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Abstract. In this paper, a strongly nonlinear coupled elliptic-parabolic system modelling a

class of engineering problems with heat effect is studied. Existence of a weak solution is first

established by Schauder fixed point theorem, where the coupled functions σ(s), k(s) are assumed

to be bounded. The uniqueness of the solution is obtained by applying Meyers’ theorem and

assuming that σ(s), k(s) are Lipschitz continuous. The regularity of the solution is then analyzed

in dimension d ≤ 2 under the assumptions on σ(s), k(s) ∈ C2(R) and the boundedness of their

derivatives of second order. Finally, the blow-up phenomena of the system are studied.
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1 Introduction

In many engineering problems, cf. [1, 2, 3], and the references therein, we en-

counter an incompressible quasi Newtonian flows with viscous heating which
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can be modelled as:





(i) −2∇∙(σ (θ)D(u)) + ∇ p = f

(ii) ∇∙u = 0

(iii) θt − ∇∙(k(θ)∇θ) + u ∙ ∇θ + c θ = σ(θ)|D(u)|2

(1)

where u is the velocity, p the pressure, θ the temperature. The viscosity σ is a

function of θ ,

D(u) =
1

2

(
∇u + ∇uT

)

is the strain rate tensor, and |D(u)|2 is the second invariant of D(u).

Problems of this type have received especial attention recently, cf. [2, 4, 5].

Very similar problems can be found in modelling turbulent flows, cf. [6, 7],

thermistor problems, cf. [9, 10, 12, 15, 13, 14, 16, 19, 23, 22, 24, 26, 29, 31, 32],

semiconductor devices, cf. [30, 17, 28], electromagnetic “induction heating”

problems, cf. [11], and so on. The main difficulties in analysis of the system

(1) come from the strongly coupled nonlinearity and the incompressibility

(from numerical point of view). In this paper, we focus the first difficulty and

consider its simplified scalar model:





(i) −∇∙(σ (θ)∇u) = f in � × (0, T ),

(ii) θt − ∇∙(k(θ)∇θ) + b ∙ ∇θ + c θ = σ(θ)|∇u|2 in � × (0, T ),

(iii) u = 0, θ = 0 on 0 × (0, T ),

(iv) θ(x, 0) = θ0(x) in �.

(2)

where u, θ : � × (0, T ) → R are unknowns, � is a bounded open subset of

Rd , d = 1, 2 or 3, 0 its regular boundary, T is some positive given number.

b, c are given vector and scalar functions. We will study the problem (1) in

next work.

The model problem (2) can be also thought, from mathematical point of view,

as a generalization of thermistor problem where u is potential, θ temperature and

f, b, c ≡ 0. It is necessary and important to understand well such a fundamental

model problem (2) in simulating quasi Newtonian flows with viscous heating,

turbulent flows, thermistor problems, semiconductor devices, electromagnetic

“induction heating” problems, etc.
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Following the works by Antontsev-Chipot [10] and Elliott-Larsson [16] for

thermistor problem, we give in this paper a complete analysis such as exis-

tence, uniqueness, regularity and blow-up of the problem (2). While in [24] the

authors assumed f ∈ L2(�) to get the existence of the solution, we establish

similar results with a weaker assumption on it (see Theorem 1 below), which

also extends results in [10, 16], where simply f = 0 is involved in the par-

tial differential equation. By applying Meyers’ estimate from [21], regularity

assumptions on the solution such that

∇ui , ∇φ2 ∈ L2q/(q−n)(0, T ; Lq(�)), i = 1, 2

and

∇φ1 ∈ L4q/(q−n)(0, T ; Lq(�)), q > max(n, 2)

etc. in [10] are not needed to reach the uniqueness of the solution. And a

non-trivial extension of the blow-up analysis in [10] to the case of diffusion-

convection-reaction is presented following the idea from [8].

The paper is constructed as follows. In section 2 we formulate the variational

form of the problem. And the following two sections are devoted to analyze the

existence and uniqueness of the weak solution. Then we study the regularity of

the solution. Finally, we discuss the blow-up.

2 Variational formulation

We will use standard notation for the spaces and corresponding norms. Let

W m,s(�) denotes the standard sobolev space, with its norm ‖ ∙ ‖W m,s (�), for

m ≥ 0 and 1 ≤ s ≤ ∞. We write H m(�) = W m,s(�) when s = 2, with the

norm ‖ ∙ ‖W m,2(�), and Ls(�) = W 0,s(�) when m = 0, with the norm ‖ ∙ ‖Ls (�).

W m,s
0 (�) is the closure of the space C∞

0 (�) for the norm ‖ ∙ ‖W m,s (�). When

considering space-time functions v(x, t), (x, t) ∈ � × (0, T ), we define the

space Lr (0, T ; X)(1 ≤ r < ∞) (where X is a Sobolev space on �) as:

Lr (0, T ; X) :=
{
v : (0, T ) → X

∣
∣

∫ T

0
‖v(t)‖r

X dt < ∞
}

.

In a similar way we can define L∞(0, T ; X) and C(0, T ; X). Vector variables

are, in general, denoted with bold face.
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We assume that θ0 ∈ L2(�), and let V = H 1
0 (�), V ′ = H−1(�) the dual

space of V . Then, for a given f ∈ L∞(0, T ; V ′), the variational formulation of

the problem (2) can be defined as:





Find u ∈ L∞(0, T ; V ), θ ∈ L2(0, T ; V ) ∩ C([0, T ]; L2(�)),

θt ∈ L2(0, T ; V ′) such that

(i) a(θ; u, v) = ( f, v), ∀ v ∈ V

(ii) (θt , η) + b(θ; θ, η) = (σ (θ)|∇u|2, η), ∀ η ∈ V ∩ L∞(�)

(3)

where

a(θ; u, v) = (σ (θ)∇u, ∇v), (4)

b(ξ ; θ, η) = (k(ξ)∇θ, ∇η) + (b ∙ ∇θ, η) + (c θ, η), (5)

and (∙, ∙) denotes the inner product of [L2(�)]d or the duality between [Ls(�)]d

and [Ls′
(�)]d , s ′ is the dual number of s.

3 Existence of a weak solution

We assume that σ, k ∈ C(R) satisfying

0 < σ1 ≤ σ(θ) ≤ σ2 < ∞; 0 < k1 ≤ k(θ) ≤ k2 < ∞ (6)

where σi , ki are positive constants. C denotes a generic constant depending on

�, d and σi , ki .

