
whole set G.

In the case when X is a Banach space, and the mapping F is differentiable,
there is a simple and efficient Lyusternik condition guaranteeing the local cov-
ering. Therefore, we get the following result on “nonlocal” covering.

Lemma 3.2 Let X, Y be Banach spaces, and F : X → Y be strictly differen-
tiable on a set Ω ⊂ X. Let a > 0 be such that ∀x ∈ Ω the linear operator
F ′(x) covers with rate a. (We say in this case that Lyusternik condition holds
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uniformly on Ω.) Then ∀ a′ < a there exists an open set G ⊃ Ω on which the
nonlinear operator F covers with rate a′.

Proof. Take an arbitrary a′ < a. Let x ∈ Ω. By Theorem 2.1 there exists a neigh-
borhood O(x), on which F covers with rate a′. Define a set G =

⋃
x∈Ω O(x).

It is an open set, each point x of which has a neighborhood V (x), on which F
covers with rate a′. Hence, by Theorem 3.1 F covers with this rate a′ on the
whole set G.

As a simple corollary of this lemma, we get the following

Theorem 3.2 Let F : X → Y be strictly differentiable on an open set G ⊂ X.
Let a > 0 be such that ∀x ∈ G the linear operator F ′(x) covers with rate a Then
∀ a′ < a the nonlinear operator F covers on G with rate a′.

Note that Theorems 3.1 and 3.2 have a nonlocal character.

Now, the above question can be stated as follows: how a “broad” set G
(bigger than just a neighborhood) with a uniform covering can appear? The
simplest case is provided by the following “strengthened version” of the classical
Lyusternik theorem (Theorem 2.1).

Let, as before, be given Banach spaces X , Y , and a mapping F : X → Y .

Theorem 3.3 ( Dmitruk, Milyutin and Osmolovskii, 1980) Let X be equipped
with another topology τ , weaker (in the nonstrict sense) than its norm topol-
ogy. Suppose that in some τ-neighborhood Oτ (x0) of a point x0 the mapping
F is strictly differentiable, and its derivative F ′(x) is τ-continuous at x0, i.e.,
||F ′(x)−F ′(x0)|| → 0 as x → x0 w.r.t. τ . Suppose also that F ′(x0) maps onto.
Then in some τ-neighborhood V(x0) the mapping F covers with some rate a > 0.

Proof. Since F ′(x0) is onto, it covers with some a0 > 0. For any ε > 0, in
some Vτ (x0) we have ||F ′(x) − F ′(x0)|| < ε, hence the linear operator F ′(x) =
F ′(x0) + (F ′(x) − F ′(x0)) covers with rate a0 − ε. Then, by Theorem 3.2 the
nonlinear F covers on this Vτ (x0) with rate a0 − 2ε > 0.

Note that the existence of a “broad” set G = Vτ (x0) in this theorem is
proved, not assumed! In fact, its existence is hidden in the assumption about
τ -continuity of F ′(x), but this assumption seems more natural than the direct
existence of a required Vτ (x0), and is more easy to verify; it can really hold in
some cases.

Now we point out a class of operators having τ -continuous derivative with
respect to a weaker topology than the standard norm topology.

Example 3.1 Consider a mapping F : L∞ ×L∞[0, T ] −→ L1[0, T ] of the form

(α, u) 
−→ α(t) f(t, u(t)), (19)

where for simplicity f and fu are continuous in (t, u). Its Fréchet derivative
maps as follows:

F ′(α, u)(ᾱ, ū) = ᾱ f(t, u) + α fu(t, u)ū,
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and so

||F ′(α, u) − F ′(α0, u0)|| =
= sup

||ᾱ||∞≤1

||(f(t, u) − f(t, u0)) ᾱ||1 + sup
||ᾱ||∞≤1

||(α fu(t, u) − α0 fu(t, u0)) ū||1 .

(20)

Define the topology τ generated by the norm ||α||1+||u||∞ in the space L∞×L∞,
which obviously is weaker than the standard norm of this space. Let us show
that if ||α − α0||1 + ||u − u0||∞ → 0, then the right hand side in (20) tends to
zero. For the first summand it is obvious, and for the second one it follows from
the estimate

||(αfu(t, u) − α0fu(t, u0)) ū||1 ≤
≤ ||(αfu(t, u) − αfu(t, u0)) ū||1 + ||(αfu(t, u0) − α0fu(t, u0)) ū||1 ,

and therefore, supremum of this expression over ||ū||∞ ≤ 1 is estimated as

≤ ||α||1 · ||fu(t, u) − fu(t, u0)||∞ + ||α − α0||1 · ||fu(t, u0)||∞ → 0.

