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1. Introduction. Ever since the appearance of Beukers’ paper [1], it
was clear that double integrals of the type

(1.1)
1\
0

1\
0

P (x, y)
dx dy

1− xy ,

where P (x, y) ∈ Z[x, y], are relevant to the study of Diophantine properties
of ζ(2) =

∑∞
n=1 n

−2 = π2/6, although the problem of finding polynomials
P (x, y) yielding good irrationality measures of ζ(2) proved to be a difficult
one. With the choice

P (x, y) = Ln(x)(1− y)n,

where

Ln(x) =
1
n!

dn

dxn
(xn(1− x)n)

is the nth Legendre polynomial, Beukers obtained the sequence of ratio-
nal approximations to ζ(2) previously found by Apéry through an entirely
different method, and hence gave a new proof of Apéry’s result that

10 log

√
5 + 1
2

5 log

√
5 + 1
2

− 2

= 11.85078 . . .

is an irrationality measure of ζ(2).
We recall that λ is an irrationality measure of the irrational number α

if for any ε > 0 there exists a constant q0 = q0(ε) > 0 such that∣∣∣∣α−
p

q

∣∣∣∣ > q−λ−ε

for all integers p and q with q > q0. We denote by µ(α) the minimum of
such exponents λ.

[23]
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By repeated partial integration, one sees that

(1.2)
1\
0

1\
0

Ln(x)(1− y)n
dx dy

1− xy

= (−1)n
1\
0

1\
0

(
x(1− x)y(1− y)

1− xy
)n

dx dy

1− xy ,

and the left side of (1.2) is easily seen to be an − bnζ(2), with bn integer
and an a rational number having a controlled denominator, while the right
side of (1.2) is suitable to get asymptotic estimates of an− bnζ(2) and bn as
n→∞.

The search for better polynomials P (x, y) in (1.1) was not pursued until
the appearance of the paper [3] by Dvornicich and Viola, where the irra-
tionality measure µ(ζ(2)) < 10.0298 was obtained. This was later improved
to µ(ζ(2)) < 7.5252 by Hata [5] and to µ(ζ(2)) < 7.398537 by Rhin and
Viola [8]. In a recent paper, Hata [7] considered the integral

(1.3)
1\
0

1\
0

(
x15(1− x)15y14(1− y)14

(1− xy)12

)n
dx dy

1− xy ,

and transformed it into an integral of the type (1.1) by 12n-fold partial
integration, thus proving that (1.3) has indeed the form an − bnζ(2) with
an ∈ Q and bn ∈ Z. By making use of the p-adic valuation of suitable
binomial coefficients, Hata showed that the denominator of an is relatively
small, and proved the remarkable result µ(ζ(2)) < 6.3489. He subsequently
improved this to µ(ζ(2)) < 5.687 ([7], Addendum) by combining his method
with the properties of a birational transformation of the plane introduced
in [8].

The purpose of the present paper is the arithmetical study of a family
of integrals generalizing (1.3). We define

(1.4) I(h, i, j, k, l) =
1\
0

1\
0

xh(1− x)iyk(1− y)j

(1− xy)i+j−l
dx dy

1− xy ,

where h, i, j, k, l are any non-negative integers, and we show that the Dio-
phantine properties of the integrals (1.4) rest upon an underlying algebraic
structure. Specifically, we consider the action on the integrals (1.4) of a
naturally arising permutation group.

Some algebraic properties of the integrals (1.4) (in the more general
case where h, i, j, k, l are any complex parameters with real parts > −1)
were studied in 1905 by A. C. Dixon [2] who, however, gave no arithmetical
applications of them. Dixon found that the value of (1.4) is unchanged under
a cyclic permutation of h, i, j, k, l. This can be shown e.g. by applying to the
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integral (1.4) the birational transformation

(1.5) τ :




ξ =

1− x
1− xy ,

η = 1− xy,
defined in [8]. Moreover, Dixon remarked that the Euler integral represen-
tation of Gauss’s hypergeometric function shows that the quantity

(1.6)
I(h, i, j, k, l)

Γ (h+ 1)Γ (i+ 1)Γ (j + 1)Γ (k + 1)Γ (l + 1)

is a symmetric function of the sums h + i, i + j, j + k, k + l, l + h. In our
context the gamma-factors are factorials, and they provide information on
the p-adic valuation of the rational part an of

I(hn, in, jn, kn, ln) =
1\
0

1\
0

(
xh(1− x)iyk(1− y)j

(1− xy)i+j−l

)n
dx dy

1− xy(1.7)

= an − bnζ(2).

