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On a nonlocal problem involving the generalized anisotropic
→
p (·)-Laplace operator

Mustafa Avci

Abstract. In this paper, we study an anisotropic nonlocal problem which is a station-
ary counterpart of the Kirchhoff equation settled in the variable exponent Sobolev spaces

W
1,
→
p (·)

0 (Ω). By using the variational approach and applying the Mountain-Pass theorem
along with the Fountain theorem, we obtain the existence and multiplicity of nontrivial weak

solutions.
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1. Introduction

We study the anisotropic nonlocal problem{
−M

(∫
Ω

∑N
i=1Ai (x, ∂xiu) dx

)∑N
i=1 ∂xiai (x, ∂xiu) = λf(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(P)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, ai : Ω×R→ R
is Carathéodory such that ai(x, ξ) is the continuous derivative with respect to ξ of
the mapping Ai : Ω × R → R, Ai = Ai(x, ξ), i.e., ai(x, ξ) = ∂

∂ξAi(x, ξ), pi ∈ C
(
Ω
)

such that 2 ≤ pi (x) < N for any x ∈ Ω and i ∈ {1, ..., N}; λ is a positive parameter;
Kirchhoff function M is continuous and f is a Carathéodory function.

The operator
∑N
i=1 ∂xiai (x, ∂xiu) that appears in (P) is called the anisotropic

→
p (·)-Laplace operator which is a generalization of the well-known p(·)-Laplace oper-

ator given by
∑N
i=1 ∂xi

(
|∂xiu|p(x)−2∂xiu

)
, for the case pi = p for each i ∈ {1, ..., N}.

For the papers involving the p(·)-Laplace operator see, e.g., [5, 6, 16, 24, 27]. The non-
linear differential equations involving the p (·)-Laplace operator has been very popular
for the last decade, since they can be used to model dynamical phenomena which arise
from the study of electrorheological fluids or elastic mechanics. Moreover, differential
equations with variable exponent growth are used for the modelling of many physical
processes such as stationary thermo-rheological viscous flows of non-Newtonian fluids
and the mathematical description of the processes filtration of an ideal barotropic gas
through a porous medium (see, e.g, [2, 7, 30]).
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The equation (P) is a generalization of the Kirchhoff equation [21]

ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0, (1.1)

where ρ, P0, h, E, L are constants. Equation (1.1) contains a nonlocal coefficient
P0

h + E
2L

∫ L
0

∣∣∂u
∂x

∣∣2 dx depending on the average E
2L

∫ L
0

∣∣∂u
∂x

∣∣2 dx of the kinetic energy
1
2

∣∣∂u
∂x

∣∣2 on [0, L]. We refer the reader to [4, 8, 13, 15] for Kirchhoff-type equations
involving the p(·)-Laplace operator.

The operator
∑N
i=1 ∂xiai (x, ∂xiu) used in this paper is more general than the

operator
∑N
i=1 ∂xi

(
|∂xiu|pi(x)−2∂xiu

)
which is already dealt by many authors [1, 9,

10, 17, 25]. The main advantage of this sort of operators is that they could be used
to model some processes requiring distinct behavior of partial differential derivatives
in various directions. There are already studies which dealt with problem (P) for
the case M (t) = 1 under the similar conditions assumed in the present paper. For
example, in [11], the authors investigated an anisotropic Neumann problem of the
following type  −

∑N
i=1 ∂xiai (x, ∂xiu) = f(x, u), in Ω,

u ≥ 0, in Ω,∑N
i=1 ai (x, ∂xiu) vi = g(x, u), on ∂Ω.

By showing some compact boundary trace embeddings, they obtained the existence
and the uniqueness of solutions.

In [12], the author investigated an anisotropic Dirichlet problem of the following
type {

−
∑N
i=1 ∂xiai (x, ∂xiu) = f(x, u), in Ω,

u = 0, on ∂Ω.

Using the symmetric Mountain-Pass theorem of Ambrosetti and Rabinowitz, the au-
thor obtained the existence of an unbounded sequence of weak solutions to problem.

In [9], the authors studied a nonhomogeneous anisotropic Kirchhoff problem of the
following type{

−M
(∫

Ω

∑N
i=1

|∂xiu|
pi(x)

pi(x) dx
)∑N

i=1 ∂xi
(
|∂xiu|pi(x)−2∂xiu

)
= λf(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(P∗)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, λ is a positive
parameter, pi ∈ C

(
Ω
)

such that 2 ≤ pi (x) < N for any x ∈ Ω and i ∈ {1, ..., N}, M
and f continuous functions which obey some specific conditions. Applying the Moun-
tain Pass Theorem of Ambrosetti and Rabinowitz, the existence of a nontrivial weak

solution is obtained in the anisotropic variable exponent Sobolev space W
1,
→
p (·)

0 (Ω),
provided that the positive parameter λ that multiplies the nonlinearity f is small
enough.

