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Abstract

In this paper, we present a nonparametric estimator for ruin probability in the classical risk
model with unknown claim size distribution. We construct the estimator by Fourier inversion
and kernel density estimation method. Under some conditions imposed on the kernel, band-
width and claim size density, we present some large sample properties of the estimator. Some
simulation studies are also given to show the finite sample performance of the estimator.
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1 Introduction

Consider the following classical compound Poisson risk model

Ut = u + ct−
Nt∑
j=1

Xj,

where u ≥ 0 is the initial surplus, c > 0 is the constant premium rate. The claim
number process {Nt, t ≥ 0} is a Poisson process with intensity λ > 0. The i.i.d.
random variables {Xj, j = 1, 2, · · · }, independent of {Nt}, have the same distribution
as that of X with density f and distribution function F = 1 − F . The ruin time
defined by

τ = inf{t > 0 : Ut < 0}
is the first time when the surplus becomes negative. Given the initial surplus u the
ruin probability is defined by

ψ(u) = P(τ < ∞|U0 = u).

The calculation, approximation as well as estimation of the ruin probability have
been hot topics in risk theory for a long time (see for instance Rolski et al. (1999)
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and Asmussen (2000)). As is known to all, closed-form calculation formulas for ruin
probability are usually not easy to obtain, and approximation can only provide some
rough information on ruin. Furthermore, because these theoretical results are usually
dependent on the parametric assumptions imposed on the risk models, they are some-
what restrictive in practical situations. However, statistical estimation and inference
do not depend heavily on the specific models, and usually some satisfactory results
can be obtained when some sample information on the risk model is available.

In the last few decades, a lot of contributions have been made to the nonparametric
estimation of the ruin probability, see, e.g. Grandell (1979), Frees (1986), Hipp (1989),
Croux and Veraverbeke (1990), Pitts (1994), and Politis (2003) to name a few. The
claim size density is usually assumed to be unknown and it is even not imposed on
any parametric assumptions, while the Poisson intensity is sometimes assumed to be
unkown. Most of the nonparametric estimators of the ruin probability are proposed on
the ground of empirical type estimation of the claim size distribution. Mnatsakanov
et al. (2008) considered an empirical-type estimator of the Laplace transform of the
ruin probability, and recovered the ruin probability by a regularized Laplace inversion
technique. This method has also been used by Shimizu (2010) to study the Gerber-
Shiu discounted penalty function. Instead of using Laplace transform method, we
shall present an estimator by Fourier (inversion) transform.

As one of the most important and efficient method, kernel method is very pop-
ular in nonparametric statistics literature, see e.g. Prakasa Rao (1983) and Wand
and Jones (1995). Croux and Veraverbeke (1990) propose an estimator for the ruin
probability from the Pollaczeck-Khinchine formula by using U -statistics. However,
their estimator is not unbiased if the the mean of the claim size is not known. Kernel
method has also been considered by Croux and Veraverbeke (1990) to estimate the
claim size density. In this paper, we assume that the Poisson intensity λ is known
but the density function of the individual claim size is unknown. Instead, we assume
that a random sample of the individual claim sizes is available and we estimate the
claim size density by kernel method. Different from Croux and Veraverbeke (1990),
methodology employed in this paper is Fourier (inversion) transform. Note that one
advantage of Fourier transform is that it can transform a geometric series function
to a single function. We first start from a Fourier inversion transform representa-
tion for ruin probability that can be obtained by Pollaczeck-Khinchine formula, then
propose an estimator for ruin probability by some plug-in techniques. Fourier trans-
form method has also been applied by Embrechts et al. (1993) to risk theory, but
their attention was paid to the empirical-type estimator. Kernel smoothing has an
appealing advantage that the order of the variance of the estimator can be effectively
reduced by choosing an appropriate smoothing parameter. This is the reason why
kernel method is so popular in nonparametric statistics literature.

The reminder of this paper is organized as follows. In Section 2, we illustrate the
construction procedure of the estimator. In Section 3, we give some assumptions on
the kernel, bandwidth and claim size density, and present some large sample properties
of the estimator. The finite sample performance of the estimator is examined by some
simulation studies in Section 4. Finally, some concluding remarks are given in Section
5. All the technical arguments are given in Appendix A and B.
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2 The estimator

Throughout this paper, all integrals without an indicated domain of integration are
taken over the whole real line. We will apply Fourier inversion to propose our esti-
mator. In the sequel of this paper, for an absolutely integrable function v we denote
its Fourier transform by

φv(s) =

∫
eisxv(x)dx.

Under some mild integrable conditions, Fourier inversion formula gives

v(x) =
1

2π

∫
e−isxφv(s)ds,

where x is a continuous point of v.
We start from the Pollaczeck-Khinchine type formula for ruin probability. Let

µ denote the mean of individual claim amount, and let fe(x) = F (x)/µ for x ≥ 0
and be identical to zero for x < 0. If the net profit condition c > λµ holds, then
Pollaczeck-Khinchine formula states that

ψ(u) =

(
1− λµ

c

) ∞∑
j=1

(
λµ

c

)j (
1−

∫ u

0

f ∗je (x)dx

)

=
λµ

c
−

(
1− λµ

c

) ∞∑
j=1

(
λµ

c

)j ∫ u

0

f ∗je (x)dx, u ≥ 0, (2.1)

where f ∗je is the j-fold convolution of the density fe with itself.
Employing integration by part it is easy to verify that

φfe(s) =
φf (s)− 1

iµs
,

and then noting the fact that the Fourier transform of convolution is equal to the
product of the transforms, we obtain

f ∗je (x) =
1

2π

∫
e−isx

(
φf (s)− 1

iµs

)j

ds, j = 1, 2, . . . .

We remark that the above inversion formula does not hold at the discontinuous point
x = 0. However, because we are only interested in the integral of f ∗je (see (2.1)), this
discontinuous point will not impact the following plug-in argument.

Plugging the above expression for f ∗je into (2.1) and using Fubini’s theorem, we
have

ψ(u) =
λµ

c
−

(
1− λµ

c

)
1

2π

∞∑
j=1

(
λµ

c

)j ∫ u

0

∫
e−isx

(
φf (s)− 1

iµs

)j

dsdx

=
λµ

c
−

(
1− λµ

c

)
1

2π

∫ ∫ u

0

e−isx λφf (s)− λ

ics− λφf (s) + λ
dxds

=
λµ

c
−

(
1− λµ

c

)
ϕ(u), (2.2)
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where

ϕ(u) =
1

2π

∫
1− e−isu

is

λ
c

φf (s)−1

is

1− λ
c

φf (s)−1

is

ds.

There exist two unknown quantities in (2.2), i.e. the mean µ and the function ϕ(u).
Hence, an estimator for ψ(u) can be obtained if we can find estimators for µ and ϕ.

