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Abstract

We consider the dual model, which is appropriate for modelling the surplus of companies with deterministic
expenses and stochastic gains, such as pharmaceutical, petroleum or commission-based companies. Dividend
strategies for this model that can be found in the literature include the barrier strategy (e.g., Avanzi et al.,
2007) and the threshold strategy (e.g., Cheung, 2008), where dividend decisions are made continuously.
While in practice the financial position of a company is typically monitored frequently, dividend decisions
are only made periodically along with the publication of its books. In this paper, we introduce a dividend
barrier strategy whereby dividend decisions are made only periodically, but still allow ruin to occur at any
time (as soon as the surplus is exhausted). This is in contrast to Albrecher et al. (2011a), who introduced
periodic dividend payments in the Cramér-Lundberg surplus model, albeit with periodic ruin opportunities
as well.

Under the assumption that the time intervals between dividend decisions are Erlang(n) distributed, we
derive integro-differential equations for the Laplace transform of the time to ruin and the expected present
value of dividends until ruin. These are then solved with the help of probabilistic arguments. We also
provide a recursive algorithm to compute these quantities. Finally, some numerical studies are presented,
which aim at illustrating how our assumptions about dividend payments and ruin occurrence compare with
those of the classical barrier strategy.
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1. Introduction

1.1. Motivation and background

In actuarial risk theory, stochastic processes are developed to model the surplus of risk businesses in
light of the stability problem (Bühlmann, 1970). Several stability criteria are typically considered, including
the probability of ruin (Lundberg, 1909; Cramér, 1955) and dividends (de Finetti, 1957). In its modified
formulation, Bruno de Finetti (1957) introduced dividends to make the dynamic behaviour of the surplus
process more realistic (see also Avanzi, 2009, for a discussion and a review of the subsequent literature).
Usually, the modelling approach is to allow dividends to be paid at any time, depending on the level of the
surplus. In this paper, we consider a dividend strategy whereby dividend decisions are made only periodically,
which is arguably more realistic. On the other hand, while in practice the books of a company are only
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published periodically along with dividend announcements, its financial position is typically monitored
more frequently. As a consequence, we will allow ruin to occur at any time, as soon as the surplus becomes
negative.

We consider companies with deterministic expenses and stochastic gains, such as pharmaceutical, petroleum
or commission-based companies. The surplus of such companies (before dividends) can be described as

U(t) = u− ct+
N(t)∑
i=1

Yi, t ≥ 0, (1.1)

where u = U(0) ≥ 0 is the initial surplus, and c > 0 is the constant rate of expenses per unit time. The
total amount of gains follows a compound Poisson process with intensity λ > 0 whose individual gains
have a common probability density function p(·), Laplace transform p̃(·) and mean µ = E[Y1]. The time
of ruin of {U(t)}t≥0 is defined by τ = inf{t ≥ 0 : U(t) ≤ 0}. Furthermore, we assume that the business is
profitable, i.e. λµ > c. When considering the dynamics of (1.1) it becomes apparent that ruin should be
allowed to occur at any time. Indeed, when the surplus is exhausted the company will not be able to fund
its continuous expenses anymore and will have to cease operations.

Because of its duality to the classical Cramér-Lundberg model, the model described in (1.1) was first
referred to as the ‘dual risk model’ by Mazza and Rullière (2004). In addition to its afore-mentioned
interpretation, Seal (1969, p.116) argued that the process (1.1) may also be suitable for annuity or pension
funds, where the insurance company pays annuities and randomly earns a portion of the reserves when a
policyholder dies.

Classical ruin probability results for model (1.1) can be found in e.g. Cramér (1955, Section 5.13), Takács
(1967, pp.152-154), Seal (1969, pp.116-119) and Grandell (1991, p.8). A generalization is the dual Sparre
Andersen or renewal risk model in which the inter-arrival times of the gains are not necessarily exponentially
distributed. Cheung (2012) studied a Gerber-Shiu type function (see Gerber and Shiu, 1998) in such a model,
whereas Mazza and Rullière (2004) showed that the time of ruin in the dual model can be related to that
in the standard risk model. The dual Markov-modulated risk model in which dependence among gain sizes
and their inter-arrival times is introduced via an underlying Markovian environment was also investigated
by Zhu and Yang (2008). See also Cheung (2010, 2011) for the dual risk model with additional possibility
of downward jumps.

Avanzi et al. (2007), Avanzi and Gerber (2008), Bayraktar and Egami (2008), Cheung and Drekic (2008),
Gerber and Smith (2008) and Avanzi et al. (2011) considered barrier strategies in which any excess of the
surplus process over a fixed level b > 0 is immediately paid to shareholders as dividend until ruin occurs.
Alternative dividend strategies include threshold-type strategy where dividend is paid a fixed rate whenever
the surplus is above b (Cheung, 2008; Ng, 2009, 2010). We also refer interested readers to Albrecher et al.
(2008) for a dual model with tax payments.

Note that the idea of periodic dividends was first introduced by Albrecher et al. (2011a) in the Cramér-
Lundberg model, where both dividend payments and ruin can only happen periodically. Periodic dividends
were also considered in a Brownian risk model by Albrecher et al. (2011b), where dividends can be paid at any
time with probability γ dt when the surplus is positive (i.e. inter-dividend-decision times are exponential),
and where ruin can happen at any time with probability ω(x) dt when the surplus x is negative. In contrast,
we assume that ruin occurs immediately once the surplus becomes negative, and consider a different surplus
model.

1.2. The introduction of periodic dividends

It follows from the results by Miyasawa (1962) and Takeuchi (1962) in a discrete setting that the classical
barrier strategy should be the one that maximizes the expected present value of dividends until ruin in the
dual model. This is yet to be shown in general, but some specific cases were considered (see Bayraktar
and Egami, 2008; Avanzi et al., 2011). As explained above, we consider only periodic dividend payments.
Formally, we assume that these can happen only at time points {Zk}∞k=1. The payout behaviour is then one
of a barrier strategy, i.e. if at any time Zk the surplus is above a fixed level b > 0, then the excess over b
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is paid out as dividend. This is in contrast to the classical barrier strategy whereby any overshoot over b is
immediately paid out as dividend as decisions are made continuously.

The time between successive dividend decision time points is assumed to be Erlang(n) distributed. More
specifically, we define

Zk =
k∑
i=1

Ti, k = 1, 2, . . .

to be the k-th time that the decision of whether to pay a dividend to the shareholders is made, where
{Ti}∞i=1 is a sequence of independent and identically distributed (i.i.d.) Erlang(n) random variables with
scale parameter γ > 0 (independent of {N(t)}t≥0 and {Yi}∞i=1) possessing common density

fT (t) =
γn tn−1 e−γt

(n− 1)!
, t > 0.

This choice is motivated by several factors. Firstly, it makes computation more tractable. Indeed, each
random variable Ti can be seen as the sum of n i.i.d. exponential variables with mean 1/γ, which allows
us to profit from their memoryless properties. This so-called ‘Erlangization’ technique was proposed by
Asmussen et al. (2002), and its computational advantage has been exploited by e.g. Stanford et al. (2005,
2011), Ramaswami et al. (2008) and Landriault et al. (2012) in various finite-time ruin problems as well as
Parisian-type ruin problems. Secondly, fixing the mean E[T1] = n/γ = h while increasing n (and increasing
γ) will approximate a fixed time horizon h such that deterministic inter-dividend-decision times are obtained
as a limit (see also Section 5.2).

When using this Erlangization technique, the surplus process {Ub(t)}t≥0 (after distribution of dividends)
needs to be defined in-between each Erlang time interval. To this end, we shall introduce the auxiliary pro-
cesses {Wk(t)}t≥0 for k = 1, 2, . . .. The dynamics of {Ub(t)}t≥0 and {Wk(t)}t≥0 can be described recursively
via the two coupled equations

Wk(t) =

{
U(t), k = 1; t ≥ 0,
Ub(Zk−1)− c(t− Zk−1) +

∑N(t)
i=N(Zk−1)+1 Yi, k = 2, 3, . . . ; t ≥ Zk−1,

and for k = 1, 2, . . .,

Ub(t) =
{
Wk(t), Zk−1 < t < Zk.
min(Wk(Zk), b), t = Zk.

Here we define Z0 = 0− and Ub(0) = u even if u > b, i.e. time 0 is not assumed to be a dividend decision
time (without loss of generality).

The time of ruin in the present model is τb = inf{t ≥ 0 : Ub(t) ≤ 0}, and its Laplace transform is defined
by

φ(u; b) = E
[
e−δτb1{τb <∞}

∣∣Ub(0) = u
]
, u ≥ 0,

where 1{A} represents the indicator function of the event A, and the Laplace transform argument δ ≥ 0
may also be interpreted as the force of interest. By defining kb = max{k ≥ 0 : Zk ≤ τb}, then kb clearly
represents the number of dividend decisions until ruin.

The expected discounted dividends payable until ruin is given by

V (u; b) = E

[
kb∑
k=1

e−δZk [Wk(Zk)− b]+
∣∣∣Ub(0) = u

]
, u ≥ 0,

where a+ = max(a, 0). The functions φ(u; b) and V (u; b) are the key quantities of interest in this paper.
We remark that if instead one assumes that time 0 is a dividend decision time, then for u > b one has
φ(u; b) = φ(b; b) and V (u; b) = u − b + V (b; b) where φ(b; b) and V (b; b) are obtainable from the current
model with time 0 not being a dividend decision time. Please refer to Figure 1 for a typical sample path of
the modified surplus process {Ub(t)}t≥0.
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Figure 1: Typical sample path of the modified surplus process {Ub(t)}t≥0

In our analysis, the notion of Laplace transforms will be used for various functions. The Laplace transform
of a function f(·) on (0,∞) (which does not necessarily have to be a density) will be denoted by, for any
complex number s with Re(s) ≥ 0,

f̃(s) =
∫ ∞

0

e−sxf(x) dx.

