Tôhoku Math. Journ. 27 (1975) 83-90.

ON A PARAMETRIZATION OF MINIMAL IMMERSIONS OF R^2 INTO S^5

KATSUEI KENMOTSU

(Received January 31, 1974)

1. Introduction. In [3], the author has studied minimal immersions of a surface into a space form and found some fundamental formulas for the Laplacian of scalar invariants of such immersions.

In [2], T. Itoh has constructed a 1-parameter family of minimal immersions of a Euclidean plane into S^5 .

The purpose of this paper is to give a complete description for minimal immersions of the Euclidean plane and a flat torus in S^5 . Let R^2 be the oriented Euclidean plane with the standard metric and S^5 the unit sphere in R^6 . By $[\Psi]$ we denote an equivalence class of a minimal immersion $\Psi: R^2 \to S^5$ by isometries of S^5 . We will prove the following theorems.

THEOREM 1. There exists a 1-1 correspondence between the set of $[\Psi]$'s and a 2-dimensional sphere.

The correspondence is given by (9) of §3. Let O be the origin of R^6 and \overrightarrow{Ox} the ray from O passing through a point $x \in R^6$. Then it is known that the cone

$$O\Psi(R^2) = ext{the union of } \overrightarrow{Ox} \quad ext{with} \quad x \in \Psi(R^2)$$

is also minimal in the Euclidean space R^{6} . By Hsiang [1], we shall call Ψ real algebraic if $O\Psi(R^{2})$ is a real algebraic cone.

THEOREM 2. Ψ induces the minimal immersion of the flat torus into S⁵ if and only if Ψ is real algebraic. Moreover, there are infinite numbers of such immersions.

2. Preliminaries. Terminologies and notations used in this paper are the same as in [3]. Let $x: M \to S^5$ be an isometric minimal immersion of some Riemann surface with a Riemannian metric into S^5 . Let e_A , $1 \leq A, B, \dots \leq 5$, be orthonormal frame fields in a neighborhood of Msuch that e_k , $1 \leq k$, l, $\dots \leq 2$, are tangent to M. Let w_A , w_{AB} be the basic forms and the connection forms of S^5 . Let $h_{\alpha kl}$, $3 \leq \alpha$, β , $\dots \leq 5$, be the 2nd fundamental tensors for e_{α} . By $K_{(2)}$, $N_{(2)}$ and $f_{(2)}$, we denote the following non-negative scalar invariants on M: K. KENMOTSU

(1)

$$K_{(2)} = \sum_{\alpha} (h_{\alpha 11}^{2} + h_{\alpha 12}^{2}),$$

$$N_{(2)} = \left(\sum_{\alpha} h_{\alpha 11}^{2}\right) \left(\sum_{\alpha} h_{\alpha 12}^{2}\right) - \left(\sum_{\alpha} h_{\alpha 11} h_{\alpha 12}\right)^{2},$$

$$f_{(2)} = K_{(2)}^{2} - 4N_{(2)}.$$

We can define the 3rd fundamental tensor h_{sijk} . We set

(2)
$$K_{\scriptscriptstyle (3)} = h_{\scriptscriptstyle 5111}^2 + h_{\scriptscriptstyle 5112}^2$$

Then $K_{(3)}$ is also a scalar invariant. In [3], we have proved the following formulas (3), (4) and (5):

(3)
$$\varDelta f_{\scriptscriptstyle (2)} = 2\{f_{\scriptscriptstyle (2)}K + |A_{\scriptscriptstyle (2)}|^2\}$$
,

$$(4) \qquad \frac{1}{4}\Delta K_{(2)} = -2N_{(2)} + KK_{(2)} + K_{(3)} + \sum_{\alpha=3}^{4} (h_{\alpha 11,1}^2 + h_{\alpha 11,2}^2)$$

where K is the Gaussian curvature and $A_{(2)} = 2 \sum_{\alpha} (h_{\alpha 11} + ih_{\alpha 12})(h_{\alpha 11,1} + ih_{\alpha 11,2})$. In a neighborhood of a point with $N_{(2)} \neq 0$, we get

(5)
$$\frac{1}{2}\Delta K_{(3)} = 3KK_{(3)} + 2(h_{5111,1}^2 + h_{5111,2}^2)$$
.