Suppose that an i.i.d. sample X1, X2, . . . , Xn of the individual claim sizes can be
obtained. We construct the estimators for µ and ϕ(u) based on this observed sample.
Firstly, we estimate µ by the sample mean µ̂n that is defined by

µ̂n =
1

n

n∑
j=1

Xj. (2.3)

Next, we employ kernel method to get an estimator for ϕ(u). The kernel density
estimator for the claim size density f , given the sample X1, X2, . . . , Xn, is defined as

f̂n(x) =
1

nhn

n∑
j=1

K

(
x−Xj

hn

)
,

where K is a kernel function, and hn > 0 is a smoothing parameter, usually called
bandwidth, such that hn → 0 as n →∞. With the understanding that the bandwidth
sequence {hn} depends on the sample size, we will omit the subscript n for notational

convenience. Let Kh(·) = 1
h
K( ·

h
). We can calculate the Fourier transform of f̂n as

follows,

φf̂n
(s) =

∫
eisx 1

n

n∑
j=1

Kh(x−Xj)dx = φemp(s)φK(sh),

where φemp(s) = 1
n

∑n
j=1 eisXj is the empirical characteristic function. Although

φemp(s) is an unbiased estimate, it is not a good estimate at high frequencies. For
this reason, it is usual to incorporate the damping factor φK(sh).

By a plug-in device we obtain the following estimator for ϕ(u),

ϕ̃n(u) =
1

2π

∫
1− e−isu

is

λ
c

φemp(s)φK(sh)−1

is

1− λ
c

φemp(s)φK(sh)−1

is

ds. (2.4)

Note that there is no guarantee that
∣∣∣1− λ

c

φemp(s)φK(sh)−1

is

∣∣∣ is strictly positive, although

the probability of this event tends to one. Thus, the integral in (2.4) is possibly
infinite. To get a finite-valued estimate, we consider the following modification,

ϕ̂n(u) = (M ∧ ϕ̃n(u)) ∨ (−M), (2.5)

where M is a large constant. There is no need to assume that M is a function of n
such that it tends to infinity as n →∞. To see this, we obtain from (2.2) that

ϕ(u) ≤ c + λµ

c− λµ
.
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Note that the right hand side of the above inequality is unknown due to the unknown
mean µ. However, in practical applications we can set M to be a large enough
constant.

By (2.2), (2.3), (2.5) and a plug-in device we can get the following estimator for
the ruin probability,

ψ̂n(u) =
λµ̂n

c
−

(
1− λµ̂n

c

)
ϕ̂n(u). (2.6)

Remark 1 When the Poison claim arrival intensity is also unknown, we can con-
struct an estimator for λ if a sample on the process {Nt} is available. Assume that we
can observe the total number of claims that arrive prior to some lattice time points,
i.e. for d > 0 a sample {Nd, N2d, N3d, . . .} can be observed. Then an unbiased esti-
mator for λ is

λ̂n =
Nnd

nd
.

Hence, we can estimate ϕ(u) by

ϕ̃∗n(u) =
1

2π

∫
1− e−isu

is

λ̂n

c

φemp(s)φK(sh)−1

is

1− λ̂n

c

φemp(s)φK(sh)−1

is

ds. (2.7)

Similar to (2.5), it is more preferable to consider the following modification

ϕ̂∗n(u) = (M ∧ ϕ̃∗n(u)) ∨ (−M), (2.8)

By a plug-in device, we obtain the following estimator for ruin probability,

ψ̂∗n(u) =
λ̂nµ̂n

c
−

(
1− λ̂nµ̂n

c

)
ϕ̂∗n(u). (2.9)

In the reminder of this paper, we will only focus our attention to the estimator ψ̂n(u).

We would like to assert that the estimator ψ̂∗n(u) also has some consistency properties,
but to see this we need more involved technical arguments.

3 Assumptions and asymptotic properties

To study the estimator, we present some assumptions imposed on the kernel K,
bandwidth h and density f . For a function v, define µj(v) =

∫ |x|jv(x)dx and
Rj(v) =

∫
v(x)jdx for j = 0, 1, 2, · · · . In the sequel, all the limits are taken as

n → ∞. Let C > 0 denote a generic finite-valued constant that can take different
values at different steps.

Assumption K K is a probability kernel, symmetric about zero, µ3(K) < ∞ and
R2(K) < ∞.

Assumption H h = Cn−γ for some C > 0 and 0 < γ < 1.

Assumption F
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(F1) f(x) ≡ 0 for x < 0, f is continuously differentiable in (0,∞), right-continuous
at zero, and f ′′ exists almost everywhere;

(F2)
∫ |f ′(x)|dx < ∞,

∫ |f ′′(x)|dx < ∞, R2(f
′) < ∞;

(F3) EX4 < ∞, and for some 0 < α < 1
2
, xα+1F (xα) → 0 as x →∞;

(F4) there exists a constant ρ > 0 such that 1− λµ
c
≥ ρ.

Remark 2 Assumption K is very standard and widely used in the nonparametric
kernel estimate literature. Assumption H implies that the standard assumptions on
the bandwidth, h → 0 and nh → ∞, hold. Assumptions (F1), (F2) are satisfied
by many continuous densities that are widely used in risk theory. Assumption (F3)
is satisfied by all the light-tailed distributions, and some heavy-tailed distributions
such as Lognormal, Weibull as well as Pareto with large shape parameter. Finally,
assumption (F4) is the net profit condition.

Proposition 1 Suppose that assumptions K, H, F hold, then the bias of ϕ̂n(u),
defined by Bias(ϕ̂n(u) = Eϕ̂n(u)− ϕ(u), has the following order,

Bias(ϕ̂n(u)) = O(n−1 + h2). (3.1)

Proposition 2 Suppose that assumptions K, H, F hold, then the variance of ϕ̂n(u)
has the following order,

Var(ϕ̂n(u)) = O(n−1) + O((n2h)−1 + h4). (3.2)

It follows from Proposition 1 and 2 that the mean squared error (MSE) of ϕ̂n(u)
has the following order,

MSE(ϕ̂n(u)) = [Bias(ϕ̂n(u)]2 + Var(ϕ̂n(u))

= O(
1

n
+

h2

n
+

1

n2h
+ h4). (3.3)

From (3.3) it is not easy to see the order of optimal bandwidth that minimizes the
asymptotic MSE. From (3.1) it seems that the smaller the bandwidth, the smaller the
bias. While from (3.2) it seems that smaller bandwidth may cause a larger variance.
This phenomena also appears in the kernel density estimate literature. Instead of
finding a balance between bias and variance, we can minimize the term 1

n2h
+ h4

in (3.2) to obtain a plausible order of the optimal bandwidth that minimizes the

variance, which is O(n−
2
5 ). If we choose h = Cn−

2
5 for some C > 0, then from (3.3)

we know that the order of MSE(ϕ̂n(u)) is O(n−1). Thus, ϕ̂n(u) is a
√

n-consistent
estimator.

Proposition 3 Suppose that assumptions K, H, F hold and nh4 → 0, then

ϕ̂n(u)− ϕ(u)√
Var(ϕ̂n(u))

D→ N (0, 1),

where N (0, 1) is the standard normal distribution.
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Remark 3 Now suppose that the assumptions in Proposition 3 hold. From the proof
of Proposition 3 we know that Var(ϕ̂n(u)) = O(n−1). Then by Proposition 1 we have

Bias(ϕ̂n(u))/
√

Var(ϕ̂n(u)) → 0. Consequently, by Proposition 3 we have

ϕ̂n(u)− Eϕ̂n(u)√
Var(ϕ̂n(u))

=
ϕ̂n(u)− ϕ(u)√

Var(ϕ̂n(u))
− Bias(ϕ̂n(u))√

Var(ϕ̂n(u))

D→ N (0, 1).