Thus, F ′(α, u) is continuous w.r.t. the norm ||α||1 + ||u||∞. If one adds to this
mapping F any linear operator A such that A + F ′(x0) is onto, then one gets
an operator satisfying the conditions of Theorem 3.3.

One can note that the key point in this example is that the family of linear
operators

Pα : ū 
−→ α(t) fu(t, u0(t)) ū(t) (21)

continuously depends on α w.r.t. ||α||1.
Let us try to weaken more the topology for the mapping (19). Namely, let

α be taken from a bounded set A ⊂ L∞, and instead of the topology ||α||1
consider now the weak-* topology for α (corresponding to the convergence on
elements of L1); denote it by σ∗. Obviously σ∗ is weaker than ||α||1. Thus,
in the space L∞ × L∞ we now have a topology τ̃ , which is the product of σ∗-
topology for α and ||u||∞ for u. However, F ′ is not continuous in this weakened
topology, because the above family (21) is not continuous with respect to weak-*
convergence of α. Let us check it.

Example 3.2 Consider the family of linear operators

Pα : L∞ −→ L1 , ū(t) 
−→ α(t)B(t)ū(t),

where the functional parameter α is taken from a bounded set A ⊂ L∞, and
B(t) is a given function from L∞[0, T ] not identically zero. Assume for simplicity
that α0(t) ≡ 0 ∈ intA, and so Pα0 ≡ 0. Let α ∈ A and α

σ∗−→ 0. Then

||Pα|| = sup
||ū||∞≤1

∫ T

0

|αBu| dt =
∫ T

0

|αB| dt ,
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and this value does not tend to zero, in general. For example, if one takes
|α(t)| = c = const > 0, then one obtains

||Pα|| = c

∫ T

0

|B(t) | dt = const > 0.

This effect can be seen even in a simpler situation.

Example 3.3 For the same α ∈ A and B(t) consider the family of linear
functionals

ϕα : L∞ −→ IR , ū 
−→
∫ T

0

α Bū dt . (22)

If α
σ∗−→ 0 and |α(t)| = c = const > 0, then

||ϕα|| = sup
||ū||∞≤1

|
∫ T

0

αBu dt| =
∫ T

0

|αB| dt = c

∫ T

0

|B| dt > 0,

i.e., ||ϕα|| does not tend to zero.

However, in spite of the lack of continuity of ϕα in the operator norm as
α

σ∗−→ α0, the uniform covering of ϕα for α in some σ∗-neighborhood O(α0)
holds, if the functional ϕα0 covers (i.e., if it is not zero). We prove this simple
fact in the following abstract setting.

Let A be a topological space, and ∀α ∈ A be given a linear operator Pα :
X → IRq from a Banach space to a finite-dimensional space.

Theorem 3.4 Let for some α0 ∈ A the operator Pα0 map onto, and ∀x ∈ X

Pαx → Pα0x as α → α0 . (23)

Then there exist a neighborhood O(α0) and a constant c > 0, such that ∀α ∈
O(α0) the operator Pα covers with rate c.

Proof. Since Pα0 is onto, there exists a subspace L ⊂ X of dimension q, such
that Pα0 L = IRq, and moreover, the restricted operator P̃α0 : L → IRq covers
with a rate c > 0. From (23) it follows that then the restricted operators
P̃α : L → IRq converge to P̃α0 in the operator norm, as α → α0. Then, by
Theorem 2.2 ∀ c′ < c ∃O(α0) (or by Theorem 2.4 ∃ c′ > 0 and O(α0)) such
that ∀α ∈ O(α0) the operator P̃α covers with rate c′. The more so, then Pα

covers with this rate c′.

Thus, if an operator depending on a parameter α maps into a finite-dimen-
sional space, then, to obtain its uniform covering for α from some neighborhood
O(α0) one does not need to require its continuity in the operator norm, it is
sufficient to have its convergence for each element of the space X .

In particular, functionals (22) with α ∈ L∞[0, T ] obviously satisfy condition
(23) w.r.t. σ∗-convergence.
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4. Covering of a combined operator

Consider now the following important case of a combined operator. Let D :
W → Y and P : W → Z be linear operators between Banach spaces W and
Y , Z. Define a combined operator

G = (D, P ) : W → Y × Z, w 
→ (Dw, Pw).

The following lemma is useful for such operators.