It is easy to see that, for any given θ , and v, w ∈ V

a(θ; v, v) ≥ σ1‖∇v‖2
L2(�)

, (7)

|a(θ; v,w)| ≤ σ2‖∇v‖L2(�)‖∇w‖L2(�) (8)

where ‖∇ ∙ ‖L2 is equivalent to the norm ‖ ∙ ‖V by Poincaré inequality (cf. p. 11

in [25]).

To symmetrize the trial and test function spaces of (3.ii), we note that in

[24, 32, 33] Meyer’s estimate was applied and some regularity assumption in 3D

case was needed. Here we are doing in a different way which is based on the

Maximum principle and that regularity assumption is then unnecessary.
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Lemma 1. For any given θ , the solution to (3.i) u satisfies that

‖∇u‖L∞(0,T ;L2(�)) ≤ C‖ f ‖L∞(0,T ;V ′). (9)

Moreover, if f ∈ L2(0, T ; Lq(�)) where q > d/2, then

‖u‖L2(0,T ;L∞(�)) ≤ C‖ f ‖L2(0,T ;Lq (�)). (10)

Proof. Let v = u in (3.i), and notice that (7), we can get (9). (10) is a con-

sequence of Theorem 8.16 in [20]. �

By (2.i), the right-hand side of (2.ii) can be written as

σ(θ)|∇u|2 = ∇ ∙ (σ (θ)u∇u) + f u. (11)

Then, for any η ∈ V , we have

(σ (θ)|∇u|2, η) = −(∇ ∙ (σ (θ)u∇u) + f u, η)

= (σ (θ)u∇u, ∇η) + ( f u, η).
(12)

By Lemma 1, if f ∈ L∞(0, T ; V ′) ∩ L2(0, T ; Lq(�)), then (12) defines an

element of L2(0, T ; V ′). Thus, we can rewrite (3) equivalently as:





Find u ∈ L∞(0, T ; V ), θ ∈ L2(0, T ; V ) ∩ C([0, T ]; L2(�)),

θt ∈ L2(0, T ; V ′) such that

(i) a(θ; u, v) = ( f, v), ∀ v ∈ V

(ii) (θt , η) + b(θ; θ, η) = (σ (θ)|∇u|2, η), ∀ η ∈ V

(13)

Problem (13) is easier to study since its trial and test function spaces are same.

Since

(b ∙ ∇θ, θ) = −(∇∙(b θ), θ) = −(b ∙ ∇θ, θ) − (∇∙b θ, θ)

or

(b ∙ ∇θ, θ) = −
1

2
(∇∙b θ, θ). (14)

So, if

c −
1

2
∇∙b ≥ −(k1 − p)λmin, (15)
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where λmin denotes the smallest eigenvalue of −1 in �, p > 0 and if

b ∈ [L3(�)]d, c ∈ L3/2(�), (16)

we have, for any ξ, θ, η ∈ V

b(ξ ; η, η) ≥ k1‖∇η‖2
L2(�)

+
([

c −
1

2
∇∙b

]
η, η

)
≥ α‖∇η‖2

L2(�)
, (17)

|b(ξ ; θ, η)| ≤ k2‖∇θ‖L2(�)‖∇η‖L2(�) + ‖b‖L3(�)‖∇θ‖L2(�)‖η‖L6(�)

+‖c‖L3/2(�)‖θ‖L6(�)‖η‖L6(�)

≤ β‖∇θ‖L2(�)‖∇η‖L2(�)

(18)

where α = min(k1, p), β = β(k2, b, c) is a constant.

Then we can prove the following:

Theorem 1. (Existence) If f ∈ L∞(0, T ; V ′) ∩ L2(0, T ; Lq(�)) (q > d/2),

and b, c functions satisfying (15), then there exists a weak solution {u, θ} to

problem (13) such that

‖∇u‖L∞(0,T ;L2(�)) ≤ C‖ f ‖L∞(0,T ;V ′), (19)

‖u‖L2(0,T ;L∞(�)) ≤ C‖ f ‖L2(0,T ;Lq (�)), (20)

‖θ‖2
C(0,T ;L2(�))

+ ‖θ‖2
L2(0,T ;V )

≤ C
(
‖ f ‖2

L∞(0,T ;V ′)
‖ f ‖2

L2(0,T ;Lq (�))
+ ‖θ0‖2

L2(�)

)
.

(21)

Proof. Choose ξ ∈ L2(0, T ; L2(�)), since (7), (8) hold, we denote by

uξ ∈ V the solution of

a(ξ ; uξ , v) = ( f, v), ∀ v ∈ V (22)

in view of the Lax-Milgram Theorem.

According the Theorem 2.1 in [10], there exists a unique θξ ∈ L2(0, T ; V ) ∩

C(0, T ; L2(�)) with θξ t ∈ L2(0, T ; V ′) and θξ 0 = θ0 the solution of

(θξ t , η) + (k(ξ)∇θξ , ∇η) + (b ∙ ∇θξ , η) + (cθξ , η)

= −(σ (ξ)uξ∇uξ , ∇η) + ( f uξ , η), ∀ η ∈ V
(23)
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together with k = k(ξ). Let us consider the map

ξ → θξ = J (ξ). (24)

This map carries L2(0, T ; L2(�)) into itself. Moreover, since (15) holds, by (6)

and (17), if choosing η = θξ in (23) and integrating in t , we have

1

2
‖θξ‖

2
L2(�)

+ α

∫ t

0
‖∇θξ‖

2
L2(�)

dt

≤
1

2
‖θξ‖

2
L2(�)

+
∫ t

0

[
(k(ξ)∇θξ , ∇θξ ) + (b ∙ ∇θξ , θξ ) + (cθξ , θξ )

]
dt

≤
∣
∣
∣

∫ t

0
(σ (ξ)uξ∇uξ , ∇θξ )dt

∣
∣
∣ +

∣
∣
∣

∫ t

0
( f uξ , θξ )dt

∣
∣
∣ +

1

2
‖θ0‖

2
L2(�)

.