A crucial step to obtain this is to characterize in terms of quotients of factori-
als the (left) cosets of a subgroup T, related to the transformation (1.5), in a
permutation group Φ related to the hypergeometric integral transformation
ϕ which leaves the value of (1.6) unchanged, and we do this in Section 3.

We remark that if i+ j− l > min{h, i, j, k}, (1.4) cannot be transformed
by partial integration into an integral of the type (1.1) to which Hata’s
arithmetical method [7] can be successfully applied, and in fact if i+ j− l >
min{h, k}, by the partial integration method it is not even clear that (1.4)
equals a − bζ(2) for some a ∈ Q and b ∈ Z. Therefore, in order to apply
for any admissible choice of h, i, j, k, l the whole group Φ to the study
of the p-adic valuation of the rational part an of (1.7), we need first to get
rid of the partial integration method, and to show that (1.4) has the form
a − bζ(2) without using a representation of the type (1.1). In Section 2 we
achieve this, and we find an (optimal) pair of non-negative integers M,N
such that dMdNa ∈ Z (we denote dm = l.c.m.{1, 2, . . . ,m}).

The choice h = i = 12, j = k = 14, l = 13 in (1.7) allows us to prove
the irrationality measure

µ(ζ(2)) < 5.441243.

We incidentally remark that the one-dimensional analogue of our method
applies to the integrals

1\
0

(
xh(1− x)i

(1 + x)i−l

)n
dx

1 + x
,

where h, i, l are any integers satisfying h > max{0,−l}, i > max{0, l},
and allows one to obtain irrationality measures of log 2. Here the choice
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h = i = 7, l = 1 yields the same sequence of rational approximations to
log 2 found by Rukhadze [9] (see also Hata [5]), and hence the bound

µ(log 2) < 3.89139978.

This paper is organized as follows. In Section 2 we simplify and generalize
a method introduced in our previous paper ([8], Section 3). Thus we prove
some arithmetical lemmas showing that for any non-negative integers h,
i, j, k, l we have

I(h, i, j, k, l) = a− bζ(2)
with b ∈ Z and dMdNa ∈ Z, where M and N are invariant under the action
of the transformation (1.5) on I(h, i, j, k, l), and allowing one to express the
integer b as a double contour integral.

In Section 3 we apply to I(h, i, j, k, l) the hypergeometric transformation
ϕ, and we can do this by imposing the restriction that not only

(1.8) h, i, j, k, l

but also

(1.9) j + k − h, k + l − i, l + h− j, h+ i− k, i+ j − l
are non-negative. Denoting by σ the transformation that interchanges the
variables x, y in the integral I(h, i, j, k, l), we consider the permutations ϕ,
τ and σ of the ten integers (1.8) and (1.9) induced by the integral transfor-
mations ϕ, τ and σ respectively, and we characterize the left cosets of the
subgroup T = 〈τ ,σ〉 in the group Φ = 〈ϕ, τ ,σ〉 in terms of quotients of
factorials.

In Section 4 we analyse the p-adic valuation and hence the denominator
of an by a discussion close to Hata’s method [7]. Our approach differs from
Hata’s in the use of the p-adic valuation of the factorials occurring in the
transformation formulae corresponding to the left cosets of T in Φ, in place
of Hata’s analysis of the p-adic valuation of binomial coefficients.

In Section 5 we give the asymptotic estimates of

I(hn, in, jn, kn, ln) = an − bnζ(2)

and of bn as n→∞, under the further restriction that the integers (1.8) and
(1.9) are strictly positive, and we prove the irrationality measure µ(ζ(2)) <
5.441243 mentioned above.

We point out here that, even though the values of the integers (1.8) in
Section 5 must be such that (1.8) and (1.9) are strictly positive, we can-
not impose this restriction from the very beginning, since our arithmetical
lemmas in Section 2 consist in reducing I(h, i, j, k, l) to simpler integrals for
which some of the integers (1.8) vanish, or some of (1.9) may be negative.
Hence it is essential to restrict successively the signs of (1.8) and (1.9) as
indicated above.
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We wish to make a concluding remark on the motivation of this pa-
per. Unlike Diophantine approximation to algebraic numbers, where fairly
general methods are available even in the search for effective irrationality
measures, the Diophantine theory for transcendental constants is charac-
terized by lack of generality in the tools employed. However, the algebraic
approach we work out in this paper also applies to the Diophantine study of
a class of constants other than ζ(2) or log 2, which can be related to suitable
integrals. We hope that our paper will be primarily viewed as a contribution
to the quest for general methods in the theory of Diophantine approximation
to transcendental (or conjecturally transcendental) constants.