Lemma 4.1 Suppose that D covers with a rate a > 0, the restriction of P to
L = ker D covers with a rate b > 0, and ||P || ≤ µ. Then the combined operator
G = (D, P ) covers with rate

c = c(a, b, µ) =
(

max
{

1
a

(
1 +

µ

b

)
,

1
b

})−1

. (24)

The reverse assertion holds in the following form: If G covers with a rate c > 0,
then D and P |L cover with at least the same rate c, independently of ||P ||.

In proving this it is more convenient to deal with the inverse constants. If
a linear operator covers with rate a > 0, we will say that it is regular with
constant A = 1/a. (Regularity with constant k, or k-regularity, means here
that any element in the image space with norm 1 has a preimage with norm
≤ k. This is almost the same as the usual metric regularity.) Then the lemma
asserts that if D is regular with constant A, the restriction P |L is regular with
constant B, and ||P || ≤ µ, then G is regular with constant

C = max {A (1 + Bµ), B} . (25)

Proof. Let us take any element (y, z) ∈ Y × Z, ||y|| + ||z|| ≤ 1, and show that
it has a preimage with a suitable norm.

By the A-regularity of operator D, there is w′ ∈ W such that Dw′ = y,
||w′|| ≤ A||y||. Moreover, Pw′ = z′, where ||z′|| ≤ ||P || · ||w′|| ≤ µA ||y||.

However, we must obtain the equality Pw = z. Set z̄ = z − z′. By the B-
regularity of P on ker D, there is w̄ ∈ ker D such that Pw̄ = z̄, ||w̄|| ≤ B ||z̄||.
Then w = w′ + w̄ satisfies both the required equalities:

Dw = Dw′ + Dw̄ = y + 0 = y,

Pw = Pw′ + Pw̄ = z′ + z̄ = z.

It remains to estimate ||w||. Since

||w̄|| ≤ B ||z̄|| ≤ B (||z|| + ||z′||) ≤ B (||z|| + µA ||y||),
we get

||w|| ≤ ||w′||+ ||w̄|| ≤ A ||y||+B (||z||+ µA ||y||) = A (1+ Bµ)||y||+ B ||z||.
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The maximum of the obtained expression over the set ||y|| + ||z|| ≤ 1 is equal
to the value (25), Q.E.D.

Again, what is important here is that the constant c depends only on the
constants a, b, µ, but not on the operators P , D themselves. This makes it
possible to apply this lemma for obtaining a uniform covering for a family of
operators.

Lemma 4.2 If a family of linear operators Dα : W → Y covers with a common
rate a > 0, and a family of operators Pα : W → Z is uniformly bounded,
||Pα|| ≤ µ, and ∀α the restriction of Pα to Lα = ker Dα covers with a common
rate b > 0, then the combined operator

Gα = (Dα, Pα) : W → Y × Z, w 
→ (Dαw, Pαw). (26)

covers with the common rate (24).

Consider now the following question. Let be given linear operators Pα :
W → Z, where α runs through a topological space A, and let Lα be a family of
subspaces in W . How to obtain the uniform covering of a family of restricted
operators Pα : Lα → Z? Assume that a point α0 ∈ A is given.

Lemma 4.3 Let H be a Banach space, on which are given linear operators Φα :
H → W , so that we have H

Φα−→ Lα
Pα−→ Z, with the following properties:

a) ||Φα|| ≤ R for some R;
b) ∀α ∈ A, Φα H ⊂ Lα;
c) Pα0Φα0 maps H onto Z;
d) ||PαΦα − Pα0Φα0 || → 0 as α → α0.

Then there exist a neighborhood O(α0) and a constant b > 0, such that ∀α ∈
O(α0) the operator Pα covers on Lα with rate b.

It is easy to see that when a) holds and ||Pα − Pα0 || → 0, the condition d)
is equivalent to the condition

d’) ||Pα0 (Φα − Φα0)|| → 0 as α → α0.

Proof. From conditions c) and d) by Theorem 2.4 the existence of a neighbor-
hood O(α0) follows, in which all PαΦα cover with a common rate c > 0, i.e.,
PαΦαB1 ⊃ Bc. In view of a), ΦαB1 ⊂ BR ∩ Lα, therefore Pα(BR ∩ Lα) ⊃ Bc,
so Pα covers with rate c/R.

In the case when the space Z is finite-dimensional, the conditions of Lem-
ma 4.3 can be simplified. As before, let be given operators Pα : W → Z and
subspaces Lα ⊂ W .

Lemma 4.4 Suppose that Z = IRq,
e) ||Pα − Pα0 || → 0 as α → α0;
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f) Pα0 maps Lα0 onto Z ; and, moreover,
g) ∀ z ∈ Z there exists a mapping α 
→ wα ∈ Lα such that Pα0wα0 = z,

||wα|| ≤ const , and

Pαwα → Pα0wα0 as α → α0 . (27)

Then the assertion of Lemma 4.3 holds.