1.3. Structure of the paper

This paper is organized as follows. In Section 2, the Laplace transform of the time of ruin φ(u; b)
is studied. Piecewise integro-differential equations are derived in Section 2.1 for 0 < u < b and u > b
along with the appropriate boundary conditions. Although we are not able to solve the system directly,
probabilistic arguments can be used to determine the solution form for u > b apart from some unknown
constants, and this will be the subject matter of Section 2.2. Applying the results of Section 2.2, the solution
to φ(u; b) is fully characterized in Sections 2.3 and 2.4. Section 3 is concerned with the dividend function
V (u; b). Our approach there is similar to that of Section 2 (and we hence use a similar layout), but it requires
considerable amount of extra effort to obtain the correct solution form. Section 4 studies the special case in
which both the claim amounts and the inter-dividend-decision times are exponentially distributed. Explicit
formulas for φ(u; b) and V (u; b) are given, and the optimal dividend barrier is identified. In Section 5, we
present some numerical studies which aim at illustrating how our assumptions about dividend payments
and ruin compare with that of the classical barrier strategy, as well as the one introduced in Albrecher et al.
(2011a). We also shed some light on the behaviour of the (numerically) optimal barrier level in our model.

2. Laplace transform of the time of ruin

To take advantage of an underlying phase-type structure of the problem, in what follows we shall treat
the Erlang(n) distribution (i.e. the generic inter-dividend-decision time) as the sum of n i.i.d. exponential
variables. For i = 1, 2, . . . , n, we let φi(u; b) be the Laplace transform of the time of ruin given that the surplus
level is u and the time remaining until the next dividend decision time is distributed as Erlang(n − i + 1).
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Clearly, φ(u; b) ≡ φ1(u; b). The subscript i in φi(u; b) can be regarded as an index that keeps track of
the ‘Erlang clock’. Whenever an exponential variable is realized, the index i will (1) increase by 1 if
i = 1, 2, . . . , n − 1; or (2) revert to i = 1 if i = n due to a dividend decision. Therefore, each exponential
constituting the Erlang(n) inter-dividend-decision time is like a clock tick.

2.1. Integro-differential equations

For u > 0, we start by considering all possible events over a very small time interval [0, h] and noting
that there is a competition between two independent Poisson processes with rates λ and γ. When i =
1, 2, . . . , n− 1, no dividend can be paid at time h, and we arrive at

φi(u; b) = [1−(λ+γ)h] e−δhφi(u−ch; b)+γh e−δhφi+1(u−ch; b)+λh e−δh
∫ ∞

0

φi(u−ch+y; b) p(y) dy+o(h).

(2.1)
On the other hand, when i = n, if (1) the Poisson process with rate γ first has an event; and (2) the surplus
is above level b at the time of such an event, then dividend is paid thereby reducing the surplus level to b.
This leads to

φn(u; b) = [1− (λ+ γ)h] e−δhφn(u− ch; b) + γh e−δh [φ1(u− ch; b)1{u− ch ≤ b}+ φ1(b; b)1{u− ch > b}]

+ λh e−δh
∫ ∞

0

φn(u− ch+ y; b) p(y) dy + o(h). (2.2)

By letting h→ 0 in (2.1) and (2.2), for each i = 1, 2, . . . , n one easily observes the left-continuity of φi(u; b)
for u > 0. If one instead starts the above argument at an initial surplus level of u+ ch, right-continuity can
be established as well.

Since the function φi(u; b) exhibits different behavior depending on whether u is below or above b (as
evident from (2.2)), it is further defined in a piecewise manner as

φi(u; b) =
{
φL,i(u; b), 0 ≤ u < b,
φU,i(u; b), u ≥ b,

where ‘L’ and ‘U ’ stand for ‘Lower’ and ‘Upper’ respectively. For later use we also define the row vec-
tors φ

L
(u; b) = (φL,1(u; b), φL,2(u; b), . . . , φL,n(u; b))T and φ

U
(u; b) = (φU,1(u; b), φU,2(u; b), . . . , φU,n(u; b))T ,

where the superscript ‘T ’ denotes a transpose. The previously established continuity of φi(u; b) for u > 0
implies

φL,i(b; b) = φU,i(b; b), i = 1, 2, . . . , n. (2.3)

Another set of boundary conditions is obtained from the fact that ruin occurs immediately with zero surplus
as

φL,i(0; b) = 1, i = 1, 2, . . . , n. (2.4)

Upon rearrangement of (2.1), division by h and letting h → 0 yields the integro-differential equations,
for i = 1, 2, . . . , n− 1,

cφ′L,i(u; b) + (λ+ γ + δ)φL,i(u; b)− γφL,i+1(u; b)

− λ

(∫ b−u

0

φL,i(u+ y; b) p(y) dy +
∫ ∞
b−u

φU,i(u+ y; b) p(y) dy

)
= 0, 0 < u < b, (2.5)

and

cφ′U,i(u; b) + (λ+ γ + δ)φU,i(u; b)− γφU,i+1(u; b)− λ
∫ ∞

0

φU,i(u+ y; b) p(y) dy = 0, u < b. (2.6)
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Similarly, (2.2) implies

cφ′L,n(u; b) + (λ+ γ + δ)φL,n(u; b)− γφL,1(u; b)

− λ

(∫ b−u

0

φL,n(u+ y; b) p(y) dy +
∫ ∞
b−u

φU,n(u+ y; b) p(y) dy

)
= 0, 0 < u < b, (2.7)

and

cφ′U,n(u; b) + (λ+ γ + δ)φU,n(u; b)− γφU,1(b; b)− λ
∫ ∞

0

φU,n(u+ y; b) p(y) dy = 0, u < b. (2.8)

Although the above derivatives are understood to be left-derivatives, one can apply the same arguments
with u + ch in place of u to find that (2.5)–(2.8) are also satisfied by the right-derivatives. Moreover, for
i = 1, 2, . . . , n the functions φL,i(u; b) and φU,i(u; b) are differentiable within the layers 0 < u < b and u > b
respectively. It is also clear from the above integro-differential equations and the continuity condition (2.3)
that smooth pasting condition at u = b indeed holds true, i.e.

φ′L,i(b−; b) = φ′U,i(b+; b), i = 1, 2, . . . , n. (2.9)

It is instructive to note that equations (2.6) and (2.8) only involve φ
U

(u; b) but not φ
L

(u; b), whereas
(2.5) and (2.7) involve both. Therefore, in the next two subsections, we first determine the solution φ

U
(u; b)

to the partial system which consists of (2.6) and (2.8). In Section 2.4, the solution φ
L

(u; b) to (2.5) and (2.7)
is obtained by treating the terms involving φ

U
(u; b) as non-homogeneous terms. Any unknown constants

involved can finally be determined by the boundary conditions.

2.2. A representation of φ
U

via a probabilistic argument

In this section we adopt a probabilistic approach to determine the solution form of φ(u; b) ≡ φU,1(u; b)
for u ≥ b, which is extended to φU,i(u; b) for i = 1, 2, . . . , n as expressed in Lemma 1 below.

Lemma 1. For i = 1, 2, . . . , n, the solution form of (2.6) and (2.8) is given by

φU,i(u; b) =
(

γ

γ + δ

)n−i+1

φU,1(b; b) +
n−i∑
j=0

Aj,n−i+1 u
j e−ργ+δu, u ≥ b, (2.10)

where ργ+δ is the unique positive root of the equation (in ξ)

cξ − (λ+ γ + δ) + λp̃(ξ) = 0, (2.11)

and Aj,k’s are some constants which possibly depend on b but not u. �

Proof. When the process starts above the level b, it will reach level b in the future either because of
continuous expenses or because of a dividend payment. Hence, it is important to keep track of the ‘Erlang
clock’ when the surplus reaches b due to one or the other of those two reasons.

We first consider the process {U0(t)}t≥0 (i.e. where the dividend barrier is set at zero) because the
time of ruin of {U0(t)}t≥0 starting at U0(0) = u − b ≥ 0 is equivalent to the time to reach level b for the
process {Ub(t)}t≥0 starting at Ub(0) = u ≥ b. Note that the process {U0(t)}t≥0 behaves like {U(t)}t≥0

(the barrier-free model) before time T1, and the process {U(t)}t≥0 and the variable T1 are independent. In
what follows it will be useful to write the Erlang(n) variable T1 as T1 =

∑n
i=1Xi, where {Xi}ni=1 is an i.i.d.

sequence of exponential variables each with mean 1/γ. We define the function, for k = 0, 1, . . . , n− 1,

σk+1(u) = E

[
e−δτ1

{
k∑
i=1

Xi ≤ τ <
k+1∑
i=1

Xi

}∣∣∣∣U(0) = u

]
, u ≥ 0,
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as the expected present value of a contingent payment of 1 at the time of ruin τ for the process {U(t)}t≥0,
which is only payable when τ is between the Erlang(k) variable

∑k
i=1Xi and the Erlang(k + 1) variable∑k+1

i=1 Xi. Therefore, returning to the process of interest {Ub(t)}t≥0 with Ub(0) = u ≥ b, the underlying
Markovian structure leads to

φ(u; b) =
n−1∑
k=0

σk+1(u− b)φU,k+1(b; b) + E
[
e−δT11{T1 < τ}

∣∣U(0) = u− b
]
φU,1(b; b), u ≥ b. (2.12)

It thus remains to determine (the forms of) σk+1(u) and E[e−δT11{T1 < τ}|U(0) = u] for u ≥ 0. Fortunately,
these two quantities are available from equations (56) and (40) of Landriault et al. (2012) respectively by
noting that the recovery time (denoted by them as τ+

0 ) in the standard risk model is equivalent to the ruin
time τ of the dual model {U(t)}t≥0 apart from a change of sign of the initial level. Quoting their results,
we have that