We are indebted to F. Amoroso, R. Dvornicich and D. Masser for inter-
esting discussions on some aspects of our results.

2. Arithmetical lemmas. Let h, i, j, k, l be integers. We consider the
integral

(2.1) I(h, i, j, k, l) =
1\
0

1\
0

xh(1− x)iyk(1− y)j

(1− xy)i+j−l
dx dy

1− xy ,

and note that the condition for I(h, i, j, k, l) to be finite is that h, i, j, k, l
are all non-negative, which we shall henceforth assume. We recall from [8]
that the transformation τ defined by

τ :




ξ =

1− x
1− xy ,

η = 1− xy,
has period 5 and maps the unit square (0, 1) × (0, 1) onto itself. Moreover,
the function

x(1− x)y(1− y)
1− xy

and the measure
dx dy

1− xy
are invariant under the action of τ.

Let J0 = I(h, i, j, k, l), and let J1 be the integral obtained by applying
to J0 the transformation τ, i.e. by making in (2.1) the change of variables

τ−1 :




x = 1− ξη,
y =

1− η
1− ξη ,

and then replacing ξ, η with x, y respectively. We find J1 = I(i, j, k, l, h), so
that with the action of τ on J0 we associate the cyclic permutation τ of h,
i, j, k, l represented by the diagram
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(2.2)

As usual, we denote this permutation by

τ = (h i j k l).

Thus, if we call Jm the integral obtained by applying τm to J0, we have

(2.3)

J0 = I(h, i, j, k, l),

J1 = I(i, j, k, l, h),

J2 = I(j, k, l, h, i),

J3 = I(k, l, h, i, j),

J4 = I(l, h, i, j, k).

Similarly, by applying to I(h, i, j, k, l) the transformation

σ :
{
ξ = y,
η = x,

i.e. by interchanging the variables x, y in the integral, we get I(k, j, i, h, l).
Hence with the action of σ on I(h, i, j, k, l) we associate the permutation

σ = (h k)(i j)

that interchanges h with k and i with j. Thus σ changes the diagram (2.2) by
the symmetry about its vertical midline. Therefore the permutation group
〈τ ,σ〉 generated by τ and σ is isomorphic to the dihedral group D5 of order
10, and the value of I(h, i, j, k, l) is invariant under the action of 〈τ ,σ〉.

Let now

dn = l.c.m.{1, 2, . . . , n},
and d0 = 1 for completeness. Our aim is to show that for any non-negative
integers h, i, j, k, l we have

I(h, i, j, k, l) = a− bζ(2)

with a ∈ Q, b ∈ Z, and to find two non-negative integers M,N, as small as
possible, such that

dMdNa ∈ Z,
thus generalizing Hata’s method [7]. The above a and b are the same for the
ten integrals obtained by the action of 〈τ ,σ〉 on I(h, i, j, k, l). Accordingly,
M and N will be defined to be invariant under the actions of τ and σ (see
Theorem 2.2 below).
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Theorem 2.1. Let h, i, j, k, l be non-negative integers, and let

(2.4)
M0 = max{k + l − i, l + h− j, i+ j − l},
N0 = max{j + k − h, min{k + l − i, l + h− j}, h+ i− k}.

Then the integral

J0 =
1\
0

1\
0

xh(1− x)iyk(1− y)j

(1− xy)i+j−l
dx dy

1− xy
satisfies

J0 = a− bζ(2)

with b ∈ Z and dM0dN0a ∈ Z.
R e m a r k 2.1 . Our assumption h, i, j, k, l ≥ 0 obviously implies

M0, N0 ≥ 0, even if some of the integers

j + k − h, k + l − i, l + h− j, h+ i− k, i+ j − l
are negative.

The proof of Theorem 2.1 is based on some arithmetical lemmas.

Lemma 2.1 (Beukers [1]). If i+ j − l ≤ 0, then Theorem 2.1 holds.

P r o o f. If i+ j − l < 0, since
1\
0

1\
0

xrys dx dy =
1

(r + 1)(s+ 1)

for r, s ≥ 0, we have J0 ∈ Q, dk+l−idl+h−jJ0 ∈ Z, and

M0 = max{k + l − i, l + h− j}, N0 ≥ min{k + l − i, l + h− j}.
If i+ j − l = 0, by Lemma 1.1 in [7] we have J0 = a− bζ(2) with b ∈ Z and
dM ′dN ′a ∈ Z, where

M ′ = max{h+ i, j + k} = M0

and
N ′ = min{max{h+ i, j + k − h}, max{j + k, h+ i− k}}

= max{j + k − h, min{j + k, h+ i}, h+ i− k} = N0.