(25)

By Hölder, Young’s inequalities, the first two terms of the right-hand side of the

last equation follows,

∣
∣
∣

∫ t

0
(σ (ξ)uξ∇uξ , ∇θξ )dt

∣
∣
∣

≤ σ2

∫ t

0
‖uξ‖L∞(�)‖∇uξ‖L2(�) ∙ ‖∇θξ‖L2(�)dt

≤
α

4
‖θξ‖

2
L2(0,T ;V )

+ C1‖ f ‖2
L∞(0,T ;V ′)‖ f ‖2

L2(0,T ;Lq (�))
,

(26)

∣
∣
∣

∫ t

0
( f uξ , θξ )dt

∣
∣
∣

≤
∫ t

0
‖ f ‖V ′ ∙ ‖uξ‖L∞(�) ∙ ‖θξ‖V dt

≤
α

4
‖θξ‖2

L2(0,T ;V )
+ C2‖ f ‖2

L∞(0,T ;V ′)‖ f ‖2
L2(0,T ;Lq (�))

.

(27)

Hence, (25) follows

‖θξ‖2
L2(�)

+
∫ t

0
‖∇θξ‖

2
L2(�)

dt

≤ C3

[
min

(
1

2
,
α

2

)]−1{
‖ f ‖2

L∞(0,T ;V ′)‖ f ‖2
L2(0,T ;Lq (�))

+ ‖θ0‖
2
L2(�)

}
.

(28)

And again, choosing v ∈ L2(0, T ; V ), ‖v‖L2(0,T ;V ) = 1 in equation (23), one

easily deduce

‖θξ t‖L2(0,T ;V ′) ≤ C
{
‖ f ‖L∞(0,T ;V ′)‖ f ‖L2(0,T ;Lq (�)) + ‖θ0‖L2(�)

}
. (29)
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Therefore, provided we take R large enough, ξ → θξ maps the ball BR of center

0 and radius R in L2(0, T ; L2(�)) into itself. Moreover, since

W =
{
θ ∈ L2(0, T ; V )|θt ∈ L2(0, T ; V ′)

}

is compactly imbedded in L2(0, T ; L2(�)), and this mapping will be carried into

a relatively compact set by (28), (29). We are then going to show that this map

is continuous, it will be done by the Schauder fixed point theorem. We consider

a sequence ξn ∈ L2(0, T ; L2(�)) such that

ξn → ξ in BR (30)

defines uξ n as in (22) and θξ n = J (ξn). We will show that

θξ n = J (ξn) → J (ξ) = θξ in BR. (31)

For that, subtracting the equation satisfied by θξ from the one satisfied by

θξ n with η = θξ n − θξ , we get
(

d

dt
(θξ n − θξ ), θξ n − θξ

)
+

(
k(ξn)∇θξ n − k(ξ)∇θξ , ∇(θξ n − θξ )

)

+
(
b ∙ ∇(θξ n − θξ ), θξ n − θξ

)
+ (c (θξ n − θξ ), θξ n − θξ )

=
(
σ(ξn)|∇uξ n|

2 − σ(ξ)|∇uξ |2, θξ n − θξ

)
.

(32)

By (6), (14), (15) and (17), if integrating in t , we have,

1

2
‖θξ n − θξ‖

2
L2(�)

+ α

∫ t

0
‖∇(θξ n − θξ )‖

2
L2(�)

dt

≤
1

2
‖θξ n − θξ‖

2
L2(�)

+
∫ t

0
(k(ξn)∇(θξ n − θξ ), ∇(θξ n − θξ ))dt

−
1

2

∫ t

0
(∇ ∙ b(θξ n − θξ ), θξ n − θξ )dt

+
∫ t

0
(c (θξ n − θξ ), θξ n − θξ )dt

=
∫ t

0
((k(ξ) − k(ξn))∇θξ , ∇(θξ n − θξ ))dt

+
∫ t

0
((σ (ξn)uξ n∇uξ n − σ(ξ)uξ∇uξ ), ∇(θξ n − θξ ))dt

+
∫ t

0
( f uξ n − f uξ , θξ n − θξ )dt

= I1 + I2 + I3.

(33)
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Set

I4 =
α

6

∫ t

0
‖∇(θξ n − θξ )‖

2
L2(�)

dt,

then by Hölder inequality and Poincaré inequality, we get

|I1| =
∣
∣
∣

∫ t

0
((k(ξ) − k(ξn))∇θξ , ∇(θξ n − θξ ))dt

∣
∣
∣

≤ I4 +
1

α

∫ t

0
‖(k(ξn) − k(ξ))∇θξ‖

2
L2(�)

dt,

|I2| =
∣
∣
∣

∫ t

0
((σ (ξn)uξ n∇uξ n − σ(ξ)uξ∇uξ ), ∇(θξ n − θξ ))dt

∣
∣
∣

≤ I4 +
1

α

∫ t

0
‖σ(ξn)uξ n∇uξ n − σ(ξ)uξ∇uξ‖

2
L2(�)

dt,

|I3| =
∣
∣
∣

∫ t

0
( f uξ n − f uξ , θξ n − θξ )dt

∣
∣
∣

≤
∫ t

0
‖ f ‖V ′ ∙ ‖uξ n − uξ‖L∞(�) ∙ ‖θξ n − θξ‖V dt

≤ I4 +
‖ f ‖2

L∞(0,T ;V ′)

α

∫ t

0
‖uξ n − uξ‖

2
L∞(�)dt.

(34)

Thus, taking into account the Definition of I4, we have

‖(θξ n − θξ )(t)‖2
L2(�)

+
∫ t

0
‖∇(θξ n − θξ )‖

2
L2(�)

dt

≤
1

α

[
min

(
1

2
,
α

2

)]−1 { ∫ T

0
‖(k(ξn) − k(ξ))∇θξ‖

2
L2(�)

dt

+
∫ T

0
‖σ(ξn)uξ n∇uξ n − σ(ξ)uξ∇uξ‖

2
L2(�)

dt
}

+
‖ f ‖2

L∞(0,T ;V ′)

α

[
min

(
1

2
,
α

2

)]−1 { ∫ T

0
‖uξ n − uξ‖

2
L∞(�)dt

}
.

(35)

Since θξ n is in a relatively compact set of BR , it is enough to show that θξ

is the only limit point for θξ n . Let θ ′
ξ be such limit point, i.e.

θ ′
ξ = lim

nm→∞
θξ nm in BR

provided that we have extracted another sequence of nm that still denoted by

nm we can assume

ξnm → ξ a.e. in � × (0, T ). (36)
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Then, since |∇θξ |2 ∈ L1(QT ), and by (6), we know almost everywhere by the

Lebesgue theorem,
∫ T

0
‖(k(ξnm) − k(ξ))∇θξ‖

2
L2(�)

dt =
∫ T

0

∫

�

|k(ξnm) − k(ξ)|2|∇θξ |
2dxdt → 0.