Now we study the order of the bias and variance of ψ̂n(u).

Theorem 1 Suppose that assumptions K, H, F hold, then

Bias(ψ̂n(u)) = O(n−
1
2 + h2). (3.4)

Proof. By (2.6) we have

ψ̂n(u)− ψ(u) =
λ

c
(µ̂n − µ)(1 + ϕ̂n(u))−

(
1− λµ

c

)
(ϕ̂n(u)− ϕ(u)) . (3.5)

Note that ϕ̂n(u) is bounded. By Cauchy-Schwarz inequality we have

|E(µ̂n − µ)(1 + ϕ̂n(u))| ≤ C[E(µ̂n − µ)2]
1
2 = O(n−

1
2 ).

By Proposition 1 we have

Eϕ̂n(u)− ϕ(u) = O(n−1 + h2).

Then (3.4) follows from the above results. 2

Theorem 2 Suppose that assumptions K, H, F hold, then

Var(ψ̂n(u)) = O(n−1) + O((n2h)−1 + h4). (3.6)

Proof. By (3.5) and Cauchy-Schwarz inequality we have

Var(ψ̂n(u)) ≤ 2
λ2

c2
Var((µ̂n − µ)(1 + ϕ̂n(u))) + 2

(
1− λ

c

)2

Var(ϕ̂n(u)). (3.7)

Noting that ϕ̂n(u) is bounded, we have

Var((µ̂n − µ)(1 + ϕ̂n(u))) ≤ E((µ̂n − µ)(1 + ϕ̂n(u)))2 ≤ CE(µ̂n − µ)2 = O(n−1),

which together with (3.7) and Proposition 2 gives (3.6). 2

By Theorem 1 and 2, the mean squared error of ψ̂n(u) is given by

MSE(ψ̂n(u)) = O(
1

n
+

h2

√
n

+
1

n2h
+ h4). (3.8)

If n2h5 → 0, then we can find a balance between bias and variance by minimizing the
term h2√

n
+ 1

n2h
in (3.8). In this case, the plausible optimal bandwidth is hopt = Cn−

1
2

for some C > 0, and from (3.8) we know that the order of MSE(ψ̂n(u)) is also O(n−1)

under such bandwidth setting. Consequently, ψ̂n(u) is a
√

n-consistent estimator.
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Remark 4 Consider the case when µ is known. Estimator (2.6) reduces to the fol-
lowing semi-parametric estimator

ψ̂n,sem(u) =
λµ

c
−

(
1− λµ

c

)
ϕ̂n(u).

It is easily seen that the bias and variance of ψ̂n,sem(u) has the same order as that

of ϕ̂n(u). Also, from Proposition 3 we know that ψ̂n,sem(u) has asymptotic normality
property.

4 Simulation studies

In this section the finite sample performance of the estimator is examined by some
examples. In these simulation studies, we assume that the claim size densities are
respectively exponential, Gamma and Pareto. For exponential and Gamma claim
size densities, explicit formula for ruin probability can be obtained by inverting the
Laplace transform of the ruin probability (see formula 3 in Albrecher and Kortschak
(2009)). In the case of Pareto claim size density, we use the integral expression for
ruin probability presented by Ramsay (2003).

K(·) is chosen to be the Gaussian kernel, i.e.

K(x) =
1√
2π

e−
x2

2 , φK(s) = e−
s2

2 .

Note that only the function ϕ̂n(u) depends on the bandwidth h. Thus, instead of
using hopt, we prefer to use the bandwidth that minimizes the order of Var(ϕ̂n(u)),

i.e. h = Cn−
2
5 . We set C = 0.95 in our simulation studies by hand.

Example 1 Premium rate c = 1.5; Poisson intensity λ = 1; Exp(1) claim size
density with

f(x) = e−x, x ≥ 0.

Example 2 Premium rate c = 8; Poisson intensity λ = 1.5; Gamma(4,1) claim size
density with

f(x) =
1

6
x3e−x, x ≥ 0.

Example 3 Premium rate c = 1.1; Poisson intensity λ = 1; Pareto claim size density
with

f(x) =
6

5

(
1 +

x

5

)−7

Figure 1 shows the behavior of the estimator with sample sizes n = 50, 100, 200
and the parameter setting in Example 1. As is expected, the estimator is improved
as the sample size n increases. In particular, when the initial surplus u is small, the
estimators perform better than when u is large. In order to overcome the “curse” of
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Figure 1: Comparison of the true ruin probability and estimators when f is Exp(1), sample sizes
n = 50; 100; 200.

large initial surplus, we adopt a scale transform approach. Note that

ψ(u) = P


inf

t


u + ct−

N(t)∑
j=1

Xj


 < 0




= P


inf

t


u

ξ
+

c

ξ
t−

N(t)∑
j=1

Xj

ξ


 < 0


 ,

where ξ > 0 is a scale parameter. Thus, for any initial surplus, the ruin probability
can be reduced to the case with small initial surplus if we choose the scale parameter
large enough. In Figure 2, we show the comparison results of the true ruin probabil-
ity, original estimator and the scaled estimator. In a sense, scale transform indeed
improves the performance of the original estimator for a fixed sample size. Also,
the performance of the scaled estimator is improved as the sample size increases. In
figure 3-4, we show the performance of the estimators when the claim size density is
Gamma(4,1), and obtain almost the same conclusions as that in the exponential claim
size situation. We believe that the estimator has better performance if the sample
size is sufficiently large.

Both exponential and Gamma distributions belong to the light-tailed class. In
Example 3, we consider a heavy-tailed case, i.e. the claim sizes follow a Pareto
distribution. Compared with light-tailed claim size distributions, simulation study
shows that larger sample sizes are needed to guarantee good results for heavy-tailed
distribution (see Figure 5). Also, we would like to assert that the scale transform fail
to improve the estimate when the initial surplus is too large in the heavy-tailed case.
Thus, we need to find other approach to solve this problem. For example, instead
of estimating the ruin probability, we can estimate its asymptotic behavior for large
initial surplus. For this purpose, we should first check the tail behavior of the claim
size distribution, and this will lead to some new problems. We leave this work for
further research.

9



5 6 7 8 9 10 11 12 13 14 15
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

true ruin probability
estimator with n=50
estimator with n=100
estimator with n=200
scaled estimator with n=50
scaled estimator with n=100
scaled estimator with n=200

Figure 2: Comparison of the true ruin probability and (scaled) estimators when f is Exp(1), sample
sizes n = 50; 100; 200 and scale parameter ξ = 5.
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Figure 3: Comparison of the true ruin probability and estimators when f is Gamma(4,1), sample
sizes n = 50; 100; 200.
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Figure 4: Comparison of the true ruin probability and (scaled) estimators when f is Gamma(4,1),
sample sizes n = 50; 100; 200 and scale parameter ξ = 5.

10



0 1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1

u

R
ui

n 
pr

ob
ab

ili
tie

s

 

 

true ruin probability
estimator with n=50
estimator with n=200
estimator with n=400
estimator with n=600

Figure 5: Comparison of the true ruin probability and estimators when f is Pareto, sample sizes
n = 50; 200; 400; 600.