The goal of the present paper is to generalize the results of [9]. To this end, the

Laplace type operator
∑N
i=1 ∂xi(|∂xiu|pi(x)−2∂xiu) appeared in (P∗) is replaced by a

Leray-Lions type operator
∑N
i=1 ∂xiai(x, ∂xiu) that appears in problem (P), which is

a more general operator. This caused some difficulties in calculations and required
more general conditions. Moreover, thanks to Fountain theorem, we show not only
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the existence of a nontrivial weak solution, but also the multiplicity of nontrivial weak
solutions in the present paper. To our best knowledge, the present papers results are
not covered in the literature.

2. Preliminaries

Set

C+

(
Ω
)

=

{
p ∈ C

(
Ω
)

: min
x∈Ω

p (x) > 1

}
.

For p ∈ C+

(
Ω
)
, we use the notations

p− := inf
x∈Ω

p (x) and p+ := sup
x∈Ω

p (x) .

The variable exponent Lebesgue space is given by

Lp(·) (Ω) =

{
u | the map u : Ω→ R is measurable,

∫
Ω

|u (x)|p(x)
dx <∞

}
,

where p ∈ C+

(
Ω
)
. The regular norm given on this pace is

|u|p(·) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u (x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
,

which is called the Luxemburg norm. The pair (Lp(·) (Ω) , |·|p(·)) defines a separable

and reflexive Banach space [[23],Theorem 2.5, Corollary 2.7]. When 0 < |Ω| <∞ and
p1, p2 ∈ C+

(
Ω
)

such that p1 ≤ p2 in Ω, then the embedding Lp2(·) (Ω) ↪→ Lp1(·) (Ω)
is continuous [[23],Theorem 2.8].

For any u ∈ Lp(·) (Ω) and v ∈ Lp′(·) (Ω) the following Hölder-type inequality∣∣∣∣∫
Ω

uvdx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
|u|p(·) |v|p′(·) ≤ 2 |u|p(·) |v|p′(·) (2.1)

holds[[23],Theorem 2.1], where Lp
′(·) (Ω) denotes the conjugate space of Lp(·) (Ω), and

1
p(x) + 1

p′(x) = 1 [[23],Corollary 2.7].

We introduce the convex functional ρp(·) : Lp(·) (Ω)→ R by

ρp(·) (u) =

∫
Ω

|u (x)|p(x)
dx,

which is called the p (·)−modular of the Lp(·) (Ω) spaces. The followings are some
important properties of p (·)−modular [23],

|u|p(·) < 1 (= 1;> 1)⇔ ρp(·) (u) < 1 (= 1;> 1) , (2.2)

|u|p(·) > 1 =⇒ |u|p
−

p(·) ≤ ρp(·) (u) ≤ |u|p
+

p(·), (2.3)

|u|p(·) < 1 =⇒ |u|p
+

p(·) ≤ ρp(·) (u) ≤ |u|p
−

p(·), (2.4)

|un|p(·) → 0 (→∞)⇔ ρp(·) (un)→ 0 (→∞) , (2.5)

|un − u|p(·) → 0⇔ ρp(·)(un − u)→ 0. (2.6)

provided that u ∈ Lp(·) (Ω), (un) ⊂ Lp(·) (Ω) and p+ <∞.
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The variable exponent Sobolev space W
1,p(·)
0 (Ω) is defined as the closure of C∞0 (Ω)

under the norm

‖u‖1,p(·) = |∇u|p(·).
We remark that this norm is equivalent to the norm

‖u‖p(·) =
∑N
i=1 |∂xiu|p(·),

if p (x) ≥ 2, ∀x ∈ Ω (see [26]). As a result, W
1,p(·)
0 (Ω) becomes a separable and

reflexive Banach space. Furthermore, the embedding W
1,p(·)
0 (Ω) ↪→ Ls(·) (Ω) is com-

pact and continuous provided that s ∈ C+

(
Ω
)

and s (x) < p∗ (x) for all x ∈ Ω,

where p∗ (x) = Np(x)
N−p(x) if p (x) < N and p∗ (x) = +∞ if p (x) ≥ N . We refer to

the papers [14, 19, 20, 23, 27] for further reading related to the variable exponent
Lebesgue-Sobolev spaces.

Let us denote by
→
p : Ω→ RN the vectorial function

→
p (·) = (p1 (·) , ..., pN (·)) with

pi ∈ C+

(
Ω
)
, i ∈ {1, ..., N}. We define W

1,
→
p (·)

0 (Ω), the anisotropic variable exponent

Sobolev space a natural generalization of the variable exponent space W
1,p(·)
0 (Ω), as

the closure of C∞0 (Ω) under the norm

‖u‖→
p (·) =

∑N
i=1 |∂xiu|pi(·).