Next, for n = nm the second integral in the right-hand side of (35) reads
∫ T

0
‖σ(ξn)uξ n∇uξ n − σ(ξ)uξ∇uξ‖

2
L2(�)

dt

≤
∫ T

0
‖σ(ξn)uξ n∇uξ n − σ(ξn)uξ n∇uξ‖

2
L2(�)

dt

+
∫ T

0
‖σ(ξn)uξ n∇uξ − σ(ξn)uξ∇uξ‖

2
L2(�)

dt

+
∫ T

0
‖σ(ξn)uξ∇uξ − σ(ξ)uξ∇uξ‖

2
L2(�)

dt

= I + I I + I I I.

(37)

It is clear that

I ≤ C
∫ T

0
‖ f ‖2

Lq (�)‖∇(uξ n − uξ )‖
2
L2(�)

dt,

I I ≤ C
∫ T

0
‖(uξ n − uξ )∇uξ‖

2
L2(�)

dt,

I I I ≤ C
∫ T

0
‖ f ‖2

Lq (�)‖(σ (ξn) − σ(ξ))∇uξ‖
2
L2(�)

dt.

By (36), (6) and Lemma 1, together with the Lebesgue theorem we can obtain

I I I → 0. Next, uξ n satisfies

−∇∙(σ (ξn)∇uξ n) = f ; uξ n = 0 on 0,

hence
(
σ(ξn)∇uξ n, ∇(uξ n − uξ )

)
=

(
σ(ξ)∇uξ , ∇(uξ n − uξ )

)

or

(
σ(ξn)∇(uξ n − uξ ), ∇(uξ n − uξ )

)
=

(
(σ (ξ) − σ(ξn))∇uξ , ∇(uξ n − uξ )

)
,

which implies, for every t ,

‖∇(uξ n − uξ )‖
2
L2(�)

≤ C‖(σ (ξ) − σ(ξn))∇uξ‖
2
L2(�)

. (38)
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Thus,

I ≤ C
∫ T

0
‖ f ‖2

Lq (�)‖(σ (ξn) − σ(ξ))∇uξ‖
2
L2(�)

dt → 0

as above for I I I . By the Poincaré inequality, this implies
∫ T

0
‖uξ n − uξ‖

2
L2(�)

dt → 0,

and up to an extracted subsequence we can assume

uξ n − uξ → 0 a.e. on � × (0, T ); (39)

then the Lebesgue convergence theorem gives I I → 0, which also implies the

third integral in the right-hand side of (35) approaches to zero almost everywhere

in � × (0, T ). Hence θξ n → θξ = θ ′
ξ in L2(0, T ; L2(�)). �

4 Uniqueness of the solution

Definition 1. We denote by Rs for 1 < s < ∞ the class of regular subsets G in

Rd for which the Laplacian operator maps W 1,s
0 (G) onto W −1,s(G).

Remark 1. A bounded C1 domain, for example, is of class Rs for every s ∈

(2, ∞), see Theorem 4.6 in [34].

From now on, we assume that � is of class Rr∗ for some r∗ > 2. For

1 ≤ s ≤ r∗, we define Ms ≥ 1 by

inf
u∈W 1,s

0 \{0}
sup

v∈W 1,s′
0 \{0}

(∇u, ∇v)

‖∇u‖Ls (�)‖∇v‖Ls′ (�)

=
1

Ms
. (40)

It is easy to see that M2 = 1 and Ms′ = Ms .

Lemma 2. ([32]) If r ∈ (2, r∗] is such that

Mr
σ2 − σ1

σ1 + σ2
< 1, (41)

then, for any θ , we have

inf
u∈W 1,r

0 \{0}
sup

v∈W 1,r ′
0 \{0}

a(θ; u, v)

‖∇u‖Lr (�)‖∇v‖Lr ′
(�)

≥ γ (42)

Comp. Appl. Math., Vol. 30, N. 3, 2011



“main” — 2011/11/25 — 12:41 — page 528 — #12

528 NONSTATIONARY NONLINEAR COUPLED SYSTEM

where

γ =
σ1 + σ2

2Mr

(
1 − Mr

σ2 − σ1

σ1 + σ2

)
> 0. (43)

Similarly to [24, 32], we have

Lemma 3. Let f ∈ L∞(0, T ; W −1,r (�)), where r is defined in Lemma 2. Then,

for any given θ , the solution to (13.i) u ∈ L∞(0, T ; W 1,r
0 (�)) and satisfies that

‖∇u‖L∞(0,T ;Lr (�)) ≤
1

γ
‖ f ‖L∞(0,T ;W−1,r (�)) (44)

where γ is defined by (43).

Lemma 4. Under the assumptions of Lemma 3, if b, c are bounded continuous

functions, σ, k ∈ L∞(R), then solution to (13.ii) θ ∈ W r with θ(0) = θ0, where

W r =
{
θ ∈ Lr (0, T ; W 1,r (�)) : θt ∈ Lr (0, T ; W −1,r (�))

}
.

Proof. Since u ∈ L∞(0, T ; W 1,r (�)), it follows that σ(θ)|∇u|2 ∈ L∞(0, T ;

Lr/2(�)) ↪→ L∞(0, T ; W −1,r (�)) ↪→ Lr (0, T ; W −1,r (�)). Following the idea

of Theorem 1 and Remark 5 in [21], and the similar proof in Chapter 4 of [18]

we can complete the proof. �

To study the uniqueness of problem (13), we need to assume that: σ, k are

Lipschitz continuous, i.e. there is a Lipschitz constant L , for any ξ1, ξ2 ∈ R

such that,

|k(ξ1) − k(ξ2)|, |σ(ξ1) − σ(ξ2)| ≤ L|ξ1 − ξ2|. (45)

Let (ui , θi ), i = 1, 2, two weak solutions to problem (13), and set θ̄ = θ1 −

θ2, ū = u1 − u2, noticing (4), we have ∀ v ∈ V ,

a(θ1; ū, v) = a(θ1; u1, v) − a(θ1; u2, v) = a(θ2; u2, v) − a(θ1; u2, v).