Assumption g) can be replaced by the following stronger assumption:
g’) ∀wα0 ∈ Lα0 there exists a mapping α 
→ wα ∈ Lα such that

||wα|| ≤ const , and Pαwα → Pα0wα0 as α → α0.

Proof. Let us construct a mapping Φα satisfying properties a)–d). In view of e)
we replace d) by d’), and so, the operators Pα : W → Z can be assumed not
depending on α.

For the given α0 choose a finite set wα0, 1 , . . . , wα0, q ∈ Lα0 , such that their
images

{ P wα0, j = zα0, j } form a basis in IRq. (28)

This is possible in view of assumption f).
By condition g), ∀ j there exists a mapping α 
→ wα,j ∈ Lα such that

||wα ,j|| ≤ const , and (29)
P wα ,j → P wα0 ,j as α → α0 . (30)

Take the space H = IRq with elements h = (h1, . . . , hq), and ∀α ∈ A define
the mapping

Φα : H → W, Φα(h) =
∑

j

hj wα, j .

Now, let us check conditions a)–d) of Lemma 4.3. In view of (29), we have
||Φa|| ≤ const too, so condition a) is fulfilled. Condition b) is fulfilled by
construction. Due to (28), condition c) is fulfilled too. It remains to check
condition d’).

Since the operator PΦa maps from H = IRq, it suffices to check d’) on any
basis vector ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ H , i.e., we must check that ∀ j

(PΦa − PΦα0) ej → 0.

But this means that P wα ,j − P wα0 ,j → 0, which is really true due to (30),
Q.E.D.

Lemmas 4.2– 4.4, yield the following final results. Let, as before, ∀α ∈ A
be given an operator Gα of the form (26).
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Theorem 4.1 Suppose that all operators Dα : W → Y, α ∈ A, cover with a
common rate a > 0, all Pα : W → Z are uniformly bounded: ||Pα|| ≤ µ, there
is an auxiliary Banach space H, on which there are given auxiliary operators
Φα : H → W with the properties: Im Φα ⊂ ker Dα, Pα0 Φα0 is onto, and
||PαΦα−Pα0Φα0 || → 0 as α → α0. Then there exist a neighborhood O(α0) and
a constant c > 0, such that ∀α ∈ O(α0) the combined operator Gα covers with
rate c.

In case of Z = IRq, we come to the following

Theorem 4.2 Suppose that all operators Dα : W → Y, α ∈ A, cover with a
common rate a > 0,

e) ||Pα − Pα0 || → 0 as α → α0;
f) Pα0 maps ker Dα0 onto Z ; and, moreover,
g) ∀ z ∈ Z there exists a bounded mapping α 
→ wα ∈ ker Dα such that

Pαwα → Pα0wα0 = z as α → α0.
Then the assertion of Theorem 4.1 holds.

5. Application

Theorem 4.2 can be applied to the following specific operator, arising in the
study of control systems.

Let W = ACn × Ls∞[0, T ], Y = Ln
1 [0, T ], Z = IRq, A be a bounded set in

LN
∞[0, T ] equipped with the weak-* topology, and ∀α ∈ A let be given a linear

operator (here we write the parameter α in the brackets)

G[α] : ACn × Ls
∞ → Ln

1 × IRq, w̄ = (x̄, ū) 
→ (ȳ, z̄),

ȳ = D[α](x̄, ū) = ˙̄x − (
N∑
1

αi Γi) x̄ − (
N∑
1

αiΛi) ū, (31)

z̄ = P (x̄, ū) = K0 x̄(0) + KT x̄(T ), (32)

where dim x̄ = n, dim ū = s, and Γi(t), Λi(t) are measurable bounded matrices
of corresponding dimensions, K0, KT are n× n-matrices. The operator P does
not depend on the functional parameter α.

Theorem 5.1 Suppose that G[α0] covers. Then there exist a weak-* neighbor-
hood V(α0) and a constant c > 0, such that ∀α ∈ V(α0) ∩ A the operator G[α]
covers with rate c.

Proof. Since here Z = IRq, it suffices to check the assumptions of Theorem 4.2.
Let us first show that our family of operators D[α] : W → Y covers with a
common rate a > 0. Indeed, for any α ∈ A and any ȳ ∈ L1 consider the solution
x̄(t) to equation (31) with ū(t) = 0 and x̄(0) = 0. Then ||x̄||∞ ≤ µ0 ||ȳ||1, where
µ0 depends only on ||α||1 (and, naturally, on ||γi||∞, ||Λi||∞), and hence, from
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the same equation (31) we obtain the estimate || ˙̄x||1 ≤ µ1 ||ȳ||1, which implies
||x̄||AC ≤ µ ||ȳ||1, and therefore D[α] covers with rate a = 1/µ > 0.