5 Concluding remarks

In this paper, we have presented a nonparametric estimator for ruin probability by
Fourier inversion and kernel method. The consistent property of the estimator is ana-
lyzed by MSE, and the finite sample size performance is studied by some simulations.

The methodology presented in this paper can be used to estimate other ruin re-
lated quantities, such as the distributions and moments of the surplus before and
after ruin, or the Gerber-Shiu function with general penalty function. However, when
estimating the Gerber-Shiu function with a positive discount parameter, we should
estimate more parameters or functions, and consequently the argument may be more
involved.
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A Proofs of Proposition 1-3

In this appendix, we derive the order of bias and variance of ϕ̂n(u), and show that it
has asymptotic normality. To begin with, we present some preliminaries.

Firstly, let

An(s) =
λ

c

φf (s)− φemp(s)φK(sh)

is
.
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Using the inequalities |eix − 1| ≤ |x| ∧ 2, |φf (s)| ≤ 1 and |φK(sh)| ≤ 1, we have

c

λ
|An(s)| ≤ |φf (s)|

∣∣∣∣
1− φK(sh)

is

∣∣∣∣ + |φK(sh)|
(∣∣∣∣

1− φf (s)

is

∣∣∣∣ +

∣∣∣∣
1− φemp(s)

is

∣∣∣∣
)

≤
(

hµ1(K) ∧ 2

|s| + µ ∧ 2

|s| + µ̂n ∧ 2

|s|
)

(|φf (s)| ∨ |φK(sh)|)

≤ (hµ1(K) + µ + µ̂n) ∧
(

2

|s| (|φf (s)| ∨ |φK(sh)|)
)

.

For any constant L > 0, by Cauchy-Schwarz inequality and Parseval’s identity, we
have

∫

|s|≥L

1

|s| |φf (s)|ds ≤
(∫

|s|≥L

1

|s|2ds

) 1
2
(∫

|φf (s)|2ds

) 1
2

≤ C

(∫

|s|≥L

1

|s|2ds

) 1
2
(∫

f(x)2dx

) 1
2

< ∞.

Similarly, for fixed n we can show that 1
|s| |φK(sh)| is also absolutely integrable on

{s : |s| > L}. Whence, for a given sample we conclude that An(s) is absolutely
integrable with respect to s.

Secondly, let 1(A) denote the indicator function of event A, and let F̂n(x) =∫ x

−∞ f̂n(y)dy, F̂ (x) =
∫∞

x
f̂n(y)dy. By integration by part, it is easy to check that

φf (s)− φemp(s)φK(sh)

is

=

∫
eisx

(
1(x≥0)(F (x)− F̂n(x)) + 1(x<0)F̂n(x)

)
dx

=

∫
eisx

(
1(x≥0)(F (x)− F̂ n(x))− 1(x<0)(F (x)− F̂n(x))

)
dx, (A.1)

where in the last step we used the fact that F (x) = 0 for x < 0. From (A.1) we know

that Gn(x) := 1(x≥0)(F (x) − F̂n(x)) − 1(x<0)(F (x) − F̂n(x)) is the original function

corresponding to the Fourier transform
φf (s)−φemp(s)φK(sh)

is
.

Finally, we need the following result,

1

1− λ
c

φemp(s)φK(sh)−1

is

=
1

1− λ
c

φf (s)−1

is
+ An(s)

=
1

1− λ
c

φf (s)−1

is

− An(s)(
1− λ

c

φf (s)−1

is

)2

+
A2

n(s)(
1− λ

c

φf (s)−1

is
+ An(s)

)(
1− λ

c

φf (s)−1

is

)2 ,

12



which implies that

ϕ̃n(u) =
1

2π

∫
1− e−isu

is

(
1

1− λ
c

φf (s)−1

is
+ An(s)

− 1

)
ds

= ϕ(u)− 1

2π

∫
1− e−isu

is

An(s)(
1− λ

c

φf (s)−1

is

)2ds

+
1

2π

∫
1− e−isu

is

A2
n(s)(

1− λ
c

φf (s)−1

is
+ An(s)

)(
1− λ

c

φf (s)−1

is

)2ds

:= ϕ(u)− In(u) + IIn(u). (A.2)

It is readily seen that In(u) and IIn(u) are real functions. Using the inequality |φf (s)−
1| ≤ |iµs|, we have

∣∣∣∣1−
λ

c

φf (s)− 1

is

∣∣∣∣
2

≥
(

1− λ

c

∣∣∣∣
φf (s)− 1

is

∣∣∣∣
)2

≥
(

1− λµ

c

)2

> ρ

thanks to assumption (F4).
Hence,

|In(u)| ≤ 1

2π

∫ ∣∣∣∣
1− e−isu

is

∣∣∣∣ ·
|An(s)|∣∣∣1− λ

c

φf (s)−1

is

∣∣∣
2ds

≤ C

∫ ∣∣∣∣
1− e−isu

is

∣∣∣∣ |An(s)|ds

≤ C

(∫
|An(s)|4ds

) 1
4

, (A.3)

where the last step follows from Hölder’s inequality and the integrability of
∣∣∣1−e−isu

is

∣∣∣
4
3
.

For 0 < δ < ρ, define the following set

Bn,δ =

{
sup

s
|An(s)| ≤ δ

}

and let Bn,δ be its complementary set. On the set Bn,δ, we have
∣∣∣∣1−

λ

c

φf (s)− 1

is
+ An(s)

∣∣∣∣ ≥ 1− λ

c

∣∣∣∣
φf (s)− 1

is

∣∣∣∣− |An(s)| ≥ 1− λµ

c
− δ ≥ ρ− δ,

and consequently,

|IIn(u)| ≤ 1

2π

∫
∣∣∣∣∣∣∣
1− e−isu

is

A2
n(s)(

1− λ
c

φf (s)−1

is
+ An(s)

)(
1− λ

c

φf (s)−1

is

)2

∣∣∣∣∣∣∣
ds

≤ C

∫ ∣∣∣∣
1− e−isu

is

∣∣∣∣ |An(s)|2 ds,

13



which leads to

|IIn(u)| ≤ C

∫
|An(s)|2ds (A.4)

and

|IIn(u)| ≤ C

(∫
|An(s)|4ds

) 1
2

(A.5)

thanks to Cauchy-Schwarz inequality. Note that (A.4) and (A.5) hold on the set Bn,δ.
For notational convenience in the following arguments, we define

q(x) =
∞∑

j=1

(
λµ

c

)j

f ∗je (x).

Proof of Proposition 1. Let ε1 and ε2 be two small constants such that

ϕ(u) + ε1 + ε2 < M.

Let
Vn = {|In(u)| < ε1, |IIn(u)| < ε2}

and V n be its complementary set. Then it follows from (A.2) that |ϕ̃n(u)| < M on
the set Vn. Consequently, on the set Vn the truncation in (2.5) is neglectable. With
this in hand, we have

ϕ̂n(u)− ϕ(u)

= (ϕ̂n(u)− ϕ(u))1(Vn) + (ϕ̂n(u)− ϕ(u))1(V n)

= (ϕ̃n(u)− ϕ(u))1(Vn) + (ϕ̂n(u)− ϕ(u))1(V n)

=
4∑

i=1

Hn,i(u), (A.6)

where

Hn,1(u) = −In(u), Hn,2(u) = IIn(u)1(Vn), Hn,3(u) = In(u)1(V n),

Hn,4(u) = (ϕ̂n(u)− ϕ(u))1(V n).