σk+1(u) =
k∑
i=0

$i,k u
i e−ργ+δu, u ≥ 0, (2.13)

and

E
[
e−δT11{T1 < τ}

∣∣U(0) = u
]

=
(

γ

γ + δ

)n
+
n−1∑
i=0

$∗i u
i e−ργ+δu, u ≥ 0, (2.14)

where $i,k’s and $∗i ’s are constants that do not depend on u, and for a given r > 0 the quantity ρr is the
unique positive root of the Lundberg’s equation (in ξ)

cξ − (λ+ r) + λp̃(ξ) = 0. (2.15)

Finally, applying (2.13) and (2.14) to (2.12), performing a binomial expansion of (u− b)i and changing the
order of summations leads to

φ(u; b) =
n−1∑
k=0

k∑
i=0

$i,k (u− b)i e−ργ+δ(u−b)φU,k+1(b; b) +

[(
γ

γ + δ

)n
+
n−1∑
i=0

$∗i (u− b)i e−ργ+δ(u−b)
]
φU,1(b; b)

=
(

γ

γ + δ

)n
φU,1(b; b) +

n−1∑
j=0

Aj u
j e−ργ+δu, u ≥ b, (2.16)

for some constants Aj ’s (which possibly depend on b but not u).
Although the solution form given by (2.16) applies to φ(u; b) ≡ φU,1(u; b) for u ≥ b, the result can be

easily adapted to φU,i(u; b) (for i = 1, 2, . . . , n). We only need to replace T1 by an Erlang(n− i+ 1) random
variable in the analysis. Then (2.16) still holds true for φU,i(u; b) with n replaced by n − i + 1. Since Aj ’s
in (2.16) implicitly depend on n as well, the expression (2.10) follows.

Remark 2.1. The root ργ+δ corresponds to the notation ργ in Albrecher et al. (2011a, 2012). However, it
is more convenient to adopt the current notation which facilitates the proof of Lemma 2 in Section 3.2. �

Remark 2.2. In principle the constants Aj ’s in (2.16) (and hence Aj,n−i+1’s in (2.10)) can be computed in
terms of $i,k’s and $∗i ’s which are available from Landriault et al. (2012). The constants $i,k’s and $∗i ’s
therein are expressed using di Bruno’s formula in terms of the Bell polynomial and derivatives of the form
dkρr/dr

k. The quantity dkρr/dr
k can be computed by successive differentiating the Lundberg’s equation

(2.15) (with ξ replaced by ρr) and recursive formula can be obtained. �

Remark 2.3. It stems from (2.10) that for i = 1, 2, . . . , n,

φU,i(u; b) ∼
(

γ

γ + δ

)n−i+1

φU,1(b; b), u→∞, (2.17)
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since ργ+δ > 0. This asymptotic formula intuitively makes sense because starting with a very large initial
surplus Ub(0) = u, it is highly likely that at the next dividend decision time the surplus process {Ub(t)}t≥0

has not ruined yet and is above level b. Upon the payment of dividend, the surplus will drop to level b and
the Laplace transform of the time remaining until ruin will be φU,1(b; b) since the ‘Erlang clock’ restarts.
Since the time until the next dividend decision time is distributed as Erlang(n − i + 1) which has Laplace
transform [γ/(γ+ δ)]n−i+1 (with Laplace transform argument δ), this explains the product form of (2.17).�

2.3. A recursive solution for φ
U

The procedure described in Remark 2.2 can be tedious. We present in Theorem 1 a recursive scheme
that allows a direct computation of the constants in Lemma 1 in a more straightforward way.

Theorem 1. For k = 0, 1, . . . , n− 1, the expression

φU,n−k(u; b) =
(

γ

γ + δ

)k+1

φL,1(b; b) +
k∑
j=0

Aj,k+1 u
j e−ργ+δu, u ≥ b, (2.18)

satisfies (2.3), (2.6) and (2.8), with the coefficients given recursively in k by

Aj+1,k+1 =
λ
∑k
i=j+2Ai,k+1

(
i
j

) ∫∞
0
yi−j e−ργ+δyp(y) dy + γAj,k

(j + 1)
(
c− λ

∫∞
0
y e−ργ+δyp(y) dy

) , j = 0, 1, . . . , k − 1, (2.19)

and

A0,k+1 = eργ+δb

φL,n−k(b; b)−
(

γ

γ + δ

)k+1

φL,1(b; b)−
k∑
j=1

Aj,k+1 b
j e−ργ+δb

 , (2.20)

where ργ+δ is the unique positive root of (2.11). �

Proof. Note that φU,n(u; b) is the only unknown function in u in equation (2.8) since φU,1(b; b) is just a
constant. Thus, one should start with (2.8) to obtain (the coefficients associated to) φU,n(u; b), and then
(the coefficients of) φU,n−1(u; b) can be solved from (2.6) by treating φU,n(u; b) as known, and so on. Since
we shall work with φU,i(u; b) for decreasing value of i, it is more convenient to replace i by n − k in (2.10)
so that the above procedure is recursive in k. This explains (2.18) where the continuity condition (2.3) at
i = 1 has also been used.

Now it remains to derive the recursive procedures (2.19) and (2.20) by direct substitution. As a starting
point (i.e. k = 0), substituting (2.18) at k = 0 into (2.8) followed by some simple algebra and using the fact
that

cργ+δ − (λ+ γ + δ) + λp̃(ργ+δ) = 0, (2.21)

we arrive at 0 = 0 which does not yield any information. Utilizing (2.3) at i = n and (2.18) at k = 0 and
u = b, equation (2.20) at k = 0 simply follows by rearrangements. Note that (2.19) does not exist when
k = 0, and hence the case k = 0 is proved.

Next, for any fixed k = 1, 2, . . . , n − 1, the solution form (2.18) is substituted into (2.6) at i = n − k.
This yields

c

k−1∑
j=0

Aj+1,k+1 (j + 1)uj e−ργ+δu − ργ+δ
k∑
j=0

Aj,k+1 u
j e−ργ+δu


+(λ+ γ + δ)

( γ

γ + δ

)k+1

φL,1(b; b) +
k∑
j=0

Aj,k+1 u
j e−ργ+δu

− γ
( γ

γ + δ

)k
φL,1(b; b) +

k−1∑
j=0

Aj,k u
j e−ργ+δu


−λ

( γ

γ + δ

)k+1

φL,1(b; b) +
k∑
j=0

 k∑
i=j

Ai,k+1

(
i

j

)∫ ∞
0

yi−j e−ργ+δyp(y) dy

uj e−ργ+δu

 = 0.
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Note that the constant term on the left-hand-side of the above equation equals 0. The same is also true of
the coefficient of uk e−ργ+δu because of (2.21). Equating the coefficients of uj e−ργ+δu for j = 0, 1, . . . , k− 1,
rearranging terms and using (2.21) again, one obtains (2.19). Finally, (2.20) can be proved by an application
of (2.3) at i = n− k together with (2.18) at u = b.

The procedure to compute the coefficients in (2.18) is outlined as follows. First, the baseline case k = 0
is the simplest case since the coefficient A0,1 can be obtained directly from (2.20). Second, for each fixed
k = 1, 2, . . . , n − 1, we first put j = k − 1 into (2.19) which results in an explicit expression for Ak,k+1 in
terms of Ak−1,k, then we put j = k − 2, k − 3, . . . , 0 in turn so as to compute Aj+1,k+1 recursively in terms
of Ai,k+1’s (i = j + 2, j + 3, . . . , k). Finally, the coefficient A0,k+1 is computed from (2.20).

2.4. A solution for φ
L

Note that the coefficients of the solution in Theorem 1 regarding the elements of φ
U

(u; b) are expressed
in terms of the elements of φ

L
(b; b). In what follows we proceed to solve (2.5) and (2.7) for φ

L
(u; b). This

solution will be in terms of φ
U

(u; b), which in turn depends on φ
L

(b; b). These constants will eventually be
determined from the boundary conditions (2.4).

To solve equations (2.5) and (2.7), we follow the ideas in Avanzi et al. (2007) to define the variable
z = b− u and the functions, for i = 1, 2, . . . , n,

ϕi(z) = φL,i(b− z; b) = φL,i(u; b), 0 ≤ z ≤ b,

so that
φL,i(b; b) = ϕi(0), i = 1, 2, . . . , n.

The boundary conditions (2.4) then become

ϕi(b) = 1, i = 1, 2, . . . , n. (2.22)

With the above definition, when 0 < z < b the equations (2.5) and (2.7) are respectively transformed into

−cϕ′i(z)+(λ+γ+δ)ϕi(z)−γϕi+1(z)−λ
(∫ z

0

ϕi(z − y) p(y) dy +
∫ ∞
z

φU,i(b− z + y; b) p(y) dy
)

= 0, (2.23)

for i = 1, 2, . . . , n− 1, and

−cϕ′n(z)+(λ+γ+δ)ϕn(z)−γϕ1(z)−λ
(∫ z

0

ϕn(z − y)p(y) dy +
∫ ∞
z

φU,n(b− z + y; b)p(y) dy
)

= 0. (2.24)

As in Avanzi et al. (2007), we extend the domain of the function ϕi(z) to z ≥ 0 and define the quantity, for
i = 1, 2, . . . , n,

αi(z) =
∫ ∞
z

φU,i(b− z + y; b) p(y) dy, z ≥ 0,

with Laplace transform

α̃i(s) =
∫ ∞

0

e−szαi(z) dz =
∫ ∞

0

e−sz
∫ ∞

0

φU,i(b+ y; b) p(y + z) dy dz

=
∫ ∞

0

φU,i(b+ y; b)
∫ ∞

0

e−szp(y + z) dz dy. (2.25)

Taking Laplace transforms on both sides of (2.23) and (2.24) gives

[cs− (λ+ γ + δ) + λp̃(s)] ϕ̃i(s) + γϕ̃i+1(s) = cϕi(0)− λα̃i(s), (2.26)
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for i = 1, 2, . . . , n− 1, and

[cs− (λ+ γ + δ) + λp̃(s)] ϕ̃n(s) + γϕ̃1(s) = cϕn(0)− λα̃n(s). (2.27)

In matrix form, (2.26) and (2.27) can be expressed as

A(s) ϕ̃(s) = cϕ(0)− λα̃(s), (2.28)

where

A(s) = [cs− (λ+ γ + δ) + λp̃(s)] In + γ


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 ,

ϕ̃(s) = (ϕ̃1(s), ϕ̃2(s), . . . , ϕ̃n(s))T ,

ϕ(0) = (ϕ1(0), ϕ2(0), . . . , ϕn(0))T = φ
L

(b; b), (2.29)

and
α̃(s) = (α̃1(s), α̃2(s), . . . , α̃n(s))T .