Therefore, letting v = ū, by (7) and (45), we have

σ1‖∇ū‖2
L2(�)

≤ L‖∇ū‖L2(�)‖∇u2‖Lr (�)‖θ̄‖L2r/(r−2)(�)

or

‖∇ū‖L2(�) ≤ C‖∇u2‖Lr (�)‖θ̄‖L2r/(r−2)(�). (46)
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On the other hand, subtracting the equation satisfied by θ1 from the one satis-

fied by θ2, we get, for any η ∈ V ,

(θ̄t , η) + b(θ1; θ̄ , η)

=
[
b(θ2; θ2, η) − b(θ1; θ2, η)

]
+ (σ (θ1)|∇u1|2 − σ(θ2)|∇u2|2, η)

=
([

k(θ2) − k(θ1)
]
∇θ2, ∇η

)
+

([
σ(θ1) − σ(θ2)

]
|∇u1|2

+σ(θ2)∇ū ∙ ∇(u1 + u2), η
)
.

Let η = θ̄ , and noticing (17), we have

1

2

d

dt
‖θ̄ (t)‖2

L2(�)
+ α‖∇ θ̄‖2

L2(�)

≤ ((k(θ1) − k(θ2))∇θ2, ∇ θ̄ ) + ((σ (θ1) − σ(θ2))|∇u1|2, θ̄ )

+(σ (θ2)∇ū ∙ ∇(u1 + u2), θ̄ ).

(47)

By Hölder and Young inequalities, we easily can deduce that
∣
∣
∣(k(θ1) − k(θ2))∇θ2, ∇ θ̄ )

∣
∣
∣ ≤ L‖∇θ2‖Lr (�)‖∇ θ̄‖L2(�)‖θ̄‖L2r/(r−2)(�)

≤ ε‖∇ θ̄‖2
L2(�)

+ Cε‖∇θ2‖2
Lr (�)‖θ̄‖2

L2r/(r−2)(�)
,

∣
∣
∣((σ (θ1) − σ(θ2))|∇u1|2, θ̄ )

∣
∣
∣ ≤ L‖∇u1‖2

Lr (�)‖θ̄‖2
L2r/(r−2)(�)

,

∣
∣
∣(σ (θ2)∇ū ∙ ∇(u1 + u2), θ̄ )

∣
∣
∣ ≤ σ2‖∇ū‖L2(�)‖∇(u1 + u2)‖Lr (�)‖θ̄‖L2r/(r−2)(�).

Combining the above estimates and (46), choosing ε = α
4 , (47) follows

1

2

d

dt
‖θ̄‖2

L2(�)
+

3α

4
‖∇ θ̄‖2

L2(�)

≤ C
(
‖∇θ2‖2

Lr (�) + ‖∇u1‖2
Lr (�) + ‖∇u2‖2

Lr (�)

)
‖θ̄‖2

L2r/(r−2)(�)
.

(48)

By the Galiardo-Nirenberg interpolation inequality, (48) becomes

1

2

d

dt
‖θ̄‖2

L2(�)
+

3α

4
‖∇ θ̄‖2

L2(�)

≤ C
(
‖∇θ2‖2

Lr (�) + ‖∇u1‖2
Lr (�) + ‖∇u2‖2

Lr (�)

)
‖θ̄‖

2(1− d
r )

L2(�)
‖∇ θ̄‖

2d
r

L2(�)

≤ ε‖∇ θ̄‖2
L2(�)

+ Cε

(
‖∇θ2‖

2r/(r−d)

Lr (�) + ‖∇u1‖
2r/(r−d)

Lr (�) + ‖∇u2‖
2r/(r−d)

Lr (�)

)
‖θ̄‖2

L2(�)
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where we apply Young’s inequality ab ≤ εar/d + Cεbr/(r−d). Again choosing

ε = α
4 , and by the estimates in Lemma 3, 4, and by Sobolev inequality that

Lr (0, T ) ⊂ L2r/(r−d)(0, T ), Gronwall lemma implies that

‖θ̄ (t)‖2
L2(�)

+
∫ t

0
‖∇ θ̄ (τ )‖2

L2(�)
dτ ≤ C‖θ̄ (0)‖2

L2(�)
.

Thus, by (46), uniqueness of the solution follows. Therefore, with the above

result, we can state:

Theorem 2. (Uniqueness) Under the conditions of Lemmas 3 and 4 with Lips-

chitz assumption on k, σ as (45), there exists at most one weak solution to

problem (2).

Remark 2. Here the uniqueness result is obtained without additional regularity

assumptions on the solution as those required in [10].

5 Regularity of the solution

In this section we study the regularity of the solution to the problem (2) only

on the dimension of space d ≤ 2( in [33] we considered a simplified case of

k(θ) ≡ 1). For our regularity estimates, we need to assume that

σ(s), k(s) ∈ C2(R), |σ ′(s)| + |σ ′′(s)| + |k ′(s)| + |k ′′(s)| ≤ L ′ (49)

for all s ∈ R, where L ′ is some positive constant.

Then we have:

Theorem 3. (Regularity) Let T > 0 and assume that θ0 ∈ H 2(�) ∩ H 1
0 (�),

b, c are bounded continuous functions. f ∈ C2(0, T ; Lr (�)) where r is defined

in Lemma 2. Then problem (2) has a unique solution u ∈ L∞(0, T ; H 2(�)),

θ ∈ C1(0, T ; L2(�)) ∩ C(0, T ; H 2(�)). Moreover, there is a constant C ,

depending on T, θ0, f,� and on σ, k through the constants σi , ki in (6), such

that for every t ∈ [0, T ], we have

‖u(t)‖H2(�) + ‖u(t)‖W 1,∞(�) + ‖ut(t)‖H1(�) + ‖θ(t)‖H2(�)

+ ‖θt(t)‖L2(�) + t‖θt(t)‖H1(�) + t‖θt t(t)‖L2(�) ≤ C
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Proof. We consider the initial value problem ( here V = H 2(�) ∩ H 1
0 (�))






θ(t) ∈ V,

(θt , η) + (k(θ)∇θ, ∇η) + (b ∙ ∇θ, η) + (cθ, η)

= (σ (θ)|∇u|2, η), ∀ η ∈ V, t > 0

(θ(0), η) = (θ0, η), ∀ η ∈ V

(50)

where u(t) is determined by the linear elliptic problem

u(t) ∈ H 1
0 , (σ (θ)∇u, ∇v) = ( f, v) ∀ v ∈ H 1

0 , t > 0 (51)

we are now to analyze the regularity of the solution.