Thus, the bias can be expressed as

Bias (ϕ̂n(u)) =
4∑

i=1

E[Hn,i(u)]. (A.7)

We treat the expectations in (A.7) respectively.
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By Fubini’s theorem and Fourier inversion, we have

In(u) =
1

2π

∫
1− e−isu

is

An(s)(
1− λ

c

φf (s)−1

is

)2ds

=
1

2π

∫ ∫ u

0

e−isxdx
An(s)(

1− λ
c

φf (s)−1

is

)2ds

=

∫ u

0

1

2π

∫
e−isx An(s)(

1− λ
c

φf (s)−1

is

)2dsdx

=
λ

c

∫ u

0

( ∞∑
j=0

(
λµ

c

)j

f ∗je

)∗2

∗Gn(x)dx

=
λ

c

(∫ u

0

Gn(x)dx + 2

∫ u

0

q ∗Gn(x)dx +

∫ u

0

q∗2 ∗Gn(x)dx

)
(A.8)

Then using Lemma 8 in Appendix B, we obtain

E[Hn,1(u)] = O(h2). (A.9)

Note that

E|Hn,2(u)| = E [|IIn(u)|; Vn ∩Bn,δ] + E
[|IIn(u)|; Vn ∩Bn,δ

]
. (A.10)

By (A.4) and (B.2) we have

E[|IIn(u)|; Vn ∩Bn,δ] ≤ C · E
∫
|An(s)|2ds

=

{
O(n−1 + h3), if f(0) > 0,
O(n−1 + h4), if f(0) = 0.

(A.11)

By Lemma 2 in Appendix B we have

E
[|IIn(u)|; Vn ∩Bn,δ

] ≤ ε2P (Bn,δ) = o(n−1). (A.12)

Thus, by (A.10)-(A.12) we have

E |Hn,2(u)| =
{

O(n−1 + h3), if f(0) > 0,
O(n−1 + h4), if f(0) = 0.

(A.13)

In order to study the third and fourth expectations in (A.7), we need bound the
probability P(V n). Obviously, we have

P(V n) ≤ P(|In(u)| ≥ ε1) + P (|IIn(u)| ≥ ε2)

≤ P(|In(u)| ≥ ε1) + P ({|IIn(u)| ≥ ε2} ∩Bn,δ) + P(Bn,δ).

By (A.3), Markov’s inequality and (B.3), we have

P (|In(u)| ≥ ε1) ≤ 1

ε4
1

E|In(u)|4 ≤ C · E
∫
|An(s)|4ds = O(h4 +

1

n2h
). (A.14)
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Note that inequality (A.5) holds on the set Bn,δ. Thus, by Markov’s inequality and
(B.3) we have

P ({|IIn(u)| ≥ ε2} ∩Bn,δ) ≤ 1

ε2
2

E[|IIn(u)|2; Bn,δ] ≤ C · E
∫
|An(s)|4ds = O(h4 +

1

n2h
),

which together with (A.14) and Lemma 2 in Appendix B gives

P(V n) = o(n−1) + O(h4 +
1

n2h
). (A.15)

By Hölder’s inequality, (A.3), (A.15) and (B.3), we have

E |Hn,3(u)| = E
[
|In(u)|1(V n)

]

≤ (
E|In(u)|4)

1
4
(
P(V n)

) 3
4

=

[
O(h4 +

1

n2h
)

] 1
4
[
o(n−1) + O(h4 +

1

n2h
)

] 3
4

= o(n−1) + O(h4 +
1

n2h
). (A.16)

Also, by (A.15) we have

E |Hn,4(u)| ≤ (M + ϕ(u))P(V n) = o(n−1) + O(h4 +
1

n2h
). (A.17)

Finally, by (A.7), (A.9), (A.13), (A.16) and (A.17) we obtain the desired result. This
completes the proof.

Proof of Proposition 2. By (A.6) we obtain

Var(ϕ̂n(u)) =
4∑

i=1

Var(Hn,i(u)) + 2
4∑

i=1

4∑
j=i+1

Cov(Hn,i(u), Hn,j(u))

≤ 4
4∑

i=1

Var(Hn,i(u)), (A.18)

where we used Cauchy-Schwarz inequality and the inequality 2ab ≤ a2 + b2 in the
second step.

We analyze the variances in (A.18) respectively. Firstly, by (A.8) and Lemma 9 ,
we have

Var(Hn,1(u))

=
λ2

c2
Var

(∫ u

0

Gn(x)dx + 2

∫ u

0

q ∗Gn(x)dx +

∫ u

0

q∗2 ∗Gn(x)dx

)

=
λ2

c2

∑3
j=1 Qj(u) + 2

∑6
j=4 Qj(u)

n
+ o(n−1). (A.19)

Secondly, by Cauchy-Schwarz inequality we have

Var(Hn,2(u)) ≤ 2Var(IIn(u)1(Vn∩Bn,δ)) + 2Var(IIn(u)1(Vn∩Bn,δ)).
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By (A.5) and (B.3) we have

Var(IIn(u)1(Vn∩Bn,δ)) ≤ E
[|IIn(u)|2; Vn ∩Bn,δ

]

≤ C · E
∫
|An(s)|4ds

= O(h4 +
1

n2h
),

which, together with Var(IIn(u)1(Vn∩Bn,δ)) ≤ C · P(Bn,δ) = o(n−1), gives

Var(Hn,2(u)) = o(n−1) + O(h4 +
1

n2h
). (A.20)

Thirdly, by Cauchy-Schwarz inequality, (A.3), (A.15) and (B.3), we have

Var(Hn,3(u)) ≤ E
[|In(u)|2; V n

]

≤ (
E|In(u)|4)

1
2
(
P(V n)

) 1
2

=

[
O(h4 +

1

n2h
)

] 1
2
[
o(n−1) + O(h4 +

1

n2h
)

] 1
2

= o(n−1) + O(h4 +
1

n2h
). (A.21)

Finally, by (A.15) we have

Var(Hn,4(u)) ≤ E[(ϕ̂n(u)− ϕ(u))2; V n]

≤ (M + ϕ(u))2P(V n)

= o(n−1) + O(h4 +
1

n2h
). (A.22)

Hence, by (A.18)-(A.22) we obtain the desired result. This completes the proof.

Proof of Proposition 3. It follows from Cauchy-Schwarz inequality that for two ran-
dom variables ξ1 and ξ2, if Var(ξ2) = o(Var(ξ1)), then Var(ξ1+ξ2) ∼ Var(ξ1). Whence,
by (A.6) and (A.19)-(A.22) we have

Var (ϕ̂n(u)) ∼ Var(Hn,1(u)) ∼ λ2

c2

∑3
j=1 Qj(u) + 2

∑6
j=4 Qj(u)

n
. (A.23)

Employing (A.6) we have

ϕ̂n(u)− ϕ(u)√
Var(ϕ̂n(u))

=

∑4
i=1 Hn,i(u)√
Var(ϕ̂n(u))

.