Lemma 2.2. If j = k = 0, then Theorem 2.1 holds.

P r o o f. By (2.3) we have

J0 = I(h, i, 0, 0, l) = J2 = I(0, 0, l, h, i),

and

M0 = max{l + h, i− l}, N0 = max{l − i, h+ i}.
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Denoting by M2 and N2 the corresponding integers for the integral J2,
i.e. the integers defined by (2.4) with h, i, j, k, l replaced by j, k, l, h, i
respectively, we have in the present case

M2 = max{h+ i, l − i} = N0, N2 = max{l + h, i− l} = M0.

Hence the conclusion follows by applying Lemma 2.1 to J0 if i − l ≤ 0, or
to J2 if i− l ≥ 0.

Lemma 2.3. If k = l = 0, then Theorem 2.1 holds.

P r o o f. Again by (2.3) we have

J0 = I(h, i, j, 0, 0) = J1 = I(i, j, 0, 0, h),

and

M0 = max{h− j, i+ j}, N0 = max{j − h, h+ i}.
Denoting by M1, N1 the integers defined by (2.4) with h, i, j, k, l replaced
by i, j, k, l, h respectively, we now find

M1 = max{h+ i, j − h} = N0, N1 = max{h− j, i+ j} = M0.

Hence the conclusion follows by applying Lemma 2.2 to J1.

Lemma 2.4. If i = k = 0, then Theorem 2.1 holds.

P r o o f. If h = 0, we apply Lemma 2.2 after interchanging x and y in J0.
If l = 0, we apply Lemma 2.3. If j − l ≤ 0, we apply Lemma 2.1. Hence we
may assume

(2.5) min{h, l, j − l} > 0.

Then we have the decomposition

J0 =
1\
0

1\
0

xh(1− y)j

(1− xy)j−l
dx dy

1− xy

=
1\
0

1\
0

(
xh(1− y)j−1

(1− xy)j−l
− xh−1(1− y)j−1

(1− xy)j−l
+
xh−1(1− y)j−1

(1− xy)j−l−1

)
dx dy

1− xy
= I(h, 0, j − 1, 0, l − 1)− I(h− 1, 0, j − 1, 0, l − 1) + I(h− 1, 0, j − 1, 0, l)

= J
(1)
0 − J (2)

0 + J
(3)
0 ,

say, with J
(r)
0 = I(hr, 0, jr, 0, lr). For each r, 1 ≤ r ≤ 3, at least one of the

integers hr, lr, jr − lr is smaller than the corresponding integer associated
with J0, while none is larger. Moreover, if we denote by M (r)

0 , N
(r)
0 the inte-

gers defined by (2.4) with h, i, j, k, l replaced by hr, 0, jr, 0, lr respectively,
we see that M (r)

0 , N (r)
0 do not exceed the corresponding integers M0, N0 for

J0. By iterating the above decomposition for each integral J (r)
0 satisfying
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(2.5), i.e. such that min{hr, lr, jr− lr} > 0, we express J0 as a linear combi-
nation with integer coefficients of finitely many integrals J (s)

0 = as − bsζ(2)
satisfying bs ∈ Z and dM0dN0as ∈ Z.

Lemma 2.5. If k = 0, then Theorem 2.1 holds.

P r o o f. If i = 0 or j = 0 or l = 0, we apply Lemmas 2.4, 2.2 or 2.3
respectively. If i+ j − l ≤ 0, we apply Lemma 2.1. Hence we may assume

(2.6) min{i, j, l, i+ j − l} > 0.

Then we iterate the decomposition

J0 =
1\
0

1\
0

xh(1− x)i(1− y)j

(1− xy)i+j−l
dx dy

1− xy

=
1\
0

1\
0

(
xh(1− x)i(1− y)j−1

(1− xy)i+j−l
+
xh(1− x)i−1(1− y)j

(1− xy)i+j−l

− xh(1− x)i−1(1− y)j−1

(1− xy)i+j−l−1

)
dx dy

1− xy
= I(h, i, j − 1, 0, l − 1) + I(h, i− 1, j, 0, l − 1)− I(h, i− 1, j − 1, 0, l − 1)

for each integral satisfying (2.6), and we conclude as in the proof of Lem-
ma 2.4.

P r o o f o f T h e o r e m 2.1. If h = 0 or k = 0 we apply Lemma 2.5,
possibly after interchanging x and y. If i + j − l ≤ 0 we apply Lemma 2.1.
Hence we may assume

(2.7) min{h, k, i+ j − l} > 0.