Now we shall construct another scalar invariant of the isometric minimal immersion x. Since M has the fixed orientation, the vector $e_1 + ie_2$ is defined up to the transformation $e_1 + ie_2 \rightarrow e_1^* + ie_2^* = e^{i\theta}(e_1 + ie_2)$, where θ is real. Under such a change, we have $h_{\alpha 11} + ih_{\alpha 12} \rightarrow h_{\alpha 11}^* + ih_{\alpha 12}^* = e^{2i\theta}(h_{\alpha 11} + ih_{\alpha 12})$ and $h_{5111} + ih_{5112} \rightarrow h_{5111}^* + ih_{5112}^* = e^{3i\theta}(h_{5111} + ih_{5112})$. Thus for the fixed vector field e_3 , we can define the following scalar invariant:

(6)
$$L = (h_{5111} + ih_{5112})^2 (h_{311} - ih_{312})^3$$

We remark that the normal vector e_5 is defined up to the sign, the 3rd osculating space being the 1-dimensional space. Therefore the function L is independent upon e_5 and depends on the e_3 and the orientation of M.

3. Construction of minimal immersions. Let Σ be a portion of an ellipsoid such that

(7)
$$\Sigma = \left\{ (t, u, v) \in \mathbb{R}^3 : 0 \leq t \leq \frac{1}{2}, 0 \leq u, 0 \leq v, u^2 + v^2 = 2t(1-t) \right\}.$$

In this section we shall give various minimal immersions of \mathbb{R}^2 into S^5 . Let P and Q be the skew-symmetric matrices such that, for $(t, u, v) \in \Sigma$,

84

MINIMAL IMMERSIONS OF R^2 INTO S^5

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & \sqrt{t} & 0 & 0 \\ 0 & 0 & 0 & 0 & \sqrt{1-t} & 0 \\ 0 & -\sqrt{t} & 0 & 0 & 0 & \frac{u}{\sqrt{t}} \\ 0 & 0 & -\sqrt{1-t} & 0 & 0 & \frac{v}{\sqrt{1-t}} \\ 0 & 0 & 0 & -\frac{u}{\sqrt{t}} & \frac{-v}{\sqrt{1-t}} & 0 \end{pmatrix}$$
$$Q = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{1-t} & 0 & 0 \\ 0 & 0 & 0 & -\sqrt{t} & 0 & 0 \\ 0 & 0 & \sqrt{t} & 0 & 0 & \frac{v}{\sqrt{t}} \\ 0 & -\sqrt{1-t} & 0 & 0 & 0 & \frac{-u}{\sqrt{1-t}} \\ 0 & 0 & 0 & -\frac{v}{\sqrt{t}} & \frac{u}{\sqrt{1-t}} & 0 \end{pmatrix},$$

where we must read $u/\sqrt{t} = 0$ and $v/\sqrt{t} = 0$ if t = 0. Then we have PQ = QP by virtue of $u^2 + v^2 = 2t(1-t)$. We denote the eigenvalues of P and Q by $\pm \sqrt{-1}\lambda_i$ and $\pm \sqrt{-1}\mu_i$, i = 1, 2, 3, respectively. We remark that λ_i or μ_i may be zero. We can take an orthogonal matrix $T = {}^{t}(v_0, v_1, \dots, v_b)$ such that