Here In is the n-dimensional identity matrix. When n = 1, the matrix A(s) is understood to be the scalar
cs− (λ+ δ) + λp̃(s). From (2.28) it follows that

ϕ̃(s) = [A(s)]−1
[
cϕ(0)− λα̃(s)

]
. (2.30)

Note from (2.25) that the vector α̃(s) depends on the constant vector φ
L

(b; b) in a linear manner through the
solution φ

U
(u; b) obtained from Theorem 1, and thus from (2.29) and (2.30) each element of ϕ̃(s) is linear

in φ
L

(b; b). By analytically (or numerically) inverting (2.30) to obtain ϕi(u)’s and applying the boundary
conditions (2.22), one obtains a system of n linear equations from which the elements of φ

L
(b; b) can be

solved for. Hence, we arrive at a full characterization of {φi(u; b);u ≥ 0} for i = 1, 2, . . . , n.

Remark 2.4. Note that the analytical inversion of (2.30) is possible when each element on the right-hand
side of (2.30) can be written as a ratio of two polynomials in s. For example, if the jump density p(·) belongs
to the class of Erlang mixtures or combinations of exponentials, then it follows from (2.25) that each element
of ϕ̃(s) can be resolved into partial fractions, which allows analytic inversion. �

3. Expected present value of dividends paid until ruin

As in Section 2, we let Vi(u; b) (i = 1, 2, . . . , n) be the expected present value of total dividends paid
until ruin, given that the initial surplus level is u and the time remaining until the next dividend payment
time is distributed as Erlang(n− i+ 1).

3.1. Integro-differential equations

The same reasoning used to obtain (2.1) and (2.2) leads us to, for i = 1, 2, . . . , n− 1,

Vi(u; b) = [1−(λ+γ)h] e−δhVi(u−ch; b)+γh e−δhVi+1(u−ch; b)+λh e−δh
∫ ∞

0

Vi(u−ch+y; b) p(y) dy+o(h),

(3.1)
and

Vn(u; b) = [1− (λ+ γ)h] e−δhVn(u− ch; b)

+ γh e−δh {V1(u− ch; b)1{u− ch ≤ b}+ [u− ch− b+ V1(b; b)] 1{u− ch > b}}

+ λh e−δh
∫ ∞

0

Vn(u− ch+ y; b) p(y) dy + o(h), (3.2)
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from which the continuity of Vi(u; b) for each i = 1, 2, . . . , n can be established by letting h→ 0.
The expected present value of total dividends paid until ruin is then defined piecewise as

Vi(u; b) =
{
VL,i(u; b), 0 ≤ u < b.
VU,i(u; b), u ≥ b.

Also define V L(u; b) = (VL,1(u; b), VL,2(u; b), . . . , VL,n(u; b))T and V U (u; b) = (VU,1(u; b), VU,2(u; b), . . . ,
VU,n(u; b))T . The continuity at u = b means that

VL,i(b; b) = VU,i(b; b), i = 1, 2, . . . , n. (3.3)

Furthermore, if the company has zero surplus, ruin occurs immediately and no dividends will be paid, which
yields the boundary conditions

VL,i(0; b) = 0, i = 1, 2, . . . , n. (3.4)

The integro-differential equations are derived from (3.1) and (3.2) with the same approach as the one
used for (2.5)–(2.8). For i = 1, 2, . . . , n− 1, we have

cV ′L,i(u; b) + (λ+ γ + δ)VL,i(u; b)− γVL,i+1(u; b)

− λ

(∫ b−u

0

VL,i(u+ y; b) p(y) dy +
∫ ∞
b−u

VU,i(u+ y; b) p(y) dy

)
= 0, 0 < u < b, (3.5)

and

cV ′U,i(u; b) + (λ+ γ + δ)VU,i(u; b)− γVU,i+1(u; b)− λ
∫ ∞

0

VU,i(u+ y; b) p(y) dy = 0, u > b. (3.6)

In addition,

cV ′L,n(u; b) + (λ+ γ + δ)VL,n(u; b)− γVL,1(u; b)

− λ

(∫ b−u

0

VL,n(u+ y; b) p(y) dy +
∫ ∞
b−u

VU,n(u+ y; b) p(y) dy

)
= 0, 0 < u < b, (3.7)

and

cV ′U,n(u; b) + (λ+ γ+ δ)VU,n(u; b)− γ [u− b+ VU,1(b; b)]−λ
∫ ∞

0

VU,n(u+ y; b) p(y) dy = 0, u > b. (3.8)

Analogous to (2.9), the continuity condition (3.3) also implies smooth pasting at u = b, i.e.

V ′L,i(b−; b) = V ′U,i(b+; b), i = 1, 2, . . . , n. (3.9)

Interestingly, similar smooth pasting condition at u = b can also be found in equation (8) of Albrecher et al.
(2011a) in which both dividend decisions and the event of ruin are monitored periodically.

For the same reasons as in Section 2, in the next subsection we shall first determine the solution form
of the elements of V U (u; b) for the upper layer, and the full solution is characterized in Sections 3.3 and
3.4. Note that the solution form should be different from that of φ

U
(u; b), due to the fact that the non-

homogeneous part of (3.8) involves u (in contrast to (2.8) where the non-homogeneous component is a
constant).

3.2. A representation of V U via a probabilistic argument

As in Section 2.2, a probabilistic approach is used in this subsection to determine the solution form of
V (u; b) ≡ VU,1(u; b) for u ≥ b in the process {Ub(t)}t≥0. We again consider the process {U0(t)}t≥0 which
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behaves like {U(t)}t≥0 before time T1. This leads to

V (u; b) =
n−1∑
k=0

σk+1(u− b)VL,k+1(b; b) + E
[
e−δT11{T1 < τ}

∣∣U(0) = u− b
]
VL,1(b; b)

+ E
[
e−δT1U(T1)1{T1 < τ}

∣∣U(0) = u− b
]
, u ≥ b. (3.10)

Note that the first two terms represent the potential future dividends at the time when the surplus process
{Ub(t)}t≥0 (starting at u ≥ b) hits level b due to either the expense rate or dividend payment. The final term
in the above expression arises because a dividend payment of Ub(T1) − b is made at time T1 if {Ub(t)}t≥0

has not downcrossed level b in the interim. The expression (3.10) can be rewritten in a more tractable form,
which is the object of the following lemma.

Lemma 2. For i = 1, 2, . . . , n, the solution form of (3.6) and (3.8) is given by

VU,i(u; b) =
(

γ

γ + δ

)n−i+1( (n− i+ 1)(λµ− c)
γ + δ

+ VL,1(b; b)− b
)

+
(

γ

γ + δ

)n−i+1

u

+
n−i∑
j=0

Bj,n−i+1 u
j e−ργ+δu, u ≥ b, (3.11)

where ργ+δ is the unique positive root of (2.11) and Bj,k’s are some constants which possibly depend on b
but not u. �

Proof. Our starting point is (3.10). Since the forms of σk+1(u) and E[e−δT11{T1 < τ}|U(0) = u] for
u ≥ 0 are already given by (2.13) and (2.14), we first focus on the determination of E[e−δT1U(T1)1{T1 <
τ}|U(0) = u] for u ≥ 0.

We shall need some auxiliary results from the literature. In the dual model {U(t)}t≥0, the Laplace
transform of the time to ruin is given by (with a slight abuse of notation)

φ(u;∞) = E
[
e−δτ1{τ <∞}

∣∣U(0) = u
]

= e−ρδu, u ≥ 0, (3.12)

where ρδ is defined in the same way as in (2.15); see e.g. Ng (2009, Lemma 1). Note that given an initial
surplus of u = U(0) ≥ 0, the distribution of τ consists of a point mass at u/c with probability e−λ(u/c)

since if no gain occurs within the period [0, u/c] then ruin occurs at time u/c due to the expense rate. The
density part of τ at t will be denoted by hu(t) for t ≥ 0. Note also that hu(t) = 0 for 0 ≤ t ≤ u/c. Hence,
the Laplace transform (3.12) can be represented as

φ(u;∞) =
∫ ∞

0

e−δthu(t) dt+ e−δ(
u
c ) e−λ(

u
c ) = h̃u(δ) + e−(λ+δ)(uc ), u ≥ 0. (3.13)

To study E[e−δT1U(T1)1{T1 < τ}|U(0) = u], we shall look at
∑N(T1)
i=1 Yi − cT1 which is the increment of

the process {U(t)}t≥0 from time 0 to time T1. Due to the discounting from time T1 to 0, we consider the
joint Laplace transform of (T1,

∑N(T1)
i=1 Yi − cT1) which can be represented as

E

[
e
−δT1−s

(∑N(T1)
i=1 Yi−cT1

)]
=
(

γ

γ + δ − cs+ λ[1− p̃(s)]

)n
=
∫ ∞
−∞

e−sygδ(y) dy, (3.14)

where
gδ(y) = gδ,−(−y)1{y < 0}+ gδ,+(y)1{y > 0}, −∞ < y <∞; (3.15)

see Albrecher et al. (2011a, 2012). Here gδ(·) is the discounted density of the increment of the process
{U(t)}t≥0 observed at time T1, with gδ,+(·) and gδ,−(·) representing the cases of net gain and net loss
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respectively. In particular, the (defective) density of
∑N(t)
i=1 Yi − ct at y when

∑N(t)
i=1 Yi − ct > 0, namely

g+(y, t), satisfies

gδ,+(y) =
∫ ∞

0

e−δt g+(y, t)
γn tn−1 e−γt

(n− 1)!
dt =

∫ ∞
0

γn e−(γ+δ)t tn−1

(n− 1)!
g+(y, t) dt, y > 0.