Now, let us check the other assumptions. Assumption e) is fulfilled trivial-
ly, since our P does not depend on α. Next, since G[α0] covers, then P :
ker D[α0] → Z covers with some a0 > 0, so f) is fulfilled too.

Finally, let us check assumption g). Take an arbitrary w̄α0 = (x̄α0 , ūα0) ∈
ker D[α0]. For any α ∈ A construct w̄α = (x̄α, ūα) ∈ ker D[α] as follows. Set
ūα(t) = ūα0(t), and let x̄α(t) be the solution to equation

˙̄x − (
∑

αiΓi) x̄ − (
∑

αiΛi) ūα0 = 0

with the initial condition x̄(0) = x̄α0 (0). As is well known, since α comes linearly
in this equation, we have

||x̄a − x̄α0 ||∞ → 0 as α
σ∗−→ α0 .

Then, in particular, x̄a(T ) → x̄α0 (T ), and hence P w̄a → P w̄α0 .
Thus, all the assumptions of Theorem 4.2 are fulfilled, and so, the required

V(α0) and c > 0 do exist.

Remarks. 1) In Dmitruk (2002) and Milyutin, Dmitruk and Osmolovskii
(2004) this theorem was proved by using the specificity of the operator G[α].
2) The assertion of Theorem 5.1 remains valid if we replace the set A ⊂ L∞
by a broader set A ⊂ L1, and replace the weak-* topology in L∞ (with respect
to L1) by a weaker one — the weak topology in L1 (with respect to L∞ only).
However, in the applications we met only the case α ∈ L∞, but have not yet
met the more general case α ∈ L1.

Theorem 5.1 allows to obtain a nonlocal covering of the following nonlinear
operator. Let now W = ACn × Ls∞ × LN∞ with elements (x, u, α), where α =
(α1, . . . , αN ). As before, let Y = Ln

1 , Z = IRq. Consider the operator

F : W → Y × Z, F (x, u, α) = (y, z), (33)

ẋ − f0(x, u, t) −
N∑

i=1

αi(t) f i(x, u, t) = y, K(x(0), x(T )) = z,

where all f i and K are smooth functions of their arguments. Obviously, F has
the Fréchet derivative

F ′(x, u, α) = G[x, u, α] : W −→ Y × Z

acting as follows: (x̄, ū, ᾱ) 
→ (ȳ, z̄), where

˙̄x − (
f0

x(x, u, t) +
∑

αif ′
x(x, u, t)

)
x̄ −

− (
f0

u(x, u, t) +
∑

αif i
u(x, u, t))

)
ūi − ∑

ᾱi f i(x, u, t) = ȳ ∈ L1 ,

K ′
x(0)(x0, xT ) x̄(0) + K ′

x(T )(x0, xT ) x̄(T ) = z̄ ∈ IRq.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(34)
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This derivative continuously depends on (x, u, α). Moreover, it is Lipschitz con-
tinuous with respect to variations of (x, u) in the norm ||x||∞ + ||u||∞ uniformly
over α from any bounded set A ⊂ LN

∞. The following theorem holds for the
family of operators G[x, u, α].

Theorem 5.2 Suppose that a triple w0 = (x0, u0, α0) with α0 ∈ A is such that
the linear operator G[w0] is onto. Then there exist a weak-* neighborhood V(α0)
and numbers c > 0, ε > 0 such that for any triple (x, u, α) ∈ W satisfying the
conditions

||x − x0||∞ < ε, ||u − u0||∞ < ε, α ∈ V(α0) ∩ A, (35)

the linear operator G[x, u, α] covers with rate c.

Proof. First, we fix (x0 , u0) and consider the family of operators G̃[α] =
G[x0, u0, α], α ∈ A. Let us show that this family satisfies the conditions
of Theorem 5.1. The arguments ᾱi of G̃ should be regarded here as addi-
tional control variations (and could be denoted as ūs+i). Then the operator
G̃[α] has the above form (31), (32). Since G̃[α0] is onto, all the conditions of
Theorem 5.1 are fulfilled. By this theorem, there exists a weak-* neighbor-
hood V(α0) and a constant c > 0, such that ∀α ∈ V(α0) ∩ A the operator
G̃[α] = G[x0, u0, α] covers with rate c. But then, since the functions f i, f i

x, f i
u

and K ′ are continuous in (x, u), and the set A ⊂ L∞ is bounded, then ∀ δ > 0
we have ||G[x, u, α] − G[x0, u0, α]|| < δ uniformly for all α ∈ A, provided that
(x(t), u(t)) are uniformly close enough to (x0(t), u0(t)). Therefore, by Theo-
rem 2.2 ∀ c′ < c ∃ ε > 0 such that for any triple (x, u, α) satisfying (35) the
operator G[x, u, α] covers with rate c′.