(8)
$$T^{-1}PT = \begin{pmatrix} P_1 & 0 & 0 \\ 0 & P_2 & 0 \\ 0 & 0 & P_3 \end{pmatrix}, \quad T^{-1}QT = \begin{pmatrix} Q_1 & 0 & 0 \\ 0 & Q_2 & 0 \\ 0 & 0 & Q_3 \end{pmatrix},$$

where

$$P_i = egin{pmatrix} 0 & \lambda_i \ -\lambda_i & 0 \end{pmatrix}$$
 , $Q_i = egin{pmatrix} 0 & \mu_i \ -\mu_i & 0 \end{pmatrix}$

and we can assume $\lambda_i \geq 0$. Then $\mathfrak{G} = \{T^{-1}(xP + yQ)T: (x, y) \in \mathbb{R}^2\}$ is an abelian Lie subalgebra of $\mathfrak{SO}(6, \mathbb{R})$. We consider $G = \exp \mathfrak{G}$. G is the Lie subgroup of SO(6) and isomorphic to $T^d \times \mathbb{R}^{2-d}$, $0 \leq d \leq 2$, where T^d is the d-dimensional torus. By an orbit of an action of G, we define a smooth map $\Psi_{(t,u,v)}$ of \mathbb{R}^2 in \mathbb{R}^6 as follows:

,

K. KENMOTSU

(9)
$$\Psi_{(t,u,v)}(x, y) = \left(\sum_{s=0}^{5} T_{0s}t_{sj}(x, y)\right),$$

where $v_0 = (T_{00}, \dots, T_{05})$ and $(t_{sj}(x, y)) \in G$. It is clear that

$$(t_{sj}(x,\ y))=egin{pmatrix} X_1 & 0 & 0 \ 0 & X_2 & 0 \ 0 & 0 & X_3 \end{pmatrix}$$
 , $X_i=egin{pmatrix} \cos\left(\lambda_i x+\mu_i y
ight) & \sin\left(\lambda_i x+\mu_i y
ight) \ -\sin\left(\lambda_i x+\mu_i y
ight) & \cos\left(\lambda_i x+\mu_i y
ight) \end{pmatrix}$

PROPOSITION 1. $\Psi_{(t,u,v)}$ is an isometric minimal immersion of R^2 in S^5 such that $N_{(2)} = t(1-t)$, $K_{(3)} = u^2 + v^2$ and $L = t^{3/2}(u+iv)^2$ for some normal vector e_3 . Moreover if t > 0, the image is not contained in any lower dimensional linear subspace of R^6 .

PROOF. We set $\Psi_0 = \Psi_{(t,u,v)}$ and $\Psi_A = (\sum_{s=0}^5 T_{As}t_{sj}(x, y))$, where $v_A = (T_{A0}, \dots, T_{A5}), 0 \leq A \leq 5 \cdot \Psi_0(R^2) \subset S^5$ is clear. It is easily verified that (10) ${}^t(d\Psi_0, \dots, d\Psi_5) = (Pdx + Qdy){}^t(\Psi_0, \dots, \Psi_5)$.

Therefore we can get $\partial \Psi_0/\partial x = \Psi_1$ and $\partial \Psi_0/\partial y = \Psi_2$. Hence Ψ_0 is an isometric immersion of R^2 into S^5 . Since we can see $\{\Psi_{\alpha}, 3 \leq \alpha \leq 5\}$ are unit normal vectors on $\Psi_0(R^2)$, (10) is the Frenet-Borůvka formula for Ψ_0 . It follows that we have

(11)
$$(h_{3ij}) = \begin{pmatrix} \sqrt{t} & 0 \\ 0 & -\sqrt{t} \end{pmatrix}$$
, $(h_{4ij}) = \begin{pmatrix} 0 & \sqrt{1-t} \\ \sqrt{1-t} & 0 \end{pmatrix}$, $(h_{5ij}) = 0$.