Another auxiliary result from Albrecher et al. (2011a) is that gδ,−(·) is indeed a (defective) mixture of
Erlangs with the same scale parameter ργ+δ such that

gδ,−(y) =
n∑
k=1

qk
ρkγ+δ y

k−1 e−ργ+δy

(k − 1)!
, y > 0, (3.16)

for some constants qk’s.
Now, we can evaluate E[e−δT1U(T1)1{T1 < τ}|U(0) = u] as

E
[
e−δT1U(T1)1{T1 < τ}

∣∣U(0) = u
]

=
∫ u

0

y gδ,−(u− y) dy +
∫ ∞
u

y gδ,+(y − u) dy

−
∫ ∞

0

∫ ∞
0

e−δt y

(∫ t

0

hu(x) g+(y, t− x) dx+ 1
{
t >

u

c

}
e−λ(

u
c ) g+

(
y, t− u

c

)) γn tn−1 e−γt

(n− 1)!
dy dt.

(3.17)

The above equation is decomposed as follows. The first integral represents the case where at time T1 a
net loss of u − y (where 0 < y < u) is suffered by the company, and hence U(T1) = y. Similarly, the
second integral is the case where a net gain of y − u (where y > u) is earned by the company and therefore
U(T1) = y. However, the above integrals include the sample paths in which ruin of {U(t)}t≥0 has occurred
before time T1 (i.e. τ < T1) but the process is at a positive level at time T1, and these contributions have to
be removed. This can be explained by the third integral, which is obtained by first conditioning on T1 = t.
Given T1 = t, if ruin occurs at some time x (0 < x < t) at which {U(t)}t≥0 reaches level 0 for the first
time, and in t − x units of time starting from time x the process {U(t)}t≥0 increases by level y, then the
contribution of e−δt y should be removed. Noting that the distribution of τ consists of both a density part
as well as a point mass, the above argument leads to the third integral in (3.17).

We now aim at simplifying (3.17). By substitution of (3.16), the first integral in (3.17) becomes∫ u

0

y gδ,−(u− y) dy =
∫ u

0

(u− y)
n∑
k=1

qk
ρkγ+δ y

k−1 e−ργ+δy

(k − 1)!
dy

=
n∑
k=1

qk

(
u

∫ u

0

ρkγ+δ y
k−1 e−ργ+δy

(k − 1)!
dy − k

ργ+δ

∫ u

0

ρk+1
γ+δ y

k e−ργ+δy

k!
dy

)

=
n∑
k=1

qk

[
u

(
1−

k−1∑
i=0

e−ργ+δu
(ργ+δ u)i

i!

)
− k

ργ+δ

(
1−

k∑
i=0

e−ργ+δu
(ργ+δ u)i

i!

)]

= u

n∑
k=1

qk −
n∑
k=1

k qk
ργ+δ

+
n∑
k=1

qk

k−1∑
i=0

(k − i) ρi−1
γ+δ

i!
ui e−ργ+δu

= u

∫ ∞
0

gδ,−(y) dy −
∫ ∞

0

y gδ,−(y) dy +
n−1∑
j=0

ζj u
j e−ργ+δu, (3.18)

for some constants ζj ’s that do not depend on u, and where the last equality again follows from the mixed
Erlang representation (3.16) and a change of order of summations. The second integral in (3.17) is simply
given by ∫ ∞

u

y gδ,+(y − u) dy = u

∫ ∞
0

gδ,+(y) dy +
∫ ∞

0

y gδ,+(y) dy. (3.19)
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The third integral of (3.17) can be rewritten as∫ ∞
0

∫ ∞
0

e−δt y

(∫ t

0

hu(x) g+(y, t− x) dx+ 1
{
t >

u

c

}
e−λ(

u
c ) g+

(
y, t− u

c

)) γn tn−1 e−γt

(n− 1)!
dy dt

= γn
∫ ∞

0

y

[∫ ∞
0

e−(γ+δ)t tn−1

(n− 1)!

(∫ t

0

hu(x) g+(y, t− x) dx
)
dt+ e−λ(

u
c )
∫ ∞
u
c

e−(γ+δ)t tn−1

(n− 1)!
g+

(
y, t− u

c

)
dt

]
dy.

(3.20)

The first integral inside the square bracket of the above expression admits the representation∫ ∞
0

e−(γ+δ)t tn−1

(n− 1)!

(∫ t

0

hu(x) g+(y, t− x) dx
)
dt

=
(−1)n−1

(n− 1)!
dn−1

drn−1

[∫ ∞
0

e−rt
(∫ t

0

hu(x) g+(y, t− x) dx
)
dt

] ∣∣∣∣∣
r=γ+δ

=
(−1)n−1

(n− 1)!
dn−1

drn−1

[
h̃u(r)g̃+(y, r)

] ∣∣∣∣
r=γ+δ

= (−1)n−1
n−1∑
k=0

(
1
k!

dk

drk
h̃u(r)

∣∣∣∣
r=γ+δ

)(
1

(n− 1− k)!
dn−1−k

drn−1−k g̃+(y, r)
∣∣∣∣
r=γ+δ

)
, (3.21)

where g̃+(y, r) =
∫∞
0
e−rt g+(y, t) dt and the Leibniz Rule for differentiating product has been used. Next,

the second integral inside the square bracket of (3.20) is

e−λ(
u
c )
∫ ∞
u
c

e−(γ+δ)t tn−1

(n− 1)!
g+

(
y, t− u

c

)
dt = e−λ(

u
c )
∫ ∞

0

e−(γ+δ)(t+u
c ) (t+ u

c

)n−1

(n− 1)!
g+(y, t) dt

=
n−1∑
k=0

e−(λ+γ+δ)(uc )
(
u
c

)k
k!

∫ ∞
0

e−(γ+δ)t tn−1−k

(n− 1− k)!
g+(y, t) dt

= (−1)n−1
n−1∑
k=0

(
1
k!

dk

drk
e−(λ+r)(uc )

∣∣∣∣
r=γ+δ

)(
1

(n− 1− k)!
dn−1−k

drn−1−k g̃+(y, r)
∣∣∣∣
r=γ+δ

)
. (3.22)

Adding (3.21) and (3.22) followed by application of (3.12) and (3.13), (3.20) is reduced to∫ ∞
0

∫ ∞
0

e−δt y

(∫ t

0

hu(x) g+(y, t− x) dx+ 1
{
t >

u

c

}
e−λ(

u
c ) g+

(
y, t− u

c

)) γn tn−1 e−γt

(n− 1)!
dy dt

= γn (−1)n−1
n−1∑
k=0

(
1
k!

dk

drk
e−ρru

∣∣∣∣
r=γ+δ

)∫ ∞
0

y

(
1

(n− 1− k)!
dn−1−k

drn−1−k g̃+(y, r)
∣∣∣∣
r=γ+δ

)
dy. (3.23)

Inductively (or by di Bruno’s formula in connection to Remark 2.2), it can be seen that

dk

drk
e−ρru

∣∣∣∣
r=γ+δ

=
k∑
i=0

χi,k u
i e−ργ+δu, k = 0, 1, . . . ,

for some coefficients χi,k’s that do not depend on u. By further noting that the integral on the right-hand
side of (3.23) does not depend on u, one asserts that (3.23) admits the representation∫ ∞

0

∫ ∞
0

e−δt y

(∫ t

0

hu(x) g+(y, t− x) dx+ 1
{
t >

u

c

}
e−λ(

u
c ) g+

(
y, t− u

c

)) γn tn−1 e−γt

(n− 1)!
dy dt

=
n−1∑
j=0

ζ∗j u
j e−ργ+δu, (3.24)
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for some constants ζ∗j ’s.
We are then able to simplify (3.17) by combining (3.18), (3.19) and (3.24). First, with (3.14) at s = 0

and (3.15), one has that

u

∫ ∞
0

gδ,−(y) dy + u

∫ ∞
0

gδ,+(y) dy = u

∫ ∞
−∞

gδ(y) dy = uE[e−δT1 ] =
(

γ

γ + δ

)n
u.

Second,∫ ∞
0

y gδ,+(y) dy −
∫ ∞

0

y gδ,−(y) dy =
∫ ∞
−∞

y gδ(y) dy = − d

ds

(
γ

γ + δ − cs+ λ[1− p̃(s)]

)n ∣∣∣∣
s=0

=
(

γ

γ + δ

)n
n(λµ− c)
γ + δ

.