Step 1. We first show some estimates of u. By (10), we know

‖u‖L∞(�) ≤ C‖ f ‖Lq (�) (52)

for some q > d/2. Next, by Lemma 3, there existes a 2 < r < r∗ such that

‖∇u(t)‖Lr (�) ≤ C‖ f ‖W−1,r (�). This implies that for every t ,

‖u(t)‖W 1,r (�) ≤ C‖ f ‖Lr (�) ≤ C (53)

We note that we should consider mostly the derivatives of σ(θ) to obtain fur-

ther estimates of u. First, equation (51) implies that −σ(θ)1u−∇σ(θ)∙∇u = f ,

so that by Hölder inequality,

‖1u‖Lr (�) =
∥
∥
∥

f + ∇σ(θ) ∙ ∇u

σ(θ)

∥
∥
∥

Lr (�)
≤ C‖ f ‖Lr (�)+C‖∇θ‖Lr1 (�)‖∇u‖Lr2 (�)

for any r1, r2 satisfying
1

r1
+

1

r2
=

1

r
. We thus obtain

‖u‖W 2,r (�) ≤ C‖1u‖Lr (�) ≤ C(‖ f ‖Lr (�) + ‖∇θ‖Lr1 (�)‖∇u‖Lr2 (�)).

Hence, by Gagliardo-Nirenberg interpolation inequality and estimate (53), we

will get

‖u‖W 2,r (�) ≤ C
(
‖ f ‖Lr (�) + ‖θ‖H2(�)‖u‖δ

W 1,r (�)
‖u‖1−δ

W 2,r (�)

)

≤ C
(
‖ f ‖Lr (�) + ‖θ‖H2(�)‖u‖1−δ

W 2,r (�)

)

≤
(
‖ f ‖Lr (�) + ‖θ‖1/δ

H2(�)

)
+ 1

2‖u‖W 2,r (�)
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where δ = 1 − d/r + d/r2 = 1 − d/r1. In the last step we also used Young’s

inequality

ab ≤ ε1−1/δa1/δ + εb1/(1−δ), ε > 0, 0 < δ < 1, a, b > 0

For the above estimates of ‖∇θ‖Lr1 (�) to hold, it is required that r1 < ∞, which

in its turn is equivalent to δ < 1. Thus, we have proved the preliminary estimate

‖u(t)‖Hr (�) ≤ C
(

1 + ‖θ(t)‖1/δ

H2(�)

)
, ∀ δ ∈ [1 − d/p, 1) (54)

where C is independent of δ. Next, arguing as [16] treats, we get

‖u(t)‖W 1,∞(�) + ‖u(t)‖2
W 1,4(�)

≤ C
(

1 + ‖θ(t)‖ρ

H2(�)

)
(55)

where ρ < 1 if d ≤ 2.

Step 2. We now estimates ‖θ‖H2(�) and ‖θt‖L2(�). First, without lost of gener-
ality, we assume that ‖θ‖W 1,4(�) ≤ C (see Lemma 4). We note that it suffices to
estimate ‖θt‖L2(�). In fact, equation (50) implies that θt − k(θ)1θ + b ∙ ∇θ +
cθ = P(σ (θ)|∇u|2 + k ′(θ)|∇θ |2), where P denotes the orthogonal projection
onto V . Hence,

‖θ‖H2(�) ≤ C‖1θ‖L2(�) ≤ C
(
‖θt‖L2(�) + ‖b ∙ ∇θ‖L2(�) + ‖cθ‖L2(�)

+ ‖σ(θ)|∇u|2‖L2(�) + ‖k ′(θ)|∇θ |2‖L2(�)

)

≤ C
(
‖θt‖L2(�) + ‖u‖2

W 1,4(�)
+ ‖θ‖2

W 1,4(�)
+ ‖∇θ‖L2(�) + ‖θ‖L2(�)

)
.

By the interpolation inequality, we know the two terms in the last inequality can

be estimaed by ‖θ‖H2(�), and in view of the estimate (55), so we can get

‖θ(t)‖H2(�) ≤ C
(
1 + ‖θt(t)‖L2(�)

)
. (56)

For the further estimates of θt , we differentiate equations (50) and (51) with

respect to t . Beginning with (51), we have

(σ (θ)∇ut , ∇v) = −(σ (θ)t∇u, ∇v) + ( ft , v), ∀ v ∈ H 1
0 (57)

Because σ(θ) is continuous in C(R), and in view of (55), we have

‖ut‖H1(�) ≤ C
(
‖σ ′(θ)θt∇u‖L2(�) + ‖ ft‖L2(�)

)

≤ C
(
1 + ‖θt‖L2(�)‖u‖W 1,∞(�)

)

≤ C
(

1 + ‖θt‖2
L2(�)

)
.

(58)
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Next, by (12), if differentiating equation (50), we have

(θt t , η) + ((k(θ)∇θ)t , ∇η) + (b ∙ ∇θt , η) + (c θt , η)

= −((σ (θ)u∇u)t , ∇η) + (( f u)t , η)
(59)

for each η ∈ V , where (k(θ)∇θ)t = k ′(θ)θt∇θ + k(θ)∇θt . Similarly, if

condition (15) is satisfied, with η = θt in above equation, we would get

1

2

d

dt
‖θt‖

2
L2(�)

+ α‖∇θt‖
2
L2(�)

≤
1

2

d

dt
‖θt‖

2
L2(�)

+ (k(θ)∇θt , ∇θt) −
1

2
(∇∙bθt , θt) + (cθt , θt)

=
∣
∣((σ (θ)u∇u)t , ∇θt

)∣∣ +
∣
∣(( f u)t , θt

)∣∣ +
∣
∣(k ′(θ)θt∇θ, ∇θt

)∣∣

≤ C
(
‖(σ (θ)u∇u)t‖2

L2(�)
+ ‖( f u)t‖2

L2(�)

)

+L ′‖θt‖2
L4(�)

‖∇θ‖2
L4(�)

+ ε‖∇θt‖2
L2(�)

(60)

where

‖(σ (θ)u∇u)t‖L2(�)

≤ ‖σ ′(θ)θt u∇u‖L2(�) + ‖σ(θ)ut∇u‖L2(�) + ‖σ(θ)u∇ut‖L2(�)

≤ C
(
‖θt‖L2(�)‖u‖L∞(�)‖u‖W 1,∞(�) + ‖ut‖Lr̃ (�)‖u‖W 1,r (�)

+‖u‖L∞(�)‖ut‖H1(�)

)

1/r + 1/r̃ = 1/2. By Sobolev’s inequality and known bounds for u and ut in

(52), (53), (55), (58), we get ‖(σ (θ)u∇u)t‖L2(�) ≤ C
(
1 + ‖θt‖2

L2(�)

)
, thus (60)

follows
d

dt
‖θt‖

2
L2(�)

+ ‖∇θt‖
2
L2(�)