The formula (11) shows that Ψ_0 is a minimal immersion. If t > 0, since we have $N_{(2)} = t(1-t) > 0$ on R^2 , $\Psi_0(R^2)$ is not contained in any lower dimensional linear subspace of R^6 . From (10), we get

(12)
$$\begin{array}{c} \sqrt{t} \ w_{35} = uw_1 + vw_2 \ ,\\ \sqrt{1-t}w_{45} = vw_1 - uw_2 \ ,\\ w_{12} = w_{34} = 0 \ . \end{array}$$

By (12) we get $K_{(3)} = u^2 + v^2$ and $L = t^{3/2}(u + iv)^2$ for e_3 . This completes a proof of Proposition 1.

PROPOSITION 2. (i) If 0 < t < 1/2 and $uv \neq 0$, then we have $[\Psi_{(t,u,v)}] = [\Psi_{(\tilde{t},\tilde{u},\tilde{v})}]$ if and only if $(t, u, v) = (\tilde{t}, \tilde{u}, \tilde{v});$

(ii) If 0 < t < 1/2, then we have $[\Psi_{(t,0,u_0)}] = [\Psi_{(t,u_0,0)}]$, where $u_0 = \sqrt{2t(1-t)}$.

(iii) If t = 0, then we have the Clifford torus and if t = 1/2 then we have $[\Psi_{(1/2, u, v)}] = [\Psi_{(1/2, \sqrt{1/2}, 0)}]$.

PROOF. Case (i): We suppose $[\Psi_{(t,u,v)}] = [\Psi_{(\tilde{t},\tilde{u},\tilde{v})}]$. Since we have

86

 $f_{(2)} = \tilde{f}_{(2)}$, where $\tilde{f}_{(2)}$ denotes the quantity of $\Psi_{(\tilde{t},\tilde{u},\tilde{v})}$ corresponding to the $f_{(2)}$ of $\Psi_{(t,u,v)}$, we have $t(1-t) = \tilde{t}(1-\tilde{t})$ and $0 \leq t, \tilde{t} \leq 1/2$, hence we get $t = \tilde{t}$. If 0 < t < 1/2, e_3 and e_4 in the 2nd osculating space satisfying (11) are determined up to the sign. In fact let e_4 and \tilde{e}_4 be the frame fields such that (11) and (12) are satisfied. Let $\tilde{e}_1 + i\tilde{e}_2 = e^{-i\theta}(e_1 + ie_2)$. Then we have $\tilde{e}_3 + i\tilde{e}_4 = e^{-2i\theta}(e_3 + ie_4)$ and $\tilde{h}_{311}^2 - \tilde{h}_{412}^2 = \cos 4\theta(h_{311}^2 - h_{412}^2)$, where \tilde{h}_{3ij} and \tilde{h}_{4ij} are the components of the 2nd fundamental tensors for \tilde{e}_4 . Since we have $\tilde{h}_{311}^2 - \tilde{h}_{412}^2 = h_{311}^2 - h_{412}^2 = 2t - 1 < 0$ in this case, we get $\theta = (k/2)\pi$ and k is an integer. It follows that we have $L = \pm \tilde{L}$ and so $(u + iv)^4 = (\tilde{u} + i\tilde{v})^4$. Making use of $u^2 + v^2 = \tilde{u}^2 + \tilde{v}^2 = 2t(1-t)$, $uv \neq 0$ and $u, \tilde{u}, v, \tilde{v} \geq 0$, we have $u = \tilde{u}$ and $v = \tilde{v}$.

Case (ii): Let e_4 be the frame field of $\Psi_{(t,0,u_0)}$ satisfying (11) and (12). We set $f_1 = e_2$, $f_2 = -e_1$, $f_3 = -e_3$, $f_4 = -e_4$ and $f_5 = e_5$. With respect to these new frame fields, we have $\Psi_{(t,u_0,0)}$.

Case (iii): If t = 0, then $\Psi_{(0,0,0)}$ is the Clifford torus. When t = 1/2, we have shown $[\Psi_{(1/2,u,v)}] = [\Psi_{(1/2,\sqrt{1/2},0)}]$ by the Theorem 3 of [3]. Thus we have proved the Proposition 2.