Then we iterate the decomposition

J0 =
1\
0

1\
0

xh(1− x)iyk(1− y)j

(1− xy)i+j−l
dx dy

1− xy

=
1\
0

1\
0

(
xh−1(1− x)iyk−1(1− y)j

(1− xy)i+j−l
− xh−1(1− x)iyk−1(1− y)j

(1− xy)i+j−l−1

)
dx dy

1− xy
= I(h− 1, i, j, k − 1, l)− I(h− 1, i, j, k − 1, l + 1)

for each integral satisfying (2.7), and we conclude as in the proof of Lem-
ma 2.4.

The integers M0, N0 defined by (2.4) are invariant under the action of
σ, but not of τ . For each m, 0 ≤ m ≤ 4, let Mm, Nm be the corresponding
integers for the integral Jm in (2.3), i.e. those defined by (2.4) with h, i, j,
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k, l replaced by

τm(h), τm(i), τm(j), τm(k), τm(l)

respectively, where τ is the permutation (2.2). Since J0 = . . . = J4, for any
m and q with 0 ≤ m ≤ 4, 0 ≤ q ≤ 4, the pair Mm, Nm is admissible for Jq.
In other words, we have Jq = a− bζ(2) with b ∈ Z and dMmdNma ∈ Z. Thus
we seek the best pairs among Mm, Nm (0 ≤ m ≤ 4), i.e. those for which
Mm +Nm is minimal.

We let τ and σ act on the five integers

(2.8) j + k − h, k + l − i, l + h− j, h+ i− k, i+ j − l
by defining

τ (j + k − h) = τ (j) + τ (k)− τ (h) = k + l − i,
σ(j + k − h) = σ(j) + σ(k)− σ(h) = h+ i− k,

and so on. Hence the cyclic permutation

(j + k − h k + l − i l + h− j h+ i− k i+ j − l)
is also called τ , and similarly

(j + k − h h+ i− k)(k + l − i l + h− j)
is called σ. We define

(2.9)
M = max{j + k − h, k + l − i, l + h− j, h+ i− k, i+ j − l},
N = max{τ (M), min{τ 2(M), τ 3(M)}, τ 4(M)}.

If two (or more) of the five integers (2.8) are maximal, the definition of N,
a priori , may depend on the choice of the maximal integer M among (2.8).
However, the proof of Theorem 2.2 will show that N is well defined, for if
M and M ′ are both maximal, then the N above and

N ′ = max{τ (M ′), min{τ 2(M ′), τ 3(M ′)}, τ 4(M ′)}
are equal. Moreover, the M,N defined by (2.9) are clearly invariant under
the actions of τ and σ.

Theorem 2.2. Let h, i, j, k, l be non-negative integers, let the integrals
Jq (0 ≤ q ≤ 4) be as in (2.3), and let M,N be defined by (2.9). For any q
we have

Jq = a− bζ(2)

with b ∈ Z, dMdNa ∈ Z, and M,N is the best among the (unordered) pairs
Mm, Nm (0 ≤ m ≤ 4).

P r o o f. We shall show that two cases may occur: either the five pairs
Mm, Nm are all equal (up to the interchange of Mm and Nm) to the pair
M,N, or three of them are equal to M,N and the remaining two are equal
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to a pair worse than M,N. Thus in either case M,N is the best pair for
each Jq.

We may assume with no loss of generality thatM = i+j−l. For otherwise
we should replace J0 with the integral Jr such that M = τ r(i+ j − l), and
accordingly each Jq with the integral Js such that s ≡ r + q (mod 5).

In each of the five pairs Mm, Nm the maximal integer i + j − l occurs
either in the expression for Mm or for Nm, so that one element of the best
pair must be M = i + j − l. To find the other, we consider the different
possibilities for the maximum of the remaining four integers. Note that the
cases

max{j + k − h, k + l − i, l + h− j, h+ i− k} = k + l − i
and

max{j + k − h, k + l − i, l + h− j, h+ i− k} = l + h− j
are changed into each other by σ, so that the same discussion applies to
both, and similarly for the cases

max{j + k − h, k + l − i, l + h− j, h+ i− k} = j + k − h
and

max{j + k − h, k + l − i, l + h− j, h+ i− k} = h+ i− k.
Therefore, up to the action of σ, we have only twelve distinct possibilities
for the ordering of the integers (2.8):

j + k − h ≤ l + h− j ≤ h+ i− k ≤ k + l − i ≤ i+ j − l,
(2.10)

l + h− j ≤ j + k − h ≤ h+ i− k ≤ k + l − i ≤ i+ j − l,
j + k − h ≤ h+ i− k ≤ l + h− j ≤ k + l − i ≤ i+ j − l,