From Theorems 5.2 and 3.2 we readily get the following

Theorem 5.3 Suppose that A is bounded and open, and F ′[w0] is onto. Then
there exist a weak-* neighborhood V(α0) and numbers c > 0, ε > 0 such that the
nonlinear operator F covers with rate c on the set (35).

Finally, this theorem and Theorem 2.5 yield the following nonlocal distance
estimate to the level set M = {w | F (w) = 0 }.
Theorem 5.4 Let A ⊂ LN∞ be bounded, α0 ∈ A, and the triple w0 =
(x0, u0, α0) ∈ M be such that the derivative F ′[w0] is onto. Then there ex-
ists a weak-* neighborhood V(α0) and numbers ε > 0, L such that for any triple
w = (x, u, α) ∈ W satisfying conditions (35), we have

dist (w, M) ≤ L ||F (w)|| . (36)

Proof. Let Ã be the 1-neighborhood of A in LN∞. By Theorem 5.3 ∃ c, ε > 0
and a weak-* neighborhood of zero V(0) ⊂ LN

∞ such that F covers with rate c
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on the set

||x − x0||∞ < 2ε, ||u − u0||∞ < 2ε, α ∈ (α0 + 2V(0)) ∩ Ã .

Denote this set by G. Reduce, if necessary, ε > 0 so that ε < 1 and Bε(0) ⊂ V(0),
and define the set Ω by conditions (35) with V(α0) = α0 + V(0). Then the ε-
neighborhood of Ω is contained in G, and hence, by Theorem 2.5, for some L
the estimate (36) holds on Ω.

6. A relaxation theorem

The obtained nonlocal estimate is essentially used in the proof of the following
relaxation (or approximation) theorem.

Consider the following control system on a fixed time interval [0, T ]:

ẋ = f(x, u, t), K(x(0), x(T )) = 0, (37)

where x ∈ ACn[0, T ], u ∈ Lr∞[0, T ], dim K = q, and the functions f , K are
assumed smooth.

Along with system (37), consider also an extended (relaxed) system, ob-
tained by the convexification of its velocity set:

ẋ =
N∑

i=0

αi(t) f(x, ui, t), K(x(0), x(T )) = 0, (38)

where i = 0, 1, . . . , N , all ui ∈ Lr∞, all αi(t) ≥ 0, and
∑

αi(t) = 1. So, the
vector function ᾱ(t) = (α0, . . . , αN ) ∈ LN+1

∞ takes its values in the simplex

A = { ᾱ ∈ IRN+1 | ∀ i αi ≥ 0,

N∑
i=0

αi = 1 }.

Denote, as usual, by exA the set of vertices of A; so, ᾱ ∈ exA means that ᾱ is
a basis vector ei for some i.

Obviously, the set of solutions to (38) is wider than that to (37) in the sense
that any solution x(t), u(t) to (37) can be also considered as a solution to (38)
for the extended collection of controls u0(t) = u(t), arbitrary u1(t), . . . , uN (t),
and weight coefficients ᾱ(t) = (1, 0, . . . , 0). However, the reverse inclusion is not
so obvious, and generally, it is not true.

So, the question is, when the passage to the extended system is valid, i.e.,
when a given trajectory of system (38) can be approximated by trajectories of
the initial system (37)?

The first idea is, given a solution to system (38), fix the controls u0(t),
u1(t), . . ., uN(t), and consider a sequence of weight coefficients ᾱm(t) ∈ exA,
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such that ᾱm(t) σ∗−→ ᾱ(t) (which means that αi
m(t) σ∗−→ αi(t) ∀ i = 0, 1, . . . , N).

Then, setting xm(0) = x(0), we get xm(t) −→ x(t) uniformly on [0, T ]. If the
function K does not depend on x(T ) (i.e., x(T ) is free), then, setting um(t) =∑N

i=0 αi
m(t)ui

m(t), we get a sequence of pairs (xm, um) satisfying system (38).
(In engineering applications such a sequence is called a sliding mode regime.)
This is essentially the approach proposed a long time ago by N.N. Bogolyubov
(see Ioffe and Tikhomirov, 1979), L.C. Young (1969) and E.J. McShane (1967);
after the paper of R.V. Gamkrelidze (1962) it became a standard tool in control
theory and was exploited by many authors (to mention just a few of them, see
e.g. Warga, 1972; Olech, 1976; Balder, 1984; Artstein, 1989; Rosenblueth and
Vinter 1991; Roubicek, 1997; Tolstonogov, 2000).