4. Parametrization of minimal immersions. We shall prove the following proposition.

PROPOSITION 3. Let $x: \mathbb{R}^2 \to S^5$ be an isometric minimal immersion. Then there exists a $(t, u, v) \in \Sigma$ such that $x \in [\Psi_{(t, u, v)}]$.

PROOF. Since K = 0, by the Gauss equation, we have $K_{(2)} = 1$. It follows that, by (1) and (3), we get $\Delta(-N_{(2)}) \ge 0$, hence $-N_{(2)}$ is subharmonic on R^2 and non-positive. We claim $-N_{(2)} = \text{constant on } R^2$. This is proved as follows: There exists a point $p_0 \in R^2$ such that $-N_{(2)}(p_0) \ge$ $-N_{(2)}(p)$ for all $p \in R^2$ by virtue of the maximum principle of the subharmonic functions and the boundedness of $-N_{(2)}$. Since Δ is an elliptic operator, by the well-known theorem, $-N_{(2)}$ must be a constant function on R^2 . If $N_{(2)} = 0$, $x(R^2)$ is contained in a 3-dimensional space of constant curvature 1 in S^5 and therefore $x \in [\Psi_{(0,0,0)}]$. In the case of $N_{(2)} > 0$, vectors $\sum_{\alpha} h_{\alpha 11} e_{\alpha}$ and $\sum_{\alpha} h_{\alpha 12} e_{\alpha}$ are linearly independent on R^2 . Let

(13)
$$e_{3}^{*} = \frac{\sum_{\alpha} h_{\alpha 1 1} e_{\alpha}}{\sqrt{\sum_{\alpha} h_{\alpha 1 1}^{2}}}, \qquad e_{4}^{*} = \frac{\sum_{\alpha} h_{\alpha 1 2} e_{\alpha} - (\sum_{\alpha} h_{\alpha 1 2} e_{\alpha}, e_{3}^{*}) e_{3}^{*}}{||\sum_{\alpha} h_{\alpha 1 2} e_{\alpha} - (\sum_{\alpha} h_{\alpha 1 2} e_{\alpha}, e_{3}^{*}) e_{3}^{*}||}$$

and e_{δ}^{*} is the unit normal vector field which span the 3rd osculating space. Then we have

(14)
$$(h_{4ij}^*) = \begin{pmatrix} 0 & h_{4i2}^* \\ h_{4i2}^* & 0 \end{pmatrix}, \quad h_{bij}^* = 0,$$

where we may assume $h_{412}^* \ge 0$. We take e_i^* such that

K. KENMOTSU

(15)
$$(h_{3ij}^*) = \begin{pmatrix} h_{311}^* & 0 \\ 0 & -h_{311}^* \end{pmatrix}$$
,

where if necessary taking $-e_3^*$, we may assume $h_{311}^* \ge 0$. As (14) is valid for any orthonormal system $\{e_i\}$, it follows that we have obtained frame fields $\{e_4^*\}$ such that (14) and (15) are valid at the same time. By the Gauss equation and the constancy of $N_{(2)}$, h_{311}^* and h_{412}^* are also positive constant and $h_{311}^{*2} + h_{412}^{*2} = 1$, hence we can set $h_{311}^* = \sqrt{t}$ and $h_{412}^* = \sqrt{1-t}$. If t > 1/2, we set $e_3 = -e_4^*$, $e_4 = e_3^*$, $e_1 = (1/\sqrt{2})(e_1^* - e_2^*)$ and $e_2 = (1/\sqrt{2})(e_1^* + e_2^*)$. For the new frame fields, we have $h_{311} = \sqrt{1-t}$. By virtue of (14) and (15), we have

(16)
$$\frac{\sqrt{t} w_{35}^{*} = h_{5111}^{*} w_{1}^{*} + h_{5112}^{*} w_{2}^{*}}{\sqrt{1-t} w_{45}^{*} = h_{5112}^{*} w_{1}^{*} - h_{5111}^{*} w_{2}^{*}}, \\ w_{12}^{*} = w_{34}^{*} = 0.$$

From the last formula of (16), we have $Dh_{aij}^* = 0$. It follows from (4) that we have

(17)
$$h_{5111}^{*2} + h_{5112}^{*2} = 2t(1-t)$$
.