We know that W
1,
→
p (·)

0 (Ω) is a separable and reflexive Banach space [17, 25]. It is

clear that in the case when pi ∈ C+

(
Ω
)

are constant functions, the space W
1,
→
p (·)

0 (Ω)

turns into the space W 1,
→
p

0 (Ω), where
→
p is the constant vector (p1, ..., pN ). This kind

of spaces studied in [18, 28, 29, 31, 32].

On the other hand, in order to facilitate the manipulation of the space W
1,
→
p (·)

0 (Ω),

we introduce
−→
P +,
−→
P − ∈ RN as

−→
P + =

(
p+

1 , ..., p
+
N

)
,
−→
P − =

(
p−1 , ..., p

−
N

)
,

and P+
+ , P

+
− , P

−
− ∈ R+ as

P+
+ = max

{
p+

1 , ..., p
+
N

}
, P+
− = max

{
p−1 , ..., p

−
N

}
, P−− = min

{
p−1 , ..., p

−
N

}
.

Throughout the paper, for the exponent p1 (·) , ..., pN (·), we assume that pi ∈ C+

(
Ω
)
,

i ∈ {1, ..., N} such that

2 ≤ pi (x) < N,
∑N
i=1

1

p−i
> 1, (2.7)

and define P ∗− ∈ R+ and P−,∞ ∈ R+ by

P ∗− =
N∑N

i=1
1
p−i
− 1

, P−,∞ = max
{
P+
− , P

∗
−
}
.

Proposition 2.1. [[25],Theorem 1] Suppose that Ω ⊂ RN (N ≥ 3) is a bounded
domain with smooth boundary and relation (2.7) is fulfilled. For any q ∈ C

(
Ω
)

verifying

1 < q (x) < P−,∞ for all x ∈ Ω, (2.8)
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the embedding

W
1,
→
p (·)

0 (Ω) ↪→ Lq(·) (Ω)

is continuous and compact.

Definition 2.1. Let X be a Banach space and J : X → R be a C1-functional. We
say that J satisfies the Palais-Smale ((PS) for short) condition, if every sequence
{un} ⊂ X such that |J (un)| ≤ c and J ′ (un) → 0 as n → ∞, contains a convergent
subsequence in the norm of X.

Definition 2.2. It is said that u ∈W 1,
→
p (·)

0 (Ω) is a weak solution to (P) if

M

(∫
Ω

∑N
i=1Ai (x, ∂xiu) dx

)∫
Ω

∑N
i=1 ai (x, ∂xiu) ∂xiϕdx− λ

∫
Ω

f(x, u)ϕdx = 0,

where ϕ ∈W 1,
→
p (·)

0 (Ω).

The functional Jλ : W
1,
→
p (·)

0 (Ω)→ R associated to the problem (P) is

Jλ(u) = M̂

(∫
Ω

∑N
i=1Ai (x, ∂xiu) dx

)
− λ

∫
Ω

F (x, u) dx,

where M̂ (t) =
∫ t

0
M (s) ds and F (x, t) =

∫ t
0
f (x, s) ds for t ∈ R and x ∈ Ω. Since

problem (P) is in variational setting, it is well known that weak solutions of (P)
correspond to the critical points of functional Jλ.

3. Main results

In the present paper, we assume that M , f , Ai and ai, i ∈ {1, ..., N}, fulfil the
following conditions:

(M1) Assume that M : R+ → R+ is a continuous function and satisfies the growth
condition

m1t
α−1 ≤M(t) ≤ m2t

α−1 for all t > 0, (3.1)

where m1,m2 and α are real numbers such that 1 < m1 ≤ m2 with α > 1.
(f1) f : Ω× R→ R satisfies Carathéodory condition such that

|f(x, t)| ≤ c1 + c2 |t|q(x)−1 ∀ (x, t) ∈ Ω× R,

where c1, c2 > 0 and q ∈ C
(
Ω
)

with 2 ≤ P−− ≤ P+
+ < αP+

+ < q− ≤ q+ < P ∗− for all
x ∈ Ω;

(f2) f(x, t) = o
(
|t|αP

+
+−1

)
, t→ 0 uniformly for x ∈ Ω;

(f3) f(x,−t) = −f(x, t) ∀ (x, t) ∈ Ω× R;
(AR) Ambrosetti-Rabinowitz’s condition holds, i.e., there exists θ > m2

m1
αP+

+ and
K > 0 such that

0 < θF (x, t) ≤ f(x, t)t for |t| ≥ K and for all x ∈ Ω;

(a1) The following inequalities hold true

|ai(x, t)| ≤ c3(hi (x) + |t|pi(x)−1
) ∀ (x, t) ∈ Ω× R,

where c3 > 0 and hi ∈ Lp
′(x) (Ω) are nonnegative measurable functions.