But in our case, when K depends on both endpoints of the trajectory, we
have an obstacle: generally, K(xm(0), xm(T )) 
= 0, so the pair (xm, um) does
not satisfy system (38)!

In order to overcome this obstacle, we proceed as follows. First, taking
into account that α0 = 1 − ∑N

i=1 αi, it is convenient to rewrite the differential
equation in (38) in terms of “independent” coefficients α1, . . . , αN :

ẋ = f(x, u0, t) +
n∑

i=1

αi
(
f(x, ui, t) − f(x, u0, t)

)
.

Then we define the Banach space W = ACn × (Lr
∞)N+1 × LN

∞ with elements
(x, u, α):

x ∈ ACn, u = (u0, u1, . . . , uN ) ∈ (Lr
∞)N+1, α = (α1, . . . , αN ) ∈ LN

∞,

define the Banach spaces Y = Ln
1 , Z = IRq, and consider the operator

F : W → Y × Z, F (x, u, α) = (y, z),

where

ẋ − f(x, u0, t) −
n∑

i=1

αi
(
f(x, ui, t) − f(x, u0, t)

)
= y,

K (x(0), x(T )) = z,

⎫⎪⎬
⎪⎭ (39)

so, the solution to system (38) is the zero set of operator F . This operator has
the above form (33) with s = r(N + 1) and f i(x, u, t) = f(x, ui, t) − f(x, u0, t).
The set A now consists of all α = (α1, . . . , αN ) ∈ LN∞ satisfying a.e. on [0, T ]
the conditions:

αi(t) ≥ 0 ∀ i,

N∑
i=1

αi(t) ≤ 1.

(Note that if we leave all αi, i = 0, 1, . . . , N , then we should extend the operator
F by adding the third component:

∑N
i=0 αi(t) − 1 = y0.)
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In the space W , along with its natural topology, generated by the norm
||w|| = ||x||AC + ||u||∞ + ||α||∞, we also define the (C, L∞, σ∗)-topology, which
is the product of C-norm topology for x, L∞-norm topology for u, and weak-*
topology for α.

As before, we consider the level set M = {w | F (w) = 0 }.
Theorem 6.1 Let a triple (x0, u0, α0) ∈ M satisfy the following two conditions:

a) F ′(x0, u0, α0) is onto (the Lyusternik condition);
b) α0 ∈ intA, i.e., ∀ i αi

0(t) ≥ const > 0,
and 1 − ∑N

i=1 αi
0(t) ≥ const > 0 a.e. on [0, T ].

Then, in any (C, L∞, σ∗)-neighborhood of the triple (x0, u0, α0) there exists a
triple (x, u, α) still belonging to M and such that ∀ i the function αi(t) takes
only two values: 0 or 1.

In other words: there exists a sequence (xm, um, αm) such that

||xm − x0||C → 0, ||um − u0||∞ → 0, (αm − α0)
σ∗−→ 0,

and ∀m all αi
m(t) = 0 or 1 almost everywhere.

Assumption a) means in other words that the linearization of system (39),
which has the form (34), is controllable in the sense that each pair ȳ, z̄ in its
right hand side is attainable, or equivalently, that attainable are ȳ = 0 and each
z̄ ∈ IRq.

This theorem enables one to approximate a trajectory of the relaxed system
(38) involving sliding mode controls by trajectories of the initial system (37)
involving just ordinary controls, in the following sense: constructing, as shown
above, the controls

ũm(t) =
N∑

i=0

αi
m(t)ui

m(t), where α0
m(t) = 1 −

N∑
i=1

αi
m(t)

(so, ᾱm(t) = (ᾱ0
m(t), . . . , ᾱN

m(t)) ∈ exA), we obtain a sequence (xm(t), ũm(t))
satisfying system (37).

The proof is based on a specific iteration process of corrections which al-
low for satisfying the equality K = 0 (see Dmitruk, 1976, Sec. 5-7; Milyutin,
Dmitruk and Osmolovskii, 2004, Sec. 5.4.)

Theorem 6.1 can be used in a proof of the Maximum Principle for the general
optimal control problem with state and regular mixed constraints by passing to
a relaxed system with sliding mode controls. The author learned this idea
from A.Ja. Dubovitskii and A.A. Milyutin, and realized it in Dmitruk (1993)
and Milyutin, Dmitruk and Osmolovskii (2004). A similar theorem was proved
by S.V. Chukanov (1990) for control systems with integral equations; he also
applied it to obtain the corresponding Maximum Principle.