Using the above two expressions, (3.17) can be written in the form

E
[
e−δT1U(T1)1{T1 < τ}

∣∣U(0) = u
]

=
(

γ

γ + δ

)n
n(λµ− c)
γ + δ

+
(

γ

γ + δ

)n
u+

n−1∑
j=0

ηj u
j e−ργ+δu, (3.25)

for some constants ηj ’s.
Finally, application of (2.13), (2.14) and (3.25) to (3.10) yields

V (u; b) =
n−1∑
k=0

k∑
i=0

$i,k (u− b)i e−ργ+δ(u−b)VL,k+1(b; b) +

[(
γ

γ + δ

)n
+
n−1∑
i=0

$∗i (u− b)i e−ργ+δ(u−b)
]
VL,1(b; b)

+
(

γ

γ + δ

)n
n(λµ− c)
γ + δ

+
(

γ

γ + δ

)n
(u− b) +

n−1∑
j=0

ηj (u− b)j e−ργ+δ(u−b)

=
(

γ

γ + δ

)n(
n(λµ− c)
γ + δ

+ VL,1(b; b)− b
)

+
(

γ

γ + δ

)n
u+

n−1∑
j=0

Bj u
j e−ργ+δu, u ≥ b,

for some constants Bj ’s (which possibly depend on b but not u). Analogous to (2.10), the above result
concerning V (u; b) ≡ VU,1(u; b) for u ≥ b can be extended to (3.11) as stated in Lemma 2.

Remark 3.1. In principle, one may consider computing the constants Bj ’s (and hence Bj,n−i+1’s) directly.
However, this will not only involve derivatives of the form dkρr/dr

k (see Remark 2.2) but also dkg̃+(y, r)/drk

(see (3.23)). Explicit expression for the latter quantity is not easy to obtain in general, and therefore this
further justifies our approach of back substituting (3.11) into the integro-differential equations (3.6) and
(3.8) so that we can directly work with the coefficients Bj,n−i+1’s. �

Remark 3.2. It follows from Lemma 2 that

VU,i(u; b) ∼
(

γ

γ + δ

)n−i+1

u, u→∞,

for i = 1, 2, . . . , n. This asymptotic formula can again be explained in a similar way to (2.17): even if the
surplus level Ub(0) = u is very large, it is highly likely that a dividend will be paid at the next dividend
decision time and the surplus will drop to level b. Any additional initial surplus u will not affect the surplus
process itself, but instead it will increase the next dividend payment by the same amount. The value of
potential future dividends is negligible compared to this first payment. The term [γ/(γ+δ)]n−i+1 represents
the expected present value (at discount rate δ) of a dollar paid at the next dividend payment time because
the remaining time until the next dividend decision time is distributed as Erlang(n− i+ 1). �
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3.3. A recursive solution for V U

By an application of the solution form (3.11) of each element of V U (u; b), the following Theorem can be
proved in an identical manner as Theorem 1 and the proof is omitted.

Theorem 2. For k = 0, 1, . . . , n− 1, the expression

VU,n−k(u; b) =
(

γ

γ + δ

)k+1( (k + 1)(λµ− c)
γ + δ

+ VL,1(b; b)− b
)

+
(

γ

γ + δ

)k+1

u

+
k∑
j=0

Bj,k+1 u
j e−ργ+δu, u ≥ b,

satisfies (3.3), (3.6) and (3.8), with the coefficients given recursively in k by

Bj+1,k+1 =
λ
∑k
i=j+2Bi,k+1

(
i
j

) ∫∞
0
yi−j e−ργ+δyp(y) dy + γBj,k

(j + 1)
(
c− λ

∫∞
0
y e−ργ+δyp(y) dy

) , j = 0, 1, . . . , k − 1,

and

B0,k+1 = eργ+δb

[
VL,n−k(b; b)−

(
γ

γ + δ

)k+1( (k + 1)(λµ− c)
γ + δ

+ VL,1(b; b)− b
)

−
(

γ

γ + δ

)k+1

b−
k∑
j=1

Bj,k+1 b
j e−ργ+δb

]
,

where ργ+δ is the unique positive root of (2.11). �

3.4. A solution for V L

In this section, we solve (3.5) and (3.7) for V L(u; b) which will lead to a full solution to {Vi(u; b);u ≥ 0}
for i = 1, 2, . . . , n. Since the procedures of solving (3.5) and (3.7) are identical to those used for solving (2.5)
and (2.7), we simply state the main results here for sake of brevity. By defining the variable z = b− u and
the function, for i = 1, 2, . . . , n,

νi(z) = VL,i(b− z; b) = VL,i(u; b), 0 ≤ z ≤ b,

and the boundary conditions (3.4) become

νi(b) = 0, i = 1, 2, . . . , n. (3.26)

Again we extend the domain of the function νi(z) to z ≥ 0. By defining the auxiliary function, for i =
1, 2, . . . , n,

ϑi(z) =
∫ ∞
z

VU,i(b− z + y; b) p(y) dy, z ≥ 0,

together with the column vectors

ν̃(s) = (ν̃1(s), ν̃2(s), . . . , ν̃n(s))T ,

ν(0) = (ν1(0), ν2(0), . . . , νn(0))T = V L(b; b), (3.27)

and
ϑ̃(s) = (ϑ̃1(s), ϑ̃2(s), . . . , ϑ̃n(s))T ,

we arrive at
ν̃(s) = [A(s)]−1

[
cν(0)− λϑ̃(s)

]
. (3.28)

It is clear that the vector ϑ̃(s) is linear in V L(b; b) through the solution V U (u; b) obtained in Theorem 2, and
hence from (3.27) and (3.28) each element of ν̃(s) is linear in V L(b; b). Inverting the Laplace transforms in
(3.28) together with the application of the boundary conditions (3.26) leads to a system of n linear equations
in V L(b; b). Finally, {Vi(u; b);u ≥ 0} for i = 1, 2, . . . , n is fully characterized.
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4. Explicit solutions when gains and inter-dividend-decision times are both exponential

In previous sections, the gain distribution has been kept general (except that the gain should possess
rational Laplace transform in order to perform various Laplace transform inversions analytically), and the
intervals between successive dividend decision times were generally Erlang(n) distributed. However, when
the inter-dividend-decision times are exponential with mean 1/γ (i.e. n = 1) and the gains are exponential
with mean 1/β (where β > 0), simplifications occur and nice explicit solutions for φ(u; b) ≡ φ1(u; b) and
V (u; b) ≡ V1(u; b) are available.

4.1. Solution for φ

First, φ(u; b) can be derived using the algorithm in Sections 2.3 and 2.4. But alternatively, in such
a simple situation one can also solve the integro-differential equations (2.7) and (2.8) directly subject to
the boundary conditions (2.3) and (2.4). (Note that (2.5) and (2.6) are non-existent when n = 1.) This
typically involves an application of the operator (d/du−β) to reduce (2.7) and (2.8) to ordinary differential
equations with constant coefficients. Omitting the tedious but straightforward algebra, with either method
we ultimately arrive at

φL(u; b) = φL,1(u; b)

=
[βδ(ργ+δ + α2) + γα2(β + ργ+δ)](β − α1)eα2b+α1u − [βδ(ργ+δ + α1) + γα1(β + ργ+δ)](β − α2)eα1b+α2u

[βδ(ργ+δ + α2) + γα2(β + ργ+δ)](β − α1)eα2b − [βδ(ργ+δ + α1) + γα1(β + ργ+δ)](β − α2)eα1b
,

0 ≤ u ≤ b,

and

φU (u; b) = φU,1(u; b)

=
βδ(β + ργ+δ)(α1 − α2)e(α1+α2)be−ργ+δ(u−b)

[βδ(ργ+δ + α1) + γα1(β + ργ+δ)](β − α2)eα1b − [βδ(ργ+δ + α2) + γα2(β + ργ+δ)](β − α1)eα2b
+

γ

γ + δ
φL(b; b),

u ≥ b,

where α1 and α2 are the roots of the quadratic equation (in ξ)

cξ2 + (λ+ δ − βc)ξ − δβ = 0. (4.1)

It is instructive to note that the above equation is equivalent to equation (3.4) in Avanzi et al. (2007). This
means that the roots α1 and α2 are the same as those in the classical dual model.

Remark 4.1. Because ργ+δ →∞ as γ →∞, at the limit one has

lim
γ→∞

φL(u; b) =
α2(β − α1)eα2b+α1u − α1(β − α2)eα1b+α2u

α2(β − α1)eα2b − α1(β − α2)eα1b
=

(
β − α1 − λ

c

)
e−α1(b−u) −

(
β − α2 − λ

c

)
e−α2(b−u)(

β − α1 − λ
c

)
e−α1b −

(
β − α2 − λ

c

)
e−α2b

,

0 ≤ u ≤ b,

where the last equality follows because αi(β−αi−λ/c)/(β−αi) = −δ/c as αi satisfies (4.1) for i = 1, 2. The
last expression is consistent with that in Cheung and Drekic (2008, Section 4.2) (apart from some notational
changes). This is expected since the limit γ →∞ corresponds to the dual model under the classical barrier
strategy. �
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4.2. Solution for V

Similarly, for the expected discounted dividends until ruin V (u; b) one has

VL(u; b) = VL,1(u; b)

=
cρ2
γ+δγ(β − α1)(β − α2)(eα1u − eα2u)

(γ + δ)β{[βδ(ργ+δ + α1) + γα1(β + ργ+δ)](β − α2)eα1b − [βδ(ργ+δ + α2) + γα2(β + ργ+δ)](β − α1)eα2b}
,

0 ≤ u ≤ b, (4.2)

and

VU (u; b) = VU,1(u; b)

=
cγ(β + ργ+δ)[α2

1(β − α2)eα1b − α2
2(β − α1)eα2b]e−ργ+δ(u−b)

(γ + δ)β{[βδ(ργ+δ + α1) + γα1(β + ργ+δ)](β − α2)eα1b − [βδ(ργ+δ + α2) + γα2(β + ργ+δ)](β − α1)eα2b}

+
γ

γ + δ

(
λ
β − c
γ + δ

+ VL(b; b) + u− b

)
, u ≥ b.