264 M. AVCI

(a2) The following inequalities hold true

|t|pi(x) ≤ ai(x, t)t ≤ pi (x)Ai(x, t) ∀ (x, t) ∈ Ω× R.

As a corollary of (a2), Ai are pi(x)-homogeneous, i.e.,

Ai (x, tξ) ≤ Ai (x, ξ) tpi(x), (3.2)

t, ξ ∈ R with t ≥ 1 and x ∈ Ω.
Indeed, if we set g (t) = Ai (x, tξ), then by (a2), we get

g′ (t) = ai (x, tξ) ξ =
1

t
ai (x, tξ) tξ ≤ pi (x)

t
Ai (x, tξ) =

pi (x)

t
g (t)

g′ (t)

g (t)
≤ pi (x)

t
,

and integrating both side of the last inequality over (1, t), we conclude that

Ai (x, tξ) ≤ A (x, ξ) tpi(x).

(A) Ai(x,−ξ) = Ai(x, ξ) for all ξ ∈ R and a.e. x ∈ Ω.

As we mentioned before the operator
∑N
i=1 ∂xiai(x, ∂xiu) that appears in problem

(P) is a Leray-Lions type operator and it can be particularized to some well-known
operators. For example, when we take

ai(x, t) = |t|
pi(x)−2

t for all i ∈ {1, ..., N} ,
we have

Ai(x, t) = 1/pi(x) |t|pi(x)
for all i ∈ {1, ..., N} ,

and we get
→
p (·)−Laplace operator∑N

i=1 ∂xi

(
|∂xiu|pi(x)−2∂xiu

)
.

On the other hand, if we let

ai(x, t) = (1 + |t|2)
(pi(x)−2)/2

t for all i ∈ {1, ..., N} ,
we have

Ai(x, t) = 1/pi(x)[(1 + |t|2)
pi(x)/2 − 1] for all i ∈ {1, ..., N} ,

then we obtain the anisotropic variable mean curvature operator∑N
i=1 ∂xi [(1 + |∂xiu|2)(pi(x)−2)/2∂xiu)].

Theorem 3.1. Assume that (M1), (f1), (f2), (AR), (a1) and (a2) hold. Then there
exists λ∗ > 0 such that for any λ ∈ (0, λ∗) problem (P)has a nontrivial weak solution.

To obtain the result of Theorem 3.1, we will apply Mountain-Pass theorem (see
[33]). Therefore, we have to verify Lemma 3.3 and Lemma 3.4.

First of all, we must show that Jλ satisfies some basic properties.

Lemma 3.2. The functional Jλ is well-defined on W
1,
→
p (·)

0 (Ω) and Fréchet differen-

tiable, i.e., Jλ ∈ C1(W
1,
→
p (·)

0 (Ω) ,R) whose derivative is

〈J ′λ (u) , ϕ〉 = M

(∫
Ω

∑N
i=1Ai(x, ∂xiu) dx

)∫
Ω

∑N
i=1 ai (x, ∂xiu) ∂xiϕdx−λ

∫
Ω

f(x, u)ϕdx,
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for all u, ϕ ∈W 1,
→
p (·)

0 (Ω).

Proof. For simplicity, we denote by Λ,K : W
1,
→
p (·)

0 (Ω)→ R,

Λ (u) :=

∫
Ω

∑N
i=1Ai (x, ∂xiu) dx,

and

K (u) := M̂ (Λ (u)) ,

for all u ∈ W 1,
→
p (·)

0 (Ω). Then, we write

Jλ (u) = K (u)− λ
∫

Ω

F (x, u) dx.

From assumption (f1) and Proposition 2.1, it is easy to see that
∫

Ω
F (x, u) dx is well-

defined on W
1,
→
p (·)

0 (Ω) and
∫

Ω
F (x, u) dx ∈ C1(W

1,
→
p (·)

0 (Ω) ,R). Therefore, showing

that K is well-defined on W
1,
→
p (·)

0 (Ω) and K ∈ C1(W
1,
→
p (·)

0 (Ω) ,R) is equivalent to

saying that Jλ ∈ C1(W
1,
→
p (·)

0 (Ω) ,R).
Using (a1) and some well-known results, the authors showed in [22] that the

functional Λ is well-defined and is of class C1(W
1,
→
p (·)

0 (Ω) ,R) and its derivative

Λ′ : W
1,p(x)
0 (Ω)→ (W

1,p(x)
0 (Ω))∗ is

〈Λ′ (u) , ϕ〉 =

∫
Ω

∑N
i=1 ai (x, ∂xiu) ∂xiϕdx,

for all u, ϕ ∈W 1,
→
p (·)