≤ C
(

1 + ‖θt‖
4
L2(�)

)
(61)

Since θ(0) = P(θ0), thus

‖θ(0)‖H2(�) ≤ C‖1θ(0)‖L2(�) ≤ C‖θ0‖H2(�) ≤ C,

then by (55),

‖θt(0)‖L2(�) ≤ ‖k(θ(0))1θ(0)‖L2(�) + ‖b ∙ ∇θ(0)‖L2(�) + ‖c θ(0)‖L2(�)

+‖k ′(θ(0))|∇θ(0)|2‖L2(�) + ‖P(σ (θ(0))|∇u(0)|2)‖L2(�)

≤ C‖1θ(0)‖L2(�) + C‖u(0)‖2
W 1,4(�)

+ C‖θ(0)‖2
W 1,4(�)

≤ C
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Therefore, integrating (61) in t , we get

‖θt(t)‖
2
L2(�)

+
∫ t

0
‖∇θt(τ )‖2

L2(�)
dτ ≤ C + C

∫ t

0
‖θt‖

4
L2(�)

dτ

By Gronwall’s lemma, we obtain

‖θt(t)‖
2
L2(�)

+
∫ t

0
‖∇θt(τ )‖2

L2(�)
dτ ≤ exp

(∫ t

0
‖θt(τ )‖2

L2(�)
dτ

)
(62)

We are now to establish the estimates of the right hand side of the above

inequality. Taking η = θt in (50),

‖θt‖2
L2(�)

+
1

2

d

dt
(k(θ)∇θ, ∇θ) + (b ∙ ∇θ, θt) + (cθ, θt)

= (σ (θ)|∇u|2, θt) +
1

2
(k ′(θ)|∇θ |2, θt)

≤ C‖u‖2
W 1,4(�)

‖θt‖L2(�) +
L ′

2
‖∇θ‖2

L4(�)
‖θt‖L2(�)

(63)

In view of (56) and Sobolev inbedding inequality, if integrating in t , we arrive at
∫ t

0
‖θt‖

2
L2(�)

dτ + ‖∇θ‖2
L2(�)

≤ C‖∇ P(θ0)‖
2
L2(�)

+ Ct ≤ C (64)

since θ(0) = P(θ0), where P is bounded with respect to the norm ‖∇ ∙ ‖L2(�),

which implies (62) is bounded by C .

Substituting this result into (54),(55), (56), (58), we may conclude that

‖u(t)‖Hr (�) + ‖u(t)‖W 1,∞(�) + ‖ut(t)‖H1(�)

+ ‖θ(t)‖H2(�) + ‖θt(t)‖L2(�) ≤ C
(65)

Step 3. We next to estimate t‖θt(t)‖H2(�) and t‖θt t(t)‖L2(�). We note that

θt t − ∇∙(k(θ)∇θ)t + b ∙ ∇θt + c θt = P(σ (θ)|∇u|2)t , where

∇∙(k(θ)∇θ)t = k ′′(θ)θt |∇θ |2 + 2k ′(θ)∇θt∇θ + k ′(θ)θt1θ + k(θ)1θt

and
‖(σ (θ)|∇u|2)t‖L2(�)

≤ ‖σ ′(θ)θt |∇u|2‖L2(�) + 2‖σ(θ)∇u∇ut‖L2(�)

≤ C
(
‖θt‖L2(�)‖u‖2

W 1,∞(�)
+ ‖u‖W 1,∞(�)‖ut‖W 1,2(�)

)

≤ C

(66)
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so it is easy to get the following estimates by (65),

‖θt(t)‖H2(�) ≤ C
(
1 + ‖θt t(t)‖L2(�)

)
(67)

In order to obtain estimate of t‖θt t(t)‖L2(�), we differentiate (50) with respect

to t and let η = θt t , similar disposal like before, and in view of (66) and (67),

we get

‖θt t‖
2
L2(�)

+
d

dt
‖∇θt‖

2
L2(�)

≤ C

Hence, if multiplying by t and integrating in t , it follows
∫ t

0
τ‖θt t‖

2
L2(�)

dτ + t‖∇θt‖
2
L2(�)

≤ Ct +
∫ t

0
‖∇θt‖

2
L2(�)

dτ ≤ C (68)

by virtue of (62) and (64). We then differentiate (59) with respect to t and let

η = θt t to have

1

2

d

dt
‖θt t‖

2
2 + ((k(θ)∇θ)t t , θt t) + (b ∙ ∇θt t , θt t) + (cθt t , θt t)

= ((σ (θ)u∇u)t t , θt t) + (( f u)t t , θt t)

where

(k(θ)∇θ)t t = k ′′(θ)θ2
t ∇θ + k ′(θ)θt t∇θ + 2k ′(θ)θt∇θt + k(θ)∇θt t

( f u)t t = ftt u + 2 ft ut + f utt

we could use similar method as above to treat them separately, then, if condition

(15) is satisfied, we obtain

d

dt
‖θt t‖

2
L2(�)

+ α‖∇θt t‖
2
L2(�)

≤ C
(
‖(σ (θ)u∇u)t t‖

2
L2(�)

+ ‖utt‖
2
L2(�)

)
(69)

Differentiating (57) with respect to t , we have

(σ (θ)∇utt , ∇v) + (σ (θ)t t∇u + 2σ(θ)t∇ut , ∇v) = ( ftt , v) ∀ v ∈ H 1
0

with v = utt , it follows

‖utt‖H1(�) ≤ C
(
(‖θt t‖L2(�) + ‖θt‖L2(�)‖θt‖L∞(�))‖u‖W 1,∞(�)

+‖θt‖L∞(�)‖ut‖W 1,2(�) + ‖ ftt‖2
L2(�)

)

≤ C
(
1 + ‖θt t‖L2(�)

)

(70)
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For the term

(σ (θ)u∇u)t t = σ(θ)t t u∇u + σ(θ)utt∇u

+σ(θ)u∇utt + 2σ(θ)t ut∇u + 2σ(θ)t u∇ut + 2σ(θ)ut∇ut

we estimate similarly to [16] to get ‖(σ (θ)u∇u)t t‖L2(�) ≤ C(1 + ‖θt t‖L2(�)),

together with (70) show (69) could be estimated by

d

dt
‖θt t‖

2
L2(�)

+ ‖∇θt t‖
2
L2(�)

≤ C
(

1 + ‖θt t‖
2
L2(�)

)

If we multiply by t2 and integrate, and in view of (68), it follows

t2‖θt t(t)‖
2
L2(�)

+
∫ t

0
τ 2‖∇θt t‖

2
L2(�)

dτ ≤ C
(

1 +
∫ t

0
τ‖θt t‖

2
L2(�)

dτ

)
≤ C

which completes the proof. �

6 Blow-up result

In this section we are interested to investigate under what condition the solution

exists globally or finite time blow-up? We consider the problem as follows:






(i) −∇∙(σ (θ)∇u) = f in � × (0, T )

(ii) θt − ∇∙(k(θ)∇θ) + b ∙ ∇θ + c θ = σ(θ)|∇u|2 in � × (0, T )

(iii) u = u0, x ∈ 0, t > 0

(iv) ∂θ/∂ν = 0, x ∈ 0, t > 0

(v) θ(x, 0) = θ0, x ∈ �

(71)

where ∂/∂ν is the outward normal derivative of ∂�.