On a nonlocal metric regularity of nonlinear operators 745

Note in conclusion that this paper should be considered just as one among
few steps in the study and usage of the nonlocal Lyusternik estimates. To our
opinion, it would be interesting to find a possibility of having such estimates for
other classes of operators, e.g., for PDE operators.

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, project
04-01-00482, and by the Government Program for Leading Scientific Schools,
project NSh-304.2003.1. The author thanks anonymous referees for useful re-
marks and suggestions.

References

Artstein, Z. (1989) Rapid oscillations, chattering systems, and relaxed con-
trols. SIAM J. on Control and Opt. 27 (5), 940–948.

Balder, E.J. (1984) A general denseness result for relaxed control theory.
Bull. Aust. Math. Soc. 30, 463–475.

Borwein, J.M. and Zhuang, D.M. (1988) Verifiable necessary and sufficient
conditions for openness and regularity of set-valued and single-valued
maps. J. Math. Anal. Appl. 134 (2), 441–459.

Bulgakov, A.I. and Vasilyev, V.V. (2002) On the theory of functional-
differential inclusions of neutral type. Georgian Math. J. 9 (1), 33–52.

Chukanov, S.V. (1990) Maximum principle for optimal control problems
with integral equations. In: A.A. Milyutin, ed., Necessary Condition in
Optimal Control. Nauka, Ch. 6.

Dmitruk, A.V. (1976) The justification of the sliding mode method to opti-
mal control problems with mixed constraints. Functional Analysis and its
Appl. 10, 197–201.

Dmitruk, A.V. (1993) Maximum principle for a general optimal control prob-
lem with state and regular mixed constraints. Computational Mathematics
and Modeling 4 (4), 364–377.

Dmitruk, A.V. (2002) A nonlocal Lyusternik estimate and its application
to control systems with sliding modes. In: A.B. Kurzhanski and A.L.
Fradkov, eds., Nonlinear Control Systems 2001, 2, 1061–1064, Elsevier.

Dmitruk, A.V., Milyutin, A.A. and Osmolovskii, N.P. (1980) Luyster-
nik’s theorem and the theory of extrema. Russian Math. Surveys 35 (6),
11–51.

Dontchev, A.L. and Rockafellar, R.T. (2004) Regularity and condition-
ing of solution mappings in variational analysis. Set-Valued Analysis 12
(1), 79–109.

Gamkrelidze, R.V. (1962) Optimal sliding states. Soviet Math. Dokl. 3,
559–562.



746 A.V. DMITRUK

Ioffe, A.D. (2000) Metric regularity and subdiffertential calculus. Russian
Math. Surveys 55 (3), 501–558.

Ioffe, A.D. (2001) On perturbation stability of metric regularity. Set-Valued
Analysis 9 (1-2), 101–109.

Ioffe, A.D. and Tikhomirov, V.M. (1974) Theory of Extremal Problems.
M., Nauka, 1974; English translation: Amsterdam, North-Holland, 1979.

Lyusternik, L.A. (1934) On the conditional extrema of functionals. Mat.
Sbornik 41, 390–401 (in Russian).

McShane, E.J. (1967) Relaxed controls and variational problems. SIAM J.
on Control 5, 438–485.

Milyutin, A.A., Dmitruk, A.V. and Osmolovskii, N.P. (2004) The Max-
imum Principle in Optimal Control. Mech.-Math. Faculty of Moscow
State University, (in Russian).

Olech, C. (1976) Existence theory in optimal control. In: Control theory and
topics in functional analysis, I, Vienna, 291–328.

Penot, J.-P. (1989) Metric regularity, openness and Lipschitzian behavior of
multifunctions. Nonlinear Analysis, TMA 13 (6), 629–643.

Rosenblueth, J.F. and Vinter, R.B. (1991) Relaxation procedures for time
delay systems. J. Math. Anal. Appl. 162 (2), 542–563.

Roubicek, T. (1997) Relaxation in Optimization Theory and Variational Cal-
culus. de Gruyter, Berlin.

Tolstonogov, A.A. (2000) Differential Inclusions in a Banach Space. Dor-
drecht, Kluwer Academic Publishers.

Warga, J. (1972) Optimal Control of Differential and Functional Equations.
New York, Academic Press.

Young, L.C. (1969) Lectures on the Calculus of Variations and Optimal Con-
trol Theory. Saunders, Philadelphia.