0 (Ω).
Moreover, since M is a continuous function and satisfies growth condition (M1), it

is easy to see that the composition functional K (u) = M̂ (Λ (u)) is well-defined and

of class C1(W
1,
→
p (·)

0 (Ω) ,R) and its derivative K ′ : W
1,p(x)
0 (Ω)→ (W

1,p(x)
0 (Ω))∗ is

〈K ′ (u) , ϕ〉 = M

(∫
Ω

∑N
i=1Ai (x, ∂xiu) dx

)∫
Ω

∑N
i=1 ai (x, ∂xiu) ∂xiϕdx,

for all u, ϕ ∈W 1,
→
p (·)

0 (Ω). The all pieces of information mentioned above implies that

Jλ is of class C1(W
1,
→
p (·)

0 (Ω) ,R) and its derivative is

〈J ′λ (u) , ϕ〉 = M

(∫
Ω

∑N
i=1Ai (x, ∂xiu) dx

)∫
Ω

∑N
i=1 ai (x, ∂xiu) ∂xiϕdx−λ

∫
Ω

f(x, u)ϕdx,

for all u, ϕ ∈W 1,
→
p (·)

0 (Ω). �

Lemma 3.3. Assume that (M1), (f1), (f2),(AR) and (a1) , (a2) hold. Then the
following statements hold true:

(i) There are two real numbers γ > 0 and τ > 0 such that Jλ (u) ≥ τ > 0,

u ∈W 1,
→
p (·)

0 (Ω) with ‖u‖→
p (·) = γ,

(ii) There is u ∈W 1,
→
p (·)

0 (Ω) such that ‖u‖→
p (·) > γ, Jλ (u) < 0.
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Proof. (i) From (f1) and (f2), there exist ε, Cε > 0 such that for all x ∈ Ω and t ∈ R,

we obtain F (x, t) ≤ ε |t|αP
+
+ + Cε |t|q(x)

. Then, from (M1) and (a2), we have

Jλ(u) = M̂ (Λ (u))− λ
∫

Ω

F (x, u) dx

≥ m1

α

(∫
Ω

∑N
i=1Ai (x, ∂xiu) dx

)α
− λε

∫
Ω

|u|αP
+
+ dx− λCε

∫
Ω

|u|q(x)
dx

≥ m1

α
(
P+

+

)α (∫
Ω

∑N
i=1 |∂xiu|

pi(x)dx

)α
(3.3)

−λ(ε |u|αP
+
+

αP+
+

+ Cε(|u|q
+

q+ + |u|q
−

q−))

for any u ∈ W 1,
→
p (·)

0 (Ω). Since we have the continuous embeddings W
1,
→
p (·)

0 (Ω) ↪→
LαP

+
+ (Ω) and W

1,
→
p (·)

0 (Ω) ↪→ Lq
+

(Ω) ↪→ Lq
−

(Ω) (see Proposition 2.1), there are

constants c4, c5, c6 > 0 such that for all u ∈W 1,
→
p (·)

0 (Ω)

c4 ‖u‖→p (·) ≥ |u|αP+
+

, c5 ‖u‖→p (·) ≥ |u|q+ and c6 ‖u‖→p (·) ≥ |u|q− . (3.4)

Let u ∈ W
1,
→
p (·)

0 (Ω) with ‖u‖→
p (·) < 1. Then |∂xiu|pi(·) < 1, and from (2.4), it

follows ∫
Ω

∑N
i=1 |∂xiu|

pi(x)dx ≥
∑N
i=1 |∂xiu|

p+i
pi(·) ≥

∑N
i=1 |∂xiu|

P+
+

pi(·)

≥ N

(∑N
i=1 |∂xiu|pi(·)

N

)P+
+

=
‖u‖P

+
+
→
p (·)

NP+
+−1

. (3.5)

By taking into account (2.4) and (3.3)− (3.5), we get

Jλ(u) ≥ m1

α
(
P+

+N
P+

+−1
)α ‖u‖αP+

+
→
p (·)
− λ(c7 ‖u‖

αP+
+

→
p (·)

+ c8 ‖u‖q
+

→
p (·)

+ c9 ‖u‖q
+

→
p (·)

)

≥ m1

α
(
P+

+N
P+

+−1
)α ‖u‖αP+

+
→
p (·)
− λc7 ‖u‖

αP+
+

→
p (·)
− 2 max {c8, c9}λ ‖u‖q

−

→
p (·)

=

 m1

α
(
P+

+N
P+

+−1
)α − λc7 − λc10 ‖u‖

q−−αP+
+

→
p (·)

 ‖u‖αP+
+

→
p (·)

.

Let us define the function Ψ (t) : [0, 1]→ R by

Ψ (t) =
m1

α
(
P+

+N
P+

+−1
)α − λc7 − λc10t

q−−αP+
+ .