Remark 4.2. Because limγ→∞ γ/(cργ+δ) = 1 (see Albrecher et al. (2012, Example 2.1)), taking limits in
(4.2) leads us to

lim
γ→∞

VL(u; b) =
1
β

(β − α1)(β − α2)(eα1u − eα2u)
(β − α2)α1eα1b − (β − α1)α2eα2b

=
1
β

eα1u − eα2u

α1
β−α1

eα1b − α2
β−α2

eα2b

=
λ

β

eα1u − eα2u

(cα1 + δ)eα1b − (cα2 + δ)eα2b
, 0 ≤ u ≤ b, (4.3)

where the last equality follows from the fact that α1 and α2 both satisfy (4.1). As expected, the final
expression is identical to equation (3.5) in Avanzi et al. (2007), who studied the dual model with the
classical barrier. �

4.3. Optimal dividend barrier

Note that (4.2) factorizes VL(u; b) as the product of a function of u and a function of b. This implies that
the optimal b∗ (if positive) which maximizes VL(u; b) with respect to b is independent of the initial capital
u, as long as 0 ≤ u ≤ b∗. By setting ∂VL(u; b)/∂b = 0, we arrive at

b∗ =
1

α1 − α2
ln

[βδ(ργ+δ + α2) + γα2(β + ργ+δ)](β − α1)α2

[βδ(ργ+δ + α1) + γα1(β + ργ+δ)](β − α2)α1
.

After some tedious algebra, it is found that the same b∗ satisfies

∂

∂b
VU (u; b)

∣∣∣∣
b=b∗

= 0, u ≥ b∗.

In other words, it is actually the same b∗ that maximizes V (u; b) with respect to b for any initial surplus
u ≥ 0. Interestingly, it can also be shown that

V ′L(b∗−; b∗) = V ′U (b∗+; b∗) = 1.

While the smooth pasting condition is already known from (3.9), at u = b∗ both the derivatives are equal
to 1. We refer to interested readers to Albrecher et al. (2011b, Section 8, Remark (ii)) regarding the
interpretation of b∗ as the optimal financial capital.
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Moreover, by considering

d

db
V (b; b)

∣∣∣∣
b=b∗

=
∂

∂u
V (u; b)

∣∣∣∣
u=b=b∗

+
∂

∂b
V (u; b)

∣∣∣∣
u=b=b∗

= V ′(b∗; b∗) + 0 = 1,

one concludes that
∂

∂b
[u− b+ V (b; b)]

∣∣∣∣
b=b∗

= −1 +
d

db
V (b; b)

∣∣∣∣
b=b∗

= 0,

which shows that it is still the same b∗ that maximizes the expected discounted dividends until ruin even if
time 0 is declared to be a dividend decision time.

5. Numerical studies

In this section, we illustrate the results of this paper, as well as the impact of its assumptions about
the payment of dividends and the occurrence of ruin. To that purpose we will consider the following three
models:

Model CC: The dual model with the classical dividend barrier, whereby both dividend payments and ruin
are monitored continuously.
For this model, the expected present value of dividends is computed according to Avanzi et al. (2007),
whereas the Laplace transform of the time to ruin according to Cheung and Drekic (2008). Note that
this dividend strategy is known to be optimal for at least exponential and mixture of exponential gains
(see e.g. Avanzi et al., 2011).

Model PP: The dual model whereby both dividend payments and ruin can only occur at the same (periodic)
Erlang distributed random intervals.
Assumptions about dividends and ruin are here identical to that of Albrecher et al. (2011a), and ruin
is assumed not to be observed at time 0. That is, we allow zero initial surplus at time 0 without ruin
occurring. Their results about the expected present value of dividends can readily be adapted to the
dual model by reversing the roles of gδ,+(·) and gδ,−(·) in their equation (37)1; this is done in Appendix
A for exponentially distributed inter-dividend-decision intervals and gains and for 0 ≤ u ≤ b.

Model PC: The dual model whereby ruin is allowed to occur at any time but dividends are allowed to be
paid only at Erlang distributed random intervals.
This is the model that is developed in this paper, and both the expected present value of dividends and
the Laplace transform of the time to ruin are calculated according to Sections 3 and 2, respectively.

Throughout, we will consider four gains distributions with rational Laplace transform, namely

Mixture of exponentials: p(y) = (1/3)2e−2y + (2/3)0.8e−0.8y;
Exponential: p(y) = e−y;
Combination of exponentials: p(y) = (2)1.5e−1.5y + (−1)3e−3y;
Erlang(2): p(y) = 4ye−2y.

These four distributions have a mean of 1 and a decreasing variance; they are identical to the ones considered
in Avanzi et al. (2007). We always set δ = 0.01. Unless stated otherwise, we will use λ = 1 and c = 0.75
such that the expected profit per time unit (in the absence of dividends) is 1− c = 0.25. For example, under
these default parameters the values of b∗CC (the optimal barrier of Model CC) for the four gains distributions
are 11.05822, 10.61754, 9.57551 and 9.45414 respectively.

In the next subsection we will illustrate the convergence of the variables of interest in Models PP and
PC to that of Model CC, when the expected inter-dividend-decision time interval tends to 0. In Section 5.2
we discuss the convergence of Model PC when the variance of the inter-dividend-decision times tends to 0.
Finally, Section 5.3 is concerned with the level of the barrier that maximizes the expected present value of
dividends in Model PC, and its convergence to the optimal barrier of Model CC.

1Note that the quantities gδ,+(·) and gδ,−(·) in Albrecher et al. (2011a) have the same definition as in (3.15).
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Figure 2: Expected present value of dividends in Models PP and PC with exponential claims using the optimal barrier b∗CC
(according to Model CC). The curve for Model PP shows a more pronounced hump when risk increases because of smaller
expected profit ((a) to (b)) and/or because of more variable gains ((a) to (c)).

5.1. The impact of the expected inter-dividend-decision times

In this subsection, we consider exponential inter-dividend-decision times (i.e. n = 1) and vary γ in order
to illustrate the impact of the expected inter-dividend-decision time interval 1/γ.

Figure 2 illustrates the impact of decreasing expected inter-dividend-decision times (i.e. increasing γ’s)
on the expected present value of dividends, in three different configurations of parameters. Recall that under
the assumptions that solvency is monitored continuously and gains are (mixed) exponential, a continuously
monitored barrier strategy at the corresponding optimal barrier level b∗CC is the globally optimal dividend
strategy (see, for instance, Avanzi et al., 2011). Hence, the expected present value of dividends under Model
PC at barrier level b∗CC will necessarily be inferior to that of Model CC. Furthermore, observe that the
impact of γ in Model PC is such that higher γ will lead to more dividends, as these can be paid more often.
The expected present value of dividends is thus monotonically increasing in γ towards the corresponding
value under Model CC.

When ruin cannot occur between dividend payment times as in Model PP, a trade-off appears: as the
expected inter-dividend-decision time interval decreases, more dividends can be paid, but the event of is also
monitored more frequently. Because of this trade-off, the expected present value of dividends is sometimes
first increasing and then decreasing in γ. This is more so for higher levels of risk, where the hump becomes
more pronounced. By higher levels of risk, we mean either: (1) lower levels of initial surplus (as shown in all
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Model γ u = 0 u = 0.1b u = 0.2b u = 0.5b u = b
PC 1 0 6.17494 10.60689 18.28124 24.75248
PC 10 0 6.23046 10.70226 18.44560 24.97502
PC 1000 0 6.23662 10.71285 18.46386 24.99975
PC 90000 0 6.23668 10.71296 18.46405 25.00000
CC (∞) 0 6.23668 10.71300 18.46400 25.00000

Table 1: Expected present value of dividends with mixture of exponentials gains

Model γ u = 0 u = 0.1b u = 0.2b u = 0.5b u = b
PC 1 0 6.41275 10.93153 18.53165 24.75247
PC 10 0 6.47040 11.02981 18.69826 24.97502
PC 1000 0 6.47681 11.04073 18.71678 24.99974
PC 90000 0 6.47687 11.04084 18.71696 24.99999
CC (∞) 0 6.47688 11.04085 18.71697 25.00000
PP 90000 0.00006 6.47692 11.04087 18.71697 25.00000
PP 1000 0.00545 6.48061 11.04345 18.71798 25.00049
PP 10 0.49783 6.81747 11.27692 18.80751 25.04190
PP 1 3.16064 8.60229 12.47657 19.18494 25.12328

Table 2: Expected present value of dividends with exponential gains

Model γ u = 0 u = 0.1b u = 0.2b u = 0.5b u = b
PC 1 0 6.99467 11.71399 19.11949 24.75247
PC 10 0 7.05755 11.81931 19.29139 24.97502
PC 1000 0 7.06454 11.83101 19.31049 24.99975
PC 90000 0 7.06461 11.83113 19.31068 24.99999
CC (∞) 0 7.06461 11.83113 19.31068 25.00000

Table 3: Expected present value of dividends with combination of exponential gains

Model γ u = 0 u = 0.1b u = 0.2b u = 0.5b u = b
PC 1 0 7.07126 11.81478 19.19108 24.75247
PC 10 0 7.13484 11.92102 19.36363 24.97502
PC 1000 0 7.14190 11.93281 19.38280 24.99974
PC 90000 0 7.14197 11.93281 19.38299 24.99999
CC (∞) 0 7.14198 11.93294 19.38300 25.00000

Table 4: Expected present value of dividends with Erlang(2) gains

three graphs); (2) lower expected profit per unit time λµ− c (compare graph (a) with graph (b), where the
expected profit goes from 0.2 to 0.05); or (3) an exponential gain distribution with higher variance (compare
graph (a) with graph (c), where the coefficient of variation of gains goes from 1 to 50 with fixed expected
profit). Note also that values for Model PP in Figure 2 are all strictly above that of Model PC. This makes
sense, as ruin occurs earlier in Model PC, everything else being equal.

When the expected inter-dividend-decision time tends to zero, the expected present value of dividends
and the Laplace transform of the time to ruin in both Models PP and PC approach that of Model CC,
which was to be expected. Some of the results are illustrated in Tables 1-4 for all four gains distributions
when b = b∗CC , albeit only for the expected present value of dividends (for sake of brevity).