(2.11)
h+ i− k ≤ j + k − h ≤ l + h− j ≤ k + l − i ≤ i+ j − l,
l + h− j ≤ h+ i− k ≤ j + k − h ≤ k + l − i ≤ i+ j − l,

(2.12)
h+ i− k ≤ l + h− j ≤ j + k − h ≤ k + l − i ≤ i+ j − l,

and

k + l − i ≤ l + h− j ≤ h+ i− k ≤ j + k − h ≤ i+ j − l,
l + h− j ≤ k + l − i ≤ h+ i− k ≤ j + k − h ≤ i+ j − l,
k + l − i ≤ h+ i− k ≤ l + h− j ≤ j + k − h ≤ i+ j − l,

(2.13)
h+ i− k ≤ k + l − i ≤ l + h− j ≤ j + k − h ≤ i+ j − l,
l + h− j ≤ h+ i− k ≤ k + l − i ≤ j + k − h ≤ i+ j − l,
h+ i− k ≤ l + h− j ≤ k + l − i ≤ j + k − h ≤ i+ j − l.

In the five pairs Mm, Nm the smaller of Mm and Nm is h+ i−k three times
and k + l− i twice if we are in one of the cases (2.10); l+ h− j three times



34 G. Rhin and C. Viola

and k + l − i twice in (2.11); j + k − h three times and k + l − i twice in
(2.12). In any of the cases (2.13) we find j + k − h all the five times. Hence
in any of the above cases the best choice for the smaller of Mm and Nm
(m = 0, . . . , 4) is

N = max{j + k − h, min{k + l − i, l + h− j}, h+ i− k}.
This proves Theorem 2.2.

Under the assumptions of Theorems 2.1 or 2.2, the integer b can be
expressed as a double contour integral.

Lemma 2.6. Let h, i, j, k, l be non-negative integers. If

J0 =
1\
0

1\
0

xh(1− x)iyk(1− y)j

(1− xy)i+j−l
dx dy

1− xy = a− bζ(2)

with a ∈ Q and b ∈ Z, then, for any %1, %2 > 0,

b = − 1
4π2

\
C

\
Cx

xh(1− x)iyk(1− y)j

(1− xy)i+j−l
dx dy

1− xy ,

where C = {x ∈ C : |x| = %1} and Cx = {y ∈ C : |y − 1/x| = %2}.
P r o o f. As in the proof of Theorem 2.1, we can express J0 as a linear

combination with integer coefficients of integrals having either i+ j− l ≤ 0,
or, possibly after interchanging x and y, k = 0. If k = 0, by the proofs of
Lemmas 2.5 and 2.4 we express the integral as a linear combination with
integer coefficients of integrals either having i + j − l ≤ 0, or such that at
least two consecutive integers among h, i, j, k, l vanish. In the latter case,
by applying a suitable power of the transformation τ we may assume j =
k = 0, and then the proof of Lemma 2.2 shows that the integral either has
i+j−l ≤ 0 or can be transformed into one having i+j−l ≤ 0. If i+j−l < 0,
the integral is a rational number. Therefore

J0 =
T∑
t=1

βtJ
(t) + (rational number),

where βt ∈ Z and

(2.14) J (t) =
1\
0

1\
0

xht(1− x)itykt(1− y)jt
dx dy

1− xy .

Thus, if we put

(2.15) J (t) = a(t) − b(t)ζ(2)
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with a(t) ∈ Q and b(t) ∈ Z, we get

(2.16) b =
T∑
t=1

βtb
(t).

We now apply to the double contour integral

J̃0 = − 1
4π2

\
C

\
Cx

xh(1− x)iyk(1− y)j

(1− xy)i+j−l
dx dy

1− xy
the same linear decompositions and the same transformations used for J0.
Since τ changes

(2.17)
\
C

\
Cx

xh(1− x)iyk(1− y)j

(1− xy)i+j−l
dx dy

1− xy
into \

|y|=%1%2

\
|x−1/y|=1/%2

xi(1− x)jyl(1− y)k

(1− xy)j+k−h
dx dy

1− xy ,

which clearly equals\
|x|=%′1

\
|y−1/x|=%′2

xi(1− x)jyl(1− y)k

(1− xy)j+k−h
dx dy

1− xy

for any %1, %2, %
′
1, %
′
2 > 0, and since (2.17) vanishes if i+ j− l < 0, we obtain

(2.18) J̃0 =
T∑
t=1

βtJ̃
(t),

with the same βt ∈ Z as above and with

(2.19) J̃ (t) = − 1
4π2

\
C

\
Cx

xht(1− x)itykt(1− y)jt
dx dy

1− xy .