Then, if we let λ∗ = m1

2c7α

(
P+

+N
P

+
+
−1
)α , then for every λ ∈ (0, λ∗) and u ∈W 1,

→
p (·)

0 (Ω)

such that ‖u‖→
p (·) < 1, the function Ψ would be positive in a neighborhood of the

origin. Overall, the statement (i) holds.
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(ii) Thanks to (AR), one can easily obtain the inequality F (x, t) ≥ c11 |t|θ − c12

∀x ∈ Ω, |t| ≥ K. Moreover, from (a1) we have Ai (x, t) ≤ c3hi (x) |t| + c3
pi(x) |t|

pi(x)
.

Then for ω ∈W 1,
→
p (·)

0 (Ω) \ {0} and t > 1, by (3.2), we get

Jλ(tω) = M̂ (Λ (tω))− λ
∫

Ω

F (x, tω) dx

≤ m2

α

(∫
Ω

∑N
i=1Ai (x, ∂xiω) tpi(x)dx

)α
− λc11t

θ

∫
Ω

|ω|θ + c13

≤ m2t
αP+

+

α

(∫
Ω

∑N
i=1

(
c3hi (x) |∂xiω|+

c3
pi (x)

|∂xiω|
pi(x)

)
dx

)α
−λc11t

θ

∫
Ω

|ω|θ + c13.

Since θ > αP+
+ , we conclude that Jλ (tω)→ −∞ as t→ +∞. �

Lemma 3.4. If (M1), (f1), (AR) and (a2) hold, Jλ satisfies (PS) condition.

Proof. We already know from Lemma 3.3 that the functional Jλ has the Mountain-
Pass geometry. Hence, according to the Mountain-Pass theorem (see [3]), we obtain

the a sequence {un} ⊂ W
1,
→
p (·)

0 (Ω) such that

|Jλ (un)| ≤ c and J ′λ (un)→ 0. (3.6)

We shall establish first that {un} is bounded in W
1,
→
p (·)

0 (Ω). To this end, assume by
way of contradiction that (extracting a subsequence if necessary) we have ‖un‖→p (·) →
∞ as n → ∞. Therefore we can consider that ‖un‖→p (·) > 1 for any n. Using (2.3),

(3.6) and the assumptions of Lemma 3.4, we have

c+ ‖un‖→p (·) ≥ Jλ (un)− 1

θ
〈J ′λ(un), un〉

= M̂ (Λ (un))− 1

θ
M (Λ (un))

∫
Ω

∑N
i=1 ai (x, ∂xiun) ∂xiundx

+λ

∫
Ω

(
1

θ
f(x, un)un − F (x, un)

)
dx

≥ m1

α

(∫
Ω

∑N
i=1Ai (x, ∂xiun) dx

)α
− m2

θ

(∫
Ω

∑N
i=1Ai (x, ∂xiun) dx

)α−1

×
∫

Ω

∑N
i=1 pi (x)Ai (x, ∂xiun) dx

≥

(
m1

α
−
m2P

+
+

θ

)(∫
Ω

∑N
i=1Ai (x, ∂xiun) dx

)α
≥

(
m1

α
−
m2P

+
+

θ

)
1(

P+
+

)α (∫
Ω

∑N
i=1 |∂xiun|

pi(x)dx

)α
. (3.7)

For every n, let us denote by ∓n1
,∓n2

the indices sets

∓n1
=
{
i ∈ {1, ..., N} : |∂xiu|pi(·) ≤ 1

}
,
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and
∓n2 =

{
i ∈ {1, ..., N} : |∂xiu|pi(·) > 1

}
.

Then using (2.2)− (2.4) and (3.7), we conclude that

c+ ‖un‖→p (·) ≥
1(

P+
+

)α
(
m1

α
−
m2P

+
+

θ

)(∑
i∈∓n1

|∂xiun|
P+

+

pi(·) +
∑
i∈∓n2

|∂xiun|
P−−
pi(·)

)α
≥ 1(

P+
+

)α
(
m1

α
−
m2P

+
+

θ

)(∑N
i=1 |∂xiun|

P−−
pi(·) −

∑
i∈∓n1

|∂xiun|
P−−
pi(·)

)α
≥ 1(

P+
+

)α
(
m1

α
−
m2P

+
+

θ

)(∑N
i=1 |∂xiun|

P−−
pi(·) −N

)α
.

Applying the Jensen inequality to the convex function σ : R+ → R+, σ (t) = tP
−
− ,

P−− ≥ 2, we obtain

c+ ‖un‖→p (·) ≥
1(

P+
+

)α (
m1

α
−
m2P

+
+

θ
)

‖un‖
P−−
→
p (·)

NP−−−1
−N


α

.