By (5), we get $h_{5ijk,l}^* = 0$. From the definition of Dh_{5ijk}^* and $w_{12}^* = 0$, h_{5ijk}^* are all constant. If necessary, taking $-e_5^*$, we may assume $h_{5i11}^* \ge 0$. By the same way as the proof of the case (ii) in the Proposition 2, we may also assume $h_{5i12}^* \ge 0$. Let $u = h_{5i11}^*$ and $v = h_{5i12}^*$. Thus we have $x = \Psi_{(t,u,v)}$ on some open set of R^2 . Since x and $\Psi_{(t,u,v)}$ are real analytic, we have $x = \Psi_{(t,u,v)}$ on the whole plane R^2 .

The proof of Theorem 1 now follows immediately from Propositions 1, 2 and 3. Thus (9) with (7) gives a parametrization of minimal immersions of R^2 into S^5 . At the same time we have also

THEOREM 3. Any isometric minimal immersion of \mathbb{R}^2 into \mathbb{S}^5 is an orbit of the action of an abelian Lie subgroup in SO(6).

5. Proof of Theorem 2. Let $\Psi = \Psi_{(t,u,v)}$. By definition Ψ can be represented by the following equations, for $(Y_1, Y_2, Y_3) \in C^3$,

(18)
$$\begin{cases} |Y_i|^2 = 1, \quad i = 1, 2, 3, \\ Y_1^{(\lambda_3 \mu_2 - \lambda_3 \mu_2)} Y_2^{(\lambda_1 \mu_3 - \lambda_1 \mu_3)} Y_3^{(\lambda_2 \mu_1 - \lambda_2 \mu_1)} = 1 \end{cases}$$

where Ψ_{0j} , $0 \leq j \leq 5$, are the *j*-th component of Ψ_0 in R^6 and

$$Y_{\scriptscriptstyle 1} = rac{\varPsi_{\scriptscriptstyle 00}}{T_{\scriptscriptstyle 00} + i T_{\scriptscriptstyle 01}}$$
, $Y_{\scriptscriptstyle 2} = rac{\varPsi_{\scriptscriptstyle 02} + i \varPsi_{\scriptscriptstyle 03}}{T_{\scriptscriptstyle 02} + i T_{\scriptscriptstyle 03}}$, $Y_{\scriptscriptstyle 3} = rac{\varPsi_{\scriptscriptstyle 04} + i \varPsi_{\scriptscriptstyle 05}}{T_{\scriptscriptstyle 04} + i T_{\scriptscriptstyle 05}}$

88

In fact, since we have $Y_i = \exp \sqrt{-1}(\lambda_i x + \mu_i y)$, (18) is directly verified. It follows from (18) that Ψ is real algebraic if and only if there exist integers m_i such that

(19)
$$\begin{vmatrix} \lambda_1 & \mu_1 \\ \lambda_2 & \mu_2 \end{vmatrix} : \begin{vmatrix} \lambda_1 & \mu_1 \\ \lambda_3 & \mu_3 \end{vmatrix} : \begin{vmatrix} \lambda_2 & \mu_2 \\ \lambda_3 & \mu_3 \end{vmatrix} = m_1 : m_2 : m_3 .$$

If Ψ induces a minimal immersion of the flat torus into S^5 , there is a set of points (a, c), (b, d) such that

(20)
$$\lambda_i a + \mu_i c = p_i ,$$

 $\lambda_i b + \mu_i d = q_i , \qquad i = 1, 2, 3 ,$

where $ad - bc \neq 0$ and $\{p_i, q_i\}$ are integers. By the direct calculation, we get (19) with $m_1 = (p_1q_2 - q_1p_2)$, $m_2 = (p_1q_3 - q_1p_3)$ and $m_3 = (p_2q_3 - q_2p_3)$.