Let now P (x, y) =
∑δ1
r=0

∑δ2
s=0 αrsx

rys be any polynomial with αrs ∈ Z.
Then (see [7], Lemma 1.1)

1\
0

1\
0

P (x, y)
dx dy

1− xy =
δ1∑
r=0

δ2∑
s=0

αrs

1\
0

1\
0

xrys
dx dy

1− xy = U − V ζ(2),

with U ∈ Q and (denoting here i =
√−1)

−V =
min{δ1,δ2}∑

r=0

αrr =
δ1∑
r=0

δ2∑
s=0

αrs
1

2πi

\
|z|=%1

zr−s−1 dz

=
1

2πi

\
|z|=%1

P (z, 1/z)
dz

z
.
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For any z 6= 0 we have

− 1
2πi

\
|y−1/z|=%2

P (z, y)
1− zy dy =

1
z

1
2πi

\
|y−1/z|=%2

P (z, y)
y − 1/z

dy =
1
z
P (z, 1/z).

Hence

V = − 1
2πi

\
|z|=%1

(
− 1

2πi

\
|y−1/z|=%2

P (z, y)
1− zy dy

)
dz

= − 1
4π2

\
|z|=%1

\
|y−1/z|=%2

P (z, y)
1− zy dy dz.

Taking P (x, y) = xht(1− x)itykt(1− y)jt , from (2.14), (2.15) and (2.19) we
get

b(t) = − 1
4π2

\
|x|=%1

\
|y−1/x|=%2

xht(1− x)itykt(1− y)jt
dx dy

1− xy = J̃ (t).

Therefore, by (2.16) and (2.18),

b =
T∑
t=1

βtb
(t) =

T∑
t=1

βtJ̃
(t) = J̃0.

3. The hypergeometric permutation. Let α, β, γ be complex para-
meters, γ 6= 0,−1,−2, . . . , and y a complex variable satisfying |y| < 1.
The Gauss hypergeometric function F (α, β; γ; y) = 2F1(α, β; γ; y) is defined
by

(3.1) F (α, β; γ; y) =
∞∑
n=0

(α)n(β)n
(γ)n

· y
n

n!
,

where (α)0 = 1, (α)n = α(α+ 1) . . . (α+n−1) (n = 1, 2, . . .), and similarly
for (β)n and (γ)n. By Euler’s integral representation we have, for Re γ >
Re β > 0,

F (α, β; γ; y) =
Γ (γ)

Γ (β)Γ (γ − β)

1\
0

xβ−1(1− x)γ−β−1

(1− xy)α
dx

([4], p. 59), and this gives the analytic continuation of F (α, β; γ; y). Since,
by (3.1),

F (α, β; γ; y) = F (β, α; γ; y),

if Re γ > max{Reα,Re β} and min{Reα,Reβ} > 0 we obtain
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(3.2)
1

Γ (β)Γ (γ − β)

1\
0

xβ−1(1− x)γ−β−1

(1− xy)α
dx

=
1

Γ (α)Γ (γ − α)

1\
0

xα−1(1− x)γ−α−1

(1− xy)β
dx.

Here and in the sequel we choose five non-negative integers h, i, j, k, l
such that j+k−h, k+ l− i, l+h−j, h+ i−k, i+j− l are also non-negative.
Taking in (3.2)

α = i+ j − l + 1, β = h+ 1, γ = h+ i+ 2,

we get

1
h!i!

1\
0

xh(1− x)i

(1− xy)i+j−l+1 dx

=
1

(i+ j − l)!(l + h− j)!
1\
0

xi+j−l(1− x)l+h−j

(1− xy)h+1 dx.

Multiplying by yk(1− y)j and integrating in 0 ≤ y ≤ 1 we obtain, by (2.1),

(3.3)
1
h!i!

I(h, i, j, k, l)

=
1

(i+ j − l)!(l + h− j)!I(i+ j − l, l + h− j, j, k, l).

Dividing (3.3) by j!k!l! we have

(3.4)
I(h, i, j, k, l)
h! i! j! k! l!

=
I(i+ j − l, l + h− j, j, k, l)
(i+ j − l)!(l + h− j)!j!k!l!

.