When we divide the last inequality by ‖un‖
αP−−
→
p (·)

, and pass to the limit as n → ∞,

we obtain a contradiction. Thus, {‖un‖→p (·)} must be bounded in W
1,
→
p (·)

0 (Ω). Then

according to a subsequence, there exists u0 ∈W 1,
→
p (·)

0 (Ω), such that un ⇀ u0. These
pieces of information along with Proposition 2.1 mean

un ⇀ u0 in W
1,
→
p (·)

0 (Ω) ,

un → u0 in Lq(·) (Ω) , (3.8)

un (x) → u0 (x) a.e. in Ω.

From (3.6), 〈J ′λ (un) , un − u0〉 → 0. Therefore

〈J ′λ (un) , un − u0〉 = M (Λ (un))

∫
Ω

∑N
i=1 ai (x, ∂xiun) (∂xiun − ∂xiu0) dx

−λ
∫

Ω

f (x, un) (un − u0) dx→ 0.

By deploying (f1), (2.1) and Proposition 2.1, it reads∣∣∣∣∫
Ω

f (x, un) (un − u0) dx

∣∣∣∣ ≤ c1

∣∣∣∣∫
Ω

|un|q(x)−2
un (un − u0) dx

∣∣∣∣+ c2

∣∣∣∣∫
Ω

(un − u0) dx

∣∣∣∣
≤ c1

∣∣∣|un|q(x)−1
∣∣∣
q′(·)
|un − u0|q(·) + c2

∫
Ω

|un − u0| dx.

Taking into account the relations given in (3.8), we obtain∫
Ω

f (x, un) (un − u0) dx→ 0.

Hence,

M (Λ (un))

∫
Ω

∑N
i=1 ai (x, ∂xiun) (∂xiun − ∂xiu0) dx→ 0.
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Due to (M1), we must have∫
Ω

∑N
i=1 ai (x, ∂xiun) (∂xiun − ∂xiu0) dx→ 0. (3.9)

By Lemma 2 in [12], the operator Λ′ is of type (S+) on W
1,
→
p (·)

0 (Ω), that is, if {un} ⊂
W

1,
→
p (·)

0 (Ω) is weakly convergent to u ∈W 1,
→
p (·)

0 (Ω) and

lim sup
n→∞

〈Λ′ (un) , un − u〉 ≤ 0,

then {un} converges strongly to u in W
1,
→
p (·)

0 (Ω). Therefore, from (3.9), we obtain

that un → u0 in W
1,
→
p (·)

0 (Ω), namely Jλ satisfies (PS) condition. �

Proof of Theorem 3.1 is completed. According to information that we gather from
Lemma 3.3, Lemma 3.4 and the fact that Jλ (0) = 0, Jλ satisfies the Mountain-Pass
theorem. Therefore, u0 is a nontrivial critical point of Jλ, that is, u0 is a nontrivial
weak solution to (P). �

In the rest of the paper, we will obtain the existence of infinitely many nontrivial
weak solutions of problem (P). The proof is based on the Fountain theorem.

Theorem 3.5. Assume that (M1), (f1)− (f3), (AR), (a1) , (a2) and (A) hold. Then
for any λ ∈ (0, λ∗), λ∗ obtained in Lemma 3.3, Jλ has a sequence of critical points
{un} such that Jλ (un)→ +∞ and (P) has infinitely many pairs of solutions.

Since W
1,
→
p (·)

0 (Ω) is a separable and reflexive Banach space, there exist {ej} ⊆
W

1,
→
p (·)

0 (Ω) and {e∗j} ⊆ (W
1,
→
p (·)

0 (Ω))∗ such that W
1,
→
p (·)

0 (Ω) = span{ej |j = 1, 2, ...},

(W
1,
→
p (·)

0 (Ω))∗ = span{e∗j |j = 1, 2, ...} and

〈ei, e∗j 〉 =

{
1, if i = j,
0, if i 6= j.

For convenience, we denote X = W
1,
→
p (·)

0 (Ω), and write Xj = span{ej}, Yk =

⊕kj=1Xj , Zk = ⊕∞j=kXj .

Lemma 3.6. [[33],Fountain Theorem] Assume that X is a separable Banach space,
I ∈ C1(X,R) is an even functional satisfying the (PS) condition. Moreover, for each
k = 1, 2, ..., there exist ρk > rk > 0 such that

(i) inf{
u∈Zk:‖u‖→

p (·)
=rk

} I(u)→ +∞ as k → +∞;

(ii) max{
u∈Yk:‖u‖→

p (·)
=ρk

} I(u) ≤ 0.

Then I has a sequence of critical values which tends to +∞.

Proof of Theorem 8. It is enough to show that J has an unbounded sequence of crit-
ical points. According to the assumptions on the nonlinearity f , Lemma 3.3 and
Lemma 3.4, J is an even functional and satisfies the (PS) condition. We will only
show that if k is large enough, then there exist ρk > rk > 0 such that (i) and (ii)
hold.