It follows from Markov’s inequality that for any ε > 0,

P

(∣∣∑4
i=2 Hn,i(u)

∣∣
√

Var(ϕ̂n(u))
> ε

)
≤

∑4
i=2 E|Hn,i(u)|

ε
√

Var(ϕ̂n(u))
,
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which together with (A.13), (A.16), (A.17) and (A.23) implies that
∑4

i=2 Hn,i(u)√
Var(ϕ̂n(u))

con-

verges to zero in probability, and by Slutsky’s theorem it can be neglected. Whence,

we only need to study Hn,1(u)√
Var(ϕ̂(u))

, which can be rewritten as

Hn,1(u)− E[Hn,1(u)]√
Var(ϕ̂n(u))

+
E[Hn,1(u)]√
Var(ϕ̂n(u))

.

By (A.9) and (A.23) we have E[Hn,1(u)]√
Var(ϕ̂n(u))

→ 0. Thus, we only need to verify

Hn,1(u)− E[Hn,1(u)]√
Var(ϕ̂n(u))

D→ N (0, 1),

which can be proved by using (A.23) and checking some sufficient conditions for
central limit theorem.

B Lemmas and Proofs

We present some lemmas that are useful in deriving the order of Bias(ϕ̂n(u)) and
Var(ϕ̂n(u)).

Lemma 1 Suppose that assumption (F3) holds. Then for any ε > 0

P
(∫ ∞

0

|F (x)− Femp(x)|dx > ε

)
= o(n−1),

where Femp(x) = 1
n

∑n
j=1 I(Xj≤x) is the empirical distribution function.

Proof. For α > 0 we can find some positive integer nε,α such that for all n ≥ nε,α,∫∞
nα(1− F (x))dx < ε

2
. Then for n ≥ nε,α, we have

P
(∫ ∞

0

|F (x)− Femp(x)|dx > ε

)

≤ P
(∫ nα

0

|F (x)− Femp(x)|dx +

∫ ∞

nα

(1− F (x))dx +

∫ ∞

nα

(1− Femp(x))dx > ε

)

≤ P
(∫ nα

0

|F (x)− Femp(x)|dx +

∫ ∞

nα

(1− Femp(x))dx >
ε

2

)

≤ P
(∫ nα

0

|F (x)− Femp(x)|dx >
ε

4

)
+ P

(∫ ∞

nα

(1− Femp(x))dx >
ε

4

)
.

By Lemma 2.1.1 in Prakasa Rao (1983), we have

P
(∫ nα

0

|F (x)− Femp(x)|dx >
ε

4

)
≤ P

(
sup
x>0

|F (x)− Femp(x)| > ε

4nα

)

≤ Cexp

(
−ε2

8
n1−2α

)
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for some constant C > 0, which implies that for 0 < α < 1
2

P
(∫ nα

0

|F (x)− Femp(x)|dx >
ε

4

)
= o(n−1). (B.1)

By Markov’s inequality, we have

P
(∫ ∞

nα

(1− Femp(x))dx >
ε

4

)
= P

(
1

n

n∑
i=1

(Xi − nα)I(Xi > nα) >
ε

4

)

≤ 4

ε
E[(Xi − nα)I(Xi > nα)]

=
4

ε

∫ ∞

nα

(x− nα)dF (x)

=
4

ε

∫ ∞

nα

F (x)dx.

By the above result, L’Hôpital’s rule and assumption (F3), we have

P
(∫ ∞

nα

(1− Femp(x))dx >
ε

4

)
= o(n−1),

which together with (B1) gives the desired result. 2

Lemma 2 Suppose that h → 0, µ1(K) < ∞, and assumption (F3) holds. Then for
any ε > 0

P
(

sup
s

∣∣∣∣
φf (s)− φemp(s)φK(sh)

is

∣∣∣∣ > ε

)
= o(n−1).

Proof. Using the inequality |eisx − 1| ≤ |sx| and the following result

∣∣∣∣
φf (s)− φemp(s)

is

∣∣∣∣ =

∣∣∣∣
∫∞

0
(eisx − 1)dF (x)− ∫∞

0
(eisx − 1)dFemp(x)

is

∣∣∣∣

=

∣∣∣∣
∫ ∞

0

∫ x

0

eisydydF (x)−
∫ ∞

0

∫ x

0

eisydydFemp(x)

∣∣∣∣

=

∣∣∣∣
∫ ∞

0

(1− F (x))eisxdx−
∫ ∞

0

(1− Femp(x))eisxdx

∣∣∣∣

≤
∫ ∞

0

|F (x)− Femp(x)|dx,

we have
∣∣∣∣
φf (s)− φemp(s)φK(sh)

is

∣∣∣∣

≤ |φf (s)|
∣∣∣∣
1− φK(sh)

is

∣∣∣∣ + |φK(sh)|
∣∣∣∣
φf (s)− φemp(s)

is

∣∣∣∣

≤ hµ1(K) +

∫ ∞

0

|F (x)− Femp(x)|dx.
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For ε > 0, there exists some positive integer n0 such that for n ≥ n0, hµ1(K) < ε
2
.

Then for n ≥ n0, we have

P
(

sup
s

∣∣∣∣
φf (s)− φemp(s)φK(s)

is

∣∣∣∣ > ε

)

≤ P
(

hµ1(K) +

∫ ∞

0

|F (x)− Femp(x)|dx > ε

)

≤ P
(∫ ∞

0

|F (x)− Femp(x)|dx >
ε

2

)

= o(n−1)

thanks to Lemma 1. This completes the proof. 2

Lemma 3 Suppose that assumptions K, (F1), (F2) and (F3) hold. Then we have

E
∫
|An(s)|2ds =

{
O(n−1 + h3), if f(0) > 0,
O(n−1 + h4), if f(0) = 0,

(B.2)

and

E
∫
|An(s)|4ds = O(h4 +

1

n2h
). (B.3)

Proof. By Parseval’s identity and Bias-Variance decomposition, we have

E
∫
|An(s)|2ds ≤ C · E 1

2π

∫ ∣∣∣∣
φf (s)− φemp(s)φK(sh)

is

∣∣∣∣
2

ds

= C · E
∫

Gn(x)2dx

= C ·
∫

[EGn(x)]2 dx + C ·
∫

Var(Gn(x))dx,

which together with Lemma 6 and Lemma 7 gives (B.2).
By Cr-inequality, we have

E
∫
|An(s)|4ds ≤ C · E

∫ ∣∣∣∣
(φemp(s)− φf (s))φK(sh)

is

∣∣∣∣
4

ds

+C

∫ ∣∣∣∣
φf (s)(φK(sh)− 1)

is

∣∣∣∣
4

ds. (B.4)

Using the symmetry of the kernel K and the inequality |eix − 1− ix| ≤ x2

2
, we have

|φK(sh)− 1| ≤
∫
|eishx − 1− ishx|K(x)dx

≤ 1

2
s2h2µ2(K).

Consequently,
∫ ∣∣∣∣

φf (s)(φK(sh)− 1)

is

∣∣∣∣
4

ds ≤ C

∫ ∣∣∣∣
φf (s)

is

∣∣∣∣
4

|φK(sh)− 1|2 ds ≤ Ch4 (B.5)
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thanks to
∫ |φf (s)|4ds < ∞. Using the inequality |eix − 1| ≤ |x| and Cr-inequality,

we have

E
∣∣∣∣
φf (s)− eisXj

is

∣∣∣∣
4

≤ E(µ + Xj)
4 ≤ C(µ4 + EX4

j ) < ∞.