We note that our difficulty to treat problem (71) compared to general

considered problem lies in the convection term b ∙ ∇θ and reaction term cθ .

From the physical point of view in [8], any solution θ to (71) can be written

as θ(x, t) = θ̃ (x − t b, t), by a variable transformation, we can obtain the
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equations that θ̃ and corresponding solution ũ satisfy,





(i) −∇∙(σ (θ̃)∇ũ) = f in �t × {t > 0}

(ii) θ̃t − ∇∙(k(θ̃)∇ θ̃ ) + c θ̃ = σ(θ̃)|∇ũ|2 in �t × {t > 0}

(iii) ũ = ũ0 = u0(x − t b, t), x ∈ 0, t > 0

(iv) ∂θ̃/∂ν = 0, x ∈ 0, t > 0

(v) θ̃(x, 0) = θ0, x ∈ �t

(72)

where we still write x, t if not causing any confusion and �t = �− t b. We note

that this transformation does not change the shape of the boundary 0 of � and

initial value θ0. In this case we see that if θ̃ blow up so does θ and vise versa,

thus the convection term has no effect on whether solution is blow-up in finite

time. So we turn our attention to problem (72). We assume that

θ0 ≥ 0, x ∈ � (73)

0 < k(s), σ (s) < ∞, ∀ s ≥ 0; σ(s) differentiable, σ ′(s) ≥ 0, ∀ s ≥ 0 (74)

and ∫ ∞

0

ds

σ(s)
< ∞

From [10], if dγ (x) is the superficial measure on 0, then

λ →
∫

0

|u − λ|2dγ (x)

achieves its minimum value for

λ = ū =
1

|0|

∫

0

udγ (x)

thus, if we set u�t =
1

|�t |

∫

�t

udx , we have for some constant C ,

∫

0

|u − ū|dγ (x) ≤
∫

0

|u − u�t |dγ (x)

≤ C
∫

�t

|∇u|2dx ∀ u ∈ H 1(�t)
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so we get
∫

0

|u − ū|2dγ (x) ≤ C
∫

�t

|∇u|2dx ∀ u ∈ H 1(�t) (75)

where C denotes the best constant. Then we have the following result:

Theorem 4. Assume that c is nonpositive function and
∫

�

∫ ∞

θ0

ds

σ(s)
dx <

1

C

∫ ∞

0

∫

0

|ũ0 − ˉ̃u0|
2dγ (x)dt (76)

where

ũ0 = u0(x − t b, t), ˉ̃u0 =
1

|0|

∫

0

ũ0dγ (x)

then problem (71) cannot have a smooth global solution.

Proof. The proof is similar to that of Theorem 5.1 in [10]. �

Remark 3. In one dimension case, when k ≡ 1 and b is a function of x with
1
2∇ ∙b + c ≥ 0, we could show that θ(x, t) blow up globally. In other words,

if t∗ denotes the blowup time when

θ(x, t) → ∞, a.e. x ∈ � when t → t∗

Indeed, consider � = (0, 1), then integrate the equation

(σ (θ)u′)′ = f

it follows

u′ =

∫ 1

0
f (x, t)dx + C(t)

σ (θ)

thus the equation satisfied by θ reads

θt − θxx + b ∙ θx + cθ =

(∫ 1

0
f (x, t)dx + C(t)

)2

σ(θ)
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Differentiating in x and let η = θx , we see that

ηt − ηxx + b ∙ ηx + (∇∙b + c)η = −
σ ′(θ)

(∫ 1

0
f (x, t)dx + C(t)

)2

σ(θ)2
η

with initial boundary

η(x, t) = 0, x = 0, 1 η(x, 0) = (θ0)x

Assuming that (θ0)x ∈ L∞(0, 1), and noting that

σ ′(θ)

(∫ 1

0
f (x, t)dx + C(t)

)2

σ(θ)2
≥ 0,

1

2
∇∙b + c ≥ 0

then it follows from the parabolic maximum principle that

|θx |∞ ≤ |(θ0)x |∞

i.e.

θ(x, t) =
∫ x

x0

θx(x, t)dx + θ(x0, t)

shows that if θ(x0, t) blows up, then θ blows up for any x .

Remark 4. We note that the result of Theorem 4 is independent of f , then,

without loss of generality, we specialize the problem (72) in one dimension

with f = 0 to show the sharpness of (76). Still consider � = (0, 1), θ̃ (0) =

θ0 = Const and look for a solution θ̃ = θ̃ (t) depending on t only. Set

ũ0(−t b, t) = a0(t), ũ0(1 − t b, t) = a1(t)

then the equation satisfied by u leads to

ũ(x, t) = a0(t) + x
(
a1(t) − a0(t)

)

thus, the equation satisfied by θ becomes

θ̃t − cθ̃ = σ(θ̃)
(
a1(t) − a0(t)

)2
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i.e. ∫ t

0

θ̃t + cθ̃

σ (θ̃)
dt =

∫ t

0

(
a1(t) − a0(t)

)2
dt

or ∫ θ̃

θ0

ds

σ(s)
+

∫ t

0

cθ̃

σ (θ̃)
ds =

∫ t

0

(
a1(s) − a0(s)

)2
ds

In this case, the failure of (76) reads
∫ ∞

θ0

ds

σ(s)
≥

∫ ∞

0

(
a1(s) − a0(s)

)2
ds

which implies that (72) has a global solution which is bounded when
∫ ∞

θ0

ds

σ(s)
≥

∫ ∞

0

(
a1(s) − a0(s)

)2
ds

and is unbounded otherwise.
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