Before proceeding to the proof, we want to note that, if we denote

βk := sup
u∈Zk,‖u‖→p (·)

=1

|u|q(x) and ϑk := sup
u∈Zk,‖u‖→p (·)

=1

|u|αP+
+
,
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then βk → 0 and ϑk → 0 as k −→∞ (see [16]).
(i) For any u ∈ Zk such that ‖u‖→

p (·) ≥ 1, we have

Jλ(u) = M̂ (Λ (u))− λ
∫

Ω

F (x, u) dx

≥ m1

α
(
P+

+

)α (∫
Ω

∑N
i=1 |∂xiu|

pi(x)dx

)α
− λε

∫
Ω

|u|αP
+
+ dx− λCε

∫
Ω

|u|q(x)
dx

≥ m1

α
(
P+

+

)α
‖u‖

P−−
→
p (·)

NP−−−1
−N


α

− λc14 |u|
αP+

+

αP+
+

− λCε |u|q
+

q(x)

≥ m1

α
(
P+

+

)α
‖u‖

P−−
→
p (·)

NP−−−1
−N


α

− λc15 ϑ
αP+

+

k ‖u‖αP
+
+

→
p (·)
− λc15β

q+

k ‖u‖
q+

→
p (·)

≥ m1N
α

α
(
P+

+

)α
(
‖u‖P

−
−
→
p (·)

NP−−
− 2) + 1


α

− λc15ϑ
αP+

+

k ‖u‖αP
+
+

→
p (·)
− λc15β

q+

k ‖u‖
q+

→
p (·)

,

where c15 = max {c14, Cε}. Let us fix rk and set ‖u‖→
p (·) = rk := (λc15q

+βq
+

k )
1

P
−
−−q

+
.

Since rk → +∞ as k → +∞, for every positive integer N there is a positive integer
k0 such that k ≥ k0 implies ‖u‖→

p (·) = rk > N . Thus, for sufficiently large k, we can

apply the Bernoulli inequality to the term

(
‖u‖

P
−
−
→
p (·)

N
P
−
−
− 2) + 1

α

. Therefore, for such

k, we have

Jλ(u) ≥ m1

α

α(
(λc15q

+βq
+

k )

P
−
−

P
−
−−q

+

NP−−
− 2) + 1

− λc15ϑ
αP+

+

k (λc15q
+βq

+

k )

αP
+
+

P
−
−−q

+

−λc15β
q+

k (λc15q
+βq

+

k )
q+

P
−
−−q

+

≥ m1

NP−−
(λc15q

+βq
+

k )

P
−
−

P
−
−−q

+ − λc15ϑ
αP+

+

k (λc15q
+βq

+

k )

αP
+
+

P
−
−−q

+

−λc15β
q+

k (λc15q
+βq

+

k )
q+

P
−
−−q

+ − c16.

For sufficiently large k, we have λc15ϑ
αP+

+

k < m1

2N
P
−
−

, thus

Jλ(u) ≥ m1

2NP−−
(λc15q

+βq
+

k )

P
−
−

P
−
−−q

+ − λc15β
q+

k (λc15q
+βq

+

k )
q+

P
−
−−q

+ − c16

≥ m1

4NP−−
(λc15q

+βq
+

k )

P
−
−

P
−
−−q

+ − c16,
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which implies

inf
u∈Zk,‖u‖→p (·)

=rk
Jλ(u)→ +∞ as k → +∞.

The statement of (i) is satisfied.

(ii) From (AR), we have the inequality F (x, t) ≥ c11 |t|θ − c12. Then, for any
ω ∈ Yk\ {0} with ‖ω‖→

p (·) = 1 and 1 < t = ρk, we get

Jλ(tω) = M̂ (Λ (tω))− λ
∫

Ω

F (x, tω) dx

≤ m2

α

(∫
Ω

∑N
i=1Ai (x, ∂xiω) tpi(x)dx

)α
− λc11t

θ

∫
Ω

|ω|θ + c13

≤ m2t
αP+

+

α

(∫
Ω

∑N
i=1(c3hi (x) |∂xiω|+

c3
pi (x)

|∂xiω|
pi(x)

)dx

)α
−λc11t

θ

∫
Ω

|ω|θ + c13.

Since θ > αP+
+ and all norms on the finite dimensional vector space Yk are equivalent,

setting u = tω, we obtain that Jλ (u)→ −∞ as ‖u‖→
p (·) → +∞ for any u ∈ Yk. This

implies

max
u∈Yk,‖u‖→p (·)

=ρk

Jλ(u) ≤ 0.

The proof is completed. �
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[18] I. Fragalà, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear
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