Thus, we can use Rosenthal’s inequality (see Theorem 2.12 in Hall and Heyde (1980))
to obtain

E
∣∣∣∣
φf (s)− φemp(s)

is

∣∣∣∣
4

≤ C

n2
,

which holds uniformly in s. By the above inequality we have

E
∫ ∣∣∣∣

(φemp(s)− φf (s))φK(sh)

is

∣∣∣∣
4

ds ≤ C

n2

∫
|φK(sh)|4ds ≤ C

n2h
,

which, together with (B.4) and (B.5), gives (B.3). 2

We need the following Taylor’s expansions that are special cases of Lemma 4.3 and
4.4 in van Eeden (1985).

Lemma 4 Suppose that Assumption (F1) and (F2) hold. If x > 0 and x − uh < 0,
then

f(x− uh)− f(x) + uhf ′(x)− h2

∫ u

0

(u− s)f ′′(x− sh)ds = −f ′(0+)(x− uh)− f(0).

If x < 0 and x− uh > 0, then

f(x− uh)− f(x) + uhf ′(x)− h2

∫ u

0

(u− s)f ′′(x− sh)ds = f ′(0+)(x− uh) + f(0).

If x(x− uh) > 0, then

f(x− uh)− f(x) + uhf ′(x)− h2

∫ u

0

(u− s)f ′′(x− sh)ds = 0.

The following inequality is given by Lemma A.1 in Tsybakov (2009).

Lemma 5 (Generalized Minkowski inequality) For any Borel function p on R × R,
we have ∫ (∫

p(y, x)dy

)2

dx ≤
(∫ (∫

(p(y, x))2dx

) 1
2

dy

)2

.

Lemma 6 Suppose that assumptions K, (F1) and (F2) hold. Then

∫
[EGn(x)]2 dx =

{
O(h3), if f(0) > 0,
O(h4), if f(0) = 0.
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Proof. For x ≥ 0, by Taylor’s expansions given in Lemma 4 we have

EGn(x) = E
∫ ∞

x

(
f(y)− f̂n(y)

)
dx

=

∫ ∞

x

∫ ∞

0

(f(y)−Kh(y − z)) f(z)dzdy

=

∫ ∞

x

∫
K(s)(f(y)− f(y − sh))dsdy

=

∫ ∞

x

∫
K(s) (f(0) + f ′(0+)(y − sh))1(y<sh)dsdy

−h2

∫ ∞

x

∫
K(s)

∫ s

0

(s− t)f ′′(y − th)dtdsdy

= f(0)

∫
K(s)(sh− x)1(x≤sh)ds

−1

2
f ′(0+)

∫
K(s)(x− sh)21(x≤sh)ds

+h2

∫
K(s)

∫ s

0

(s− t)[f ′(0+)1(x≤th) + f ′(x− th)1(x>th)]dtds

:= χ+,1(x) + χ+,2(x) + χ+,3(x).

Similarly, for x < 0 we have

EGn(x) = E
∫ x

−∞
(f̂n(y)− f(y))dy

= f(0)

∫
K(s)(x− sh)1(x≥sh)ds

+
1

2
f ′(0+)

∫
K(s)(x− sh)21(x≥sh)ds

+h2

∫
K(s)

∫ s

0

(s− t)[f ′(x− th)− f ′(0+)]1(x>th)dtds

= χ−,1(x) + χ−,2(x) + χ−,3(x).

Then

∫
[EGn(x)]2 dx =

∫ (
3∑

j=1

(χ+,j(x) + χ−,j(x))

)2

dx

≤ 3
3∑

j=1

∫ ∞

0

χ+,j(x)2dx + 3
3∑

j=1

∫ 0

−∞
χ−,j(x)2dx. (B.6)
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By Lemma 5 we have
∫ ∞

0

χ+,1(x)2dx = f(0)2

∫ ∞

0

(∫
K(s)(sh− x)1(x≤sh)ds

)2

dx

≤ f(0)2

(∫
K(s)

(∫ ∞

0

(sh− x)21(x≤sh)dx

) 1
2

ds

)2

≤ 1

3
h3f(0)2

(∫
K(s)|s| 32 ds

)2

≤ Ch3f(0)2, (B.7)

and similarly,
∫ ∞

0

χ+,2(x)2dx ≤ 1

20
h5f ′(0+)2

(∫
K(s)|s| 52 ds

)2

≤ Ch5. (B.8)

Let m+(x, t) = f ′(0+)1(x≤th) + f ′(x − th)1(x>th), and write χ+,3(x) = χ+,3,1(x) +
χ+,3,2(x), where for x ≥ 0

χ+,3,1(x) = h2

∫ ∞

0

K(s)

∫ s

0

(s− t)m+(x, t)dtds,

χ+,3,2(x) = h2

∫ 0

−∞
K(s)

∫ 0

s

(t− s)f ′(x− th)dtds.

By Cauchy-Schwarz inequality, for s ≥ 0 we have
(∫ s

0

(s− t)m+(x, t)dt

)2

≤
(∫ s

0

(s− t)dt

)(∫ s

0

(s− t)(m+(x, t))2dt

)

≤ s2

∫ s

0

(s− t)
[
f ′(0+)21(x≤th) + f ′(x− th)21 (x>th)

]
dt.

By this inequality, Lemma 5 and Fubini’s theorem, we have
∫ ∞

0

χ+,3,1(x)2dx

= h4

∫ ∞

0

(∫ ∞

0

K(s)

∫ s

0

(s− t)m+(x, t)dtds

)2

dx

≤ h4




∫ ∞

0

K(s)

(∫ ∞

0

(∫ s

0

(s− t)m+(x, t)dt

)2

dx

) 1
2

ds




2

≤ Ch4

(∫ ∞

0

K(s)
(
f ′(0+)2hs5 + R(f ′)s4

) 1
2 ds

)2

≤ Ch4

(∫ ∞

0

K(s)(s
5
2 ∨ s2)ds

)2

≤ Ch4,
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and similarly,
∫ ∞

0

χ+,3,2(x)2dx ≤ Ch4

(∫ 0

−∞
K(s)s2ds

)2

≤ Ch4.

Thus, we have
∫ ∞

0

χ+,3(x)2dx =

∫ ∞

0

(χ+,3,1(x) + χ+,3,2(x))2dx

≤ 2

∫ ∞

0

(χ+,3,1(x)2 + χ+,3,2(x)2)dx

≤ Ch4. (B.9)

By exactly the same arguments as above, we can obtain
∫ 0

−∞
χ−,1(x)2dx ≤ Ch3f(0)2, (B.10)

∫ 0

−∞
χ−,2(x)2dx ≤ Ch5, (B.11)

∫ 0

−∞
χ−,3(x)2dx ≤ Ch4. (B.12)

Finally, by (B.6)-(B.12) we have
∫

[EGn(x)]2 dx ≤ Ch3f(0)2 + Ch5 + Ch4.

This completes the proof. 2

Lemma 7 Suppose that assumptions K, (F1) and (F2) hold. Then
∫

Var(Gn(x))2dx = O(n−1).