5.2. Convergence of Model PC when the variance of inter-dividend-decision times tends to 0

In this subsection, we focus on Model PC and set the expected inter-dividend-decision time interval n/γ
to 10. As n increases, the variance of the interval decreases towards 0.
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Figure 3: Convergence of the Laplace transform of the time to ruin in Model PC when n increases from 1 to 5

When we increase n further, some numerical issues can arise when using standard mathematical software
such as Mathematica, Matlab or Maple. Firstly, (2.30) and (3.28) require the inversion of an n× n matrix,
which leads to a solution that is in the form of a ratio of two rational functions of high degree. This issue
can be alleviated by determining the poles and residuals of that fraction in order to write the inverse of the
Laplace transform explicitly, which simplifies its inversion and improves accuracy. Secondly, once the forms
of φL,i(u; b) and VL,i(u; b) (i = 1, 2, . . . , n) are obtained, the boundary conditions are used to determine the
constant terms φL,i(b; b) and VL,i(b; b) (i = 1, 2, . . . , n); see the procedure described at the end of Sections 2
and 3. This involves solving a high dimensional system, with coefficients which turn out to be comparatively
large. These create some numerical instability for larger n.

For our model, the convergence of the Laplace transform of the time to ruin when n increases up to 5 is
illustrated in Figure 3 when b = b∗CC (note that both the vertical and horizontal axes have been magnified).
Similar behaviour is observed for expected present value of dividends. The convergence we observed is
similar to that observed in e.g. Asmussen et al. (2002), Stanford et al. (2005), Ramaswami et al. (2008) or
Albrecher et al. (2011a).

5.3. The optimal barrier level b∗PC in Model PC

What is the impact on the optimal barrier level of the periodicity of dividend payments and the variability
of gains? To provide some answers we have determined numerically the optimal barrier level b∗PC (previously
denoted by b∗ in Section 4.3) in Model PC for varying levels of γ as well as different gain distributions. We
assume here exponential inter-dividend-decision time intervals with mean 1/γ.

Table 5 shows that as γ increases (i.e. the expected inter-dividend-decision times become shorter), the
optimal barrier b∗PC under Model PC approaches that of Model CC from below. Furthermore, for each
fixed γ, b∗PC appears to increase with the variance of the gains, which is likely due to the additional safety
required for increased risk.

Figure 4 displays the expected present value of dividends until ruin in Models CC and PC as functions of
the initial surplus (on the left) and dividend barrier (on the right). Whilst Model CC dominates Model PC
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γ Mixture Exponential Combination Erlang(2)
0.5 10.27032 9.84234 8.84003 8.72157
1 10.57561 10.13961 9.11456 8.99413
5 10.92803 10.48747 9.44627 9.32487
10 10.98888 10.54820 9.50627 9.38491

1000 11.05747 10.61651 9.57477 9.45340
(∞) 11.05821 10.61754 9.57551 9.45414

Table 5: Convergence of the (numerically) optimal barrier level b∗PC in Model PC to the optimal b∗CC of Model CC.
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Figure 4: Illustration of the expected present value of dividends in Models CC and PC when gains are exponential, as a function
of the initial surplus on the left, and as a function of the barrier level on the right. The vertical dashed lines show the associated
optimal barrier levels 10.62 for Model CC and 8.57 for Model PC.

when the respective optimal barriers are applied for all u (as it should, at least for mixed exponential gains),
if one fixes for example u = 8 then Model PC fares better when barrier levels are low (well below optimal).
This is likely to be because of the additional safety related to delayed dividend payments, when the barrier is
less than optimal. Conversely, the time value of money clearly does not justify delaying dividend payments
any further when barrier levels are too high (above optimal).

Remark 5.1. Recall the discussion in Section 4.3 of the optimal barrier in Model PC when both inter-
dividend-decision times and gains are exponential. Do numerical calculations suggest that some of the
properties found therein hold in general?

First, it seems that the value of the optimal barrier in Model PC does not depend on the initial surplus.
We were unable to find a counterexample numerically, when using all four distributions considered in this
section, as well as varying n from 1 to 5.

Furthermore, V ′L,1(b∗PC−; b∗PC) and V ′U,1(b∗PC+; b∗PC) are numerically both equal to one for the whole
(wide) range of parameters and gains distributions we tested. This suggests that the optimal dividend
barrier b∗PC in this setting could be found by setting additional boundary conditions accordingly. �
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A. Dividends in the dual model when ruin can occur only at dividend payment times

In this Appendix, we replicate the results of Albrecher et al. (2011a, Section 3.1) for exponential inter-
dividend-decision times Zk’s and exponential gains with mean 1/γ and 1/β respectively, albeit in the dual
model. The function gδ(y) defined via (3.14) and (3.15) is still applicable, but the roles of gδ,+(·) and gδ,−(·)
need to be interchanged when we apply equation (28) of Albrecher et al. (2011a) which now becomes

V (u; b) =
∫ ∞
b−u

γ(β −Rγ+δ)
c(ργ+δ +Rγ+δ)

e−Rγ+δy[y − (b− u) + V (b; b)] dy +
∫ b−u

0

γ(β −Rγ+δ)
c(ργ+δ +Rγ+δ)

e−Rγ+δy V (u+ y; b) dy

+
∫ u

0

γ(β + ργ+δ)
c(ργ+δ +Rγ+δ)

e−ργ+δy V (u− y; b) dy, 0 ≤ u ≤ b, (A.1)

where −ργ+δ < 0 and Rγ+δ > 0 are the unique negative and positive roots of the quadratic equation (in ξ)

cξ2 + (λ+ γ + δ − βc)ξ − (γ + δ)β = 0. (A.2)

(The notation ργ+δ is consistent with the one defined previously in Lemma 1. See also Remark 2.1.) Applying
the operator (d/du+ ργ+δ)(d/du−Rγ+δ) to the integral equation (A.1) and rearranging yields

V ′′(u; b) +
(
ργ+δ −Rγ+δ −

γ

c

)
V ′(u; b) +

(
γβ

c
− ργ+δRγ+δ

)
V (u; b) = 0,

which indicates that V (u; b) is of the form

V (u; b) = C1e
α1u + C2e

α2u, (A.3)

where α1 and α2 (see Remark A.1) are the roots of the characteristic equation (in ξ)

ξ2 +
(
ργ+δ −Rγ+δ −

γ

c

)
ξ +

γβ

c
− ργ+δRγ+δ = 0, (A.4)

and C1 and C2 are constants that do not depend on u but possibly depend on b. The constants C1 and
C2 are determined by back substituting (A.3) into (A.1). After some algebra, matching the coefficients of
eRγ+δu yields

α1e
α1b

Rγ+δ − α1
C1 +

α2e
α2b

Rγ+δ − α2
C2 =

1
Rγ+δ

,

whereas the coefficients of e−ργ+δu imply

1
ργ+δ + α1

C1 +
1

ργ+δ + α2
C2 = 0.

Solving the above two equations for C1 and C2 and substituting into (A.3), we ultimately arrive at

V (u; b) =
1

Rγ+δ

(Rγ+δ − α1)(Rγ+δ − α2)[(ργ+δ + α1)eα1u − (ργ+δ + α2)eα2u]
(ργ+δ + α1)(Rγ+δ − α2)α1eα1b − (ργ+δ + α2)(Rγ+δ − α1)α2eα2b

, 0 ≤ u ≤ b. (A.5)

Remark A.1. By applying Vieta’s rule to the quadratic equation (A.2) one has

ργ+δRγ+δ =
(γ + δ)β

c
and ργ+δ −Rγ+δ =

λ+ γ + δ

c
− β,

and therefore (A.4) can be rewritten as (4.1), which is in turn equivalent to (A.2) with γ = 0. This means
that one can set α1 = Rδ and α2 = −ρδ according to our notations. �
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Remark A.2. From Albrecher et al. (2011a, Remark 2.1), it is known that ργ+δ → ∞ and Rγ+δ → β as
γ → ∞. Hence, taking limit in (A.5) again leads us to the first equality in (4.3) which is again expected,
since the limit γ →∞ in this model also corresponds to the dual model under the classical barrier strategy.
�
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Lundberg, F., 1909. Über die Theorie der Rückversicherung. Transactions of the VIth International Congress of Actuaries 1,

877–948.
Mazza, C., Rullière, D., 2004. A link between wave governed random motions and ruin processes. Insurance: Mathematics and

Economics 35 (2), 205–222.
Miyasawa, K., 1962. An economic survival game. Journal of the Operations Research Society of Japan 4 (3), 95–113.
Ng, A. C. Y., 2009. On a dual model with a dividend threshold. Insurance: Mathematics and Economics 44 (2), 315–324.
Ng, A. C. Y., 2010. On the upcrossing and downcrossing probabilities of a dual risk model with phase-type gains. ASTIN

Bulletin 40 (1), 281–306.
Ramaswami, V., Woolford, D. G., Stanford, D. A., 2008. The erlangization method for markovian fluid flows. Annals of

Operations Research 160 (1), 215–225.
Seal, H. L., 1969. Stochastic Theory of a Risk Business. Wiley Series in Probability and Mathematical Statistics-Applied. John

Wiley & Sons, Inc., New York, London, Sydney, Toronto.
Stanford, D. A., Avram, F., Badescu, A. L., Breuer, L., Da Silva Soares, A., Latouche, G., 2005. Phase-type approximations

to finite-time ruin probabilities in the sparre-andersen and stationary renewal risk models. ASTIN Bulletin 35 (1), 131–144.
Stanford, D. A., Yu, K., Ren, J., 2011. Erlangian approximation to finite time ruin probabilities in perturbed risk models.

Scandinavian Actuarial Journal 2011 (1), 38–58.
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