We shall study the converse problem. We may assume $\lambda_j \mu_i - \lambda_i \mu_j \neq 0$ for some i < j. For the simplicity, we set i = 1, j = 2 and $\lambda_i x + \mu_i y = \theta$ and $\lambda_2 x + \mu_2 y = \tau$. Then if we have (19), we get $\lambda_3 x + \mu_3 y = -(m_3/m_1)\theta + (m_2/m_1)\tau$ and hence Ψ induces a minimal immersion of the flat torus into S^5 . The proof of the former part of the Theorem 2 completes and the latter half follows from the following section. q.e.d.

THE ANOTHER PROOF OF THEOREM 2. G is the closed Lie subgroup of SO(6) if and only if the condition (19) is satisfied. Therefore by the Hsiang's Theorem [1] and the Theorem 3, Theorem 2 follows.

6. The case of u = v or v = 0. At the last section, we shall give explicitly constructed 1-parameter families of minimal immersions.

(i) In the case of u = v, we can get the following 1-parameter family $\Psi_{(t)}^+ = \Psi_{(t,\sqrt{t(1-t)},\sqrt{t(1-t)})}$:

(21)
$$\Psi_{(t)}^{+}(x, y) = \frac{1}{\sqrt{2(2-t)}} \left(\exp \sqrt{-1}(\sqrt{1+k^2}x + \sqrt{1-k^2}y), \exp \sqrt{-1}(\sqrt{1-k^2}x + \sqrt{1+k^2}y), \sqrt{2(1-t)} \right) \\ \times \exp \sqrt{-1}(\sqrt{1-k^2}x + \sqrt{1+k^2}y), \sqrt{2(1-t)} \\ \times \exp \sqrt{-1}(x-y) \right), \text{ where } k^2 = \sqrt{t(2-t)}.$$
(ii) If $v = 0$, we set $\Psi_{(t)}^{0}(x, y) = \Psi_{(t,\sqrt{2t(1-t)},0)}$. Then we get

(22)
$$\Psi^{0}_{(t)}(x, y) = \frac{1}{\sqrt{2(1+t)}} (\exp \sqrt{-1}(\sqrt{1-t}x + \sqrt{1+t}y), \\ \exp \sqrt{-1}(\sqrt{1-t}x - \sqrt{1+t}y), \sqrt{2t} \exp \sqrt{-1}\sqrt{2}x)$$

We remark that $\Psi_{(t)}^+$ and $\Psi_{(t)}^0$ were constructed by T. Itoh [2]. If we set $\sqrt{1+k^2}x + \sqrt{1-k^2}y = \theta$ and $\sqrt{1-k^2}x + \sqrt{1+k^2}y = \tau$, then (21) is

simply represented by

$$rac{1}{\sqrt{2(2-t)}}(e^{i heta},\,e^{i au},\,\sqrt{2(1-t)}e^{irac{ heta- au}{\sqrt{2t}}})\;.$$

Thus $\Psi_{(t)}^+$ is the algebraic minimal immersion of $S^1 \times S^1$ into S^5 if and only if $\sqrt{2t}$ is a rational number, and so there exist infinitely many algebraic minimal tori.

REFERENCES

- W. Y. HSIANG, Remarks on closed minimal submanifolds in the standard riemannian m-sphere, J. Diff. Geom., 1 (1967), 257-267.
- [2] T. ITOH, On minimal surfaces in a Riemannian manifold of constant curvature, to appear.
- [3] K. KENMOTSU, On compact minimal surfaces with non negative Gaussian curvature in a space of constant curvature 1, Tôhoku Math. J., 25 (1973), 469-479; II, to appear.

DEPARTMENT OF MATHEMATICS College of General Education Tôhoku University Kawauchi, Sendai, Japan