Proof. Firstly, we have
∫

Var(Gn(x))dx =

∫ ∞

0

Var
(
F̂n(x)

)
dx +

∫ 0

−∞
Var

(
F̂n(x)

)
dx.

We only treat the first integral on the right hand side of the above equation, because
the other one can be analyzed similarly. By some straightforward calculations we
obtain ∫ ∞

0

Var
(
F̂n(x)

)
dx =

1

n

∫ ∞

0

Var

(∫ ∞

x

Kh(y −X)dy

)
dx

≤ 1

n

∫ ∞

0

E
(∫ ∞

x

Kh(y −X)dy

)2

dx

=
h

n

∫ 0

−∞

∫ ∞

0

(∫ ∞

t

K(s)ds

)2

f(x− th)dxdt

+
h

n

∫ ∞

0

(∫ ∞

t

K(s)ds

)2

dt,
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Note that
∫∞

t
K(s)ds ≤ 1. Then

h

n

∫ 0

−∞

∫ ∞

0

(∫ ∞

t

K(s)ds

)2

f(x− th)dxdt ≤ h

n

∫ 0

−∞

∫ ∞

0

f(x− th)dxdt =
µ

n
.

and
h

n

∫ ∞

0

(∫ ∞

t

K(s)ds

)2

dt ≤ h

n

∫ ∞

0

∫ ∞

t

K(s)dsdt =
µ1(K)h

2n
.

This completes the proof. 2

The following two lemmas can be obtained by exactly the same arguments as that
of Zhang et al. (2011). We only give the outline of the derivation of the covariance.

Lemma 8 Suppose that assumptions K, (F1) and (F2) hold. Then

E
∫ u

0

Gn(x)dx = O(h2),

E
∫ u

0

q ∗Gn(x)dx = O(h2),

E
∫ u

0

q∗2 ∗Gn(x)dx = O(h2).

Lemma 9 Suppose that assumptions K, (F1) and (F2) hold. Then

Var

(∫ u

0

Gn(x)dx

)
=

1

n
Q1(u) + o(n−1),

Var

(
2

∫ u

0

q ∗Gn(x)dx

)
=

1

n
Q2(u) + o(n−1),

Var

(∫ u

0

q∗2 ∗Gn(x)dx

)
=

1

n
Q3(u) + o(n−1),

Cov

(∫ u

0

Gn(x)dx, 2

∫ u

0

q ∗Gn(x)dx

)
=

1

n
Q4(u) + o(n−1),

Cov

(∫ u

0

Gn(x)dx,

∫ u

0

q∗2 ∗Gn(x)dx

)
=

1

n
Q5(u) + o(n−1),

Cov

(
2

∫ u

0

q ∗Gn(x)dx,

∫ u

0

q∗2 ∗Gn(x)dx

)
=

1

n
Q6(u) + o(n−1),
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where

Q1(u) =

∫ u

0

∫ u

0

F (x1 ∨ x2)dx2dx1 −
(∫ u

0

F (x)dx

)2

,

Q2(u) = 4

∫ u

0

∫ u

0

∫ x1

0

∫ x2

0

q(x1 − z1)q(x2 − z2)F (z1 ∨ z2)dz2dz1dx2dx1

−4

(∫ u

0

∫ x

0

q(x− y)F (y)dydx

)2

,

Q3(u) =

∫ u

0

∫ u

0

∫ x1

0

∫ x2

0

q∗2(x1 − z1)q
∗2(x2 − z2)F (z1 ∨ z2)dz2dz1dx2dx1

−
(∫ u

0

∫ x

0

q∗2(x− y)F (y)dydx

)2

,

Q4(u) = 2

∫ u

0

∫ u

0

∫ ∞

x1

∫ x2∧z1

0

q(x2 − z2)f(z1)dz2dz1dx2dx1

−2

(∫ u

0

F (x)dx

)(∫ u

0

∫ x

0

q(x− y)F (y)dydx

)
,

Q5(u) =

∫ u

0

∫ u

0

∫ ∞

x1

∫ x2∧z1

0

q∗2(x2 − z2)f(z1)dz2dz1dx2dx1

−
(∫ u

0

F (x)dx

)(∫ u

0

∫ x

0

q∗2(x− y)F (y)dydx

)
,

Q6(u) = 2

∫ u

0

∫ u

0

∫ x1

0

∫ x2

0

q(x1 − z1)q
∗2(x2 − z2)F (z1 ∨ z2)dz2dz1dx2dx1

−2

(∫ u

0

∫ x

0

q(x− y)F (y)dydx

)(∫ u

0

∫ x

0

q∗2(x− y)F (y)dydx

)
.
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Proof. We only derive the fourth formula, since the others can be obtained similarly.
From the definition of Gn, we have

Cov

(∫ u

0

Gn(x)dx,

∫ u

0

q ∗Gn(x)dx

)

= Cov

(∫ u

0

F̂ n(x)dx,

∫ u

0

∫ x

0

q(x− y)F̂ n(y)dydx

)

−Cov

(∫ u

0

F̂ n(x)dx,

∫ u

0

∫ 0

−∞
q(x− y)F̂n(y)dydx

)

=
1

n
E

[(∫ u

0

∫ ∞

x

Kh(z −X)dzdx

)

×
(∫ u

0

∫ x

0

∫ ∞

y

q(x− y)Kh(z −X)dzdydx

)]

− 1

n
E

[(∫ u

0

∫ ∞

x

Kh(z −X)dzdx

)

×
(∫ u

0

∫ 0

−∞

∫ y

−∞
q(x− y)Kh(z −X)dzdydx

)]

− 1

n

(∫ u

0

F (x)dx

)(∫ u

0

∫ x

0

q(x− y)F (y)dydx

)
+ o(n−1). (B.13)

where the last step follows from Lemma 8. We treat the above two expectations
respectively. Firstly, by some changes of variables and Fubini’s theorem we have

E
[(∫ u

0

∫ ∞

x

Kh(z −X)dzdx

)

×
(∫ u

0

∫ x

0

∫ ∞

y

q(x− y)Kh(z −X)dzdydx

)]

=

∫ ∫ ∫ u

0

∫ u

0

∫ ∞

x1

∫ x2

0

K(t1)K(t2)q(x2 − z2)f(z1 − t1h)

×1(z1≥t1h,z1+t2h−t1h≥z2)dz2dz1dx2dx1dt2dt1.

Next, by the Taylor’s expansion formulas given in Lemma 4, it is easy to show that

E
[(∫ u

0

∫ ∞

x

Kh(z −X)dzdx

)

×
(∫ u

0

∫ x

0

∫ ∞

y

q(x− y)Kh(z −X)dzdydx

)]

=

∫ u

0

∫ u

0

∫ ∞

x1

∫ x2∧z1

0

q(x2 − z2)f(z1)dz2dz1dx2dx1 + o(1). (B.14)

Similarly, we can obtain

E
[(∫ u

0

∫ ∞

x

Kh(z −X)dzdx

)

×
(∫ u

0

∫ 0

−∞

∫ y

−∞
q(x− y)Kh(z −X)dzdydx

)]
= o(1). (B.15)
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By (B.13)-(B.15) we obtain the desired result. 2
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