Let ϕ be the hypergeometric integral transformation acting on

(3.5)
I(h, i, j, k, l)
h! i! j! k! l!

as is described above. It is natural to associate with the action of ϕ on (3.5)
a permutation ϕ of the integers h, i, j, k, l, j + k − h, k + l − i, l + h− j,
h+i−k, i+j−l which we define to be the following product of transpositions
(i.e. 2-cycles):

ϕ = (h i+ j − l)(i l + h− j)(j + k − h k + l − i).
Note that

ϕ(j + k − h) = k + l − i = j + k − (i+ j − l) = ϕ(j) +ϕ(k)−ϕ(h),

and similarly ϕ(k + l − i) = ϕ(k) + ϕ(l) − ϕ(i), etc. In accordance with
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Section 2, we call τ and σ the permutations

τ = (h i j k l)(j + k − h k + l − i l + h− j h+ i− k i+ j − l),
σ = (h k)(i j)(j + k − h h+ i− k)(k + l − i l + h− j).

We are interested in the structure of the permutation group

Φ = 〈ϕ, τ ,σ〉
generated by ϕ, τ and σ. We have already remarked that the subgroup

T = 〈τ ,σ〉
is isomorphic to the dihedral group D5 of order 10, and it is easy to check
that 〈ϕ,σ〉 is isomorphic to the dihedral group D6 of order 12. Following
a remark of Dixon [2], we note that ϕ, τ and σ can be viewed as three
permutations of five integers only, i.e. of the five sums

h+ i, i+ j, j + k, k + l, l + h,

by defining ϕ(h + i) = ϕ(h) + ϕ(i), etc. In fact, we have the following
decompositions into cycles:

ϕ = (i+ j l + h),

τ = (h+ i i+ j j + k k + l l + h),

σ = (h+ i j + k)(k + l l + h).

Since the symmetric group S5 of the 5! = 120 permutations of five elements
is generated by a cyclic permutation of the five elements and a transposition,
we see that

Φ = 〈ϕ, τ ,σ〉 = 〈ϕ, τ 〉
is isomorphic to S5. Moreover, the value of (3.5) is invariant under the action
of Φ, whence (3.5) is a symmetric function of the sums h + i, i + j, j + k,
k + l, l + h.

Since |Φ| = 120 and |T| = 10, there are 12 left cosets of T in Φ. Each
left coset can be characterized in terms of the factorials occurring in the
corresponding transformation formulae for I(h, i, j, k, l) such as (3.3). To
see this, note that from our definitions it follows that if we apply to (3.5)
any product χ of integral transformations ϕ, τ and σ, we obtain

I(χ(h),χ(i),χ(j),χ(k),χ(l))
χ(h)!χ(i)!χ(j)!χ(k)!χ(l)!

,

where χ is the corresponding product of permutations ϕ, τ and σ in reverse
order. In other words, the above mapping χ 7→ χ between the groups Φ =
〈ϕ, τ, σ〉 and Φ = 〈ϕ, τ ,σ〉 is an anti-isomorphism. For instance, if we apply
τϕ (i.e. first ϕ and then τ) to (3.5) we get

I(h, i, j, k, l)
h!i!j!k!l!

=
I(i+ j − l, l + h− j, j, k, l)
(i+ j − l)!(l + h− j)!j!k!l!

=
I(l + h− j, j, k, l, i+ j − l)
(l + h− j)!j!k!l!(i+ j − l)! ,
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and if we apply ϕτ (first τ and then ϕ) to (h, i, j, k, l) we find

(h, i, j, k, l) 7→ (i, j, k, l, h) 7→ (l + h− j, j, k, l, i+ j − l).
Therefore, if for any % ∈ T = 〈τ ,σ〉 we apply ϕ% to (h, i, j, k, l), we change
both the numerator and the denominator of the right side of (3.4) by a
suitable permutation of i+j− l, l+h−j, j, k, l. If the numerator is changed
into an integral Ĩ, we obtain

I(h, i, j, k, l) =
h! i!

(i+ j − l)!(l + h− j)!I(i+ j − l, l + h− j, j, k, l)

=
h! i!

(i+ j − l)!(l + h− j)! Ĩ .

Thus we find the same factor

(3.6)
h! i!

(i+ j − l)!(l + h− j)!
for each of the ten elements of the left coset ϕT. Plainly the same argument
applies to every left coset of T in Φ.

Since every element of Φ = 〈ϕ, τ 〉 is a suitable product of permutations
each equal to ϕ or to τ , since the value of (3.5) is invariant under the
action of Φ and moreover h + i = (i + j − l) + (l + h − j), we see that in
the transformation formulae for I(h, i, j, k, l) each factor of the type (3.6)
corresponding to a left coset of T in Φ is a quotient of factorials satisfying
the following properties:

(i) The numerator and the denominator are products of the same num-
ber of factorials.

(ii) The integers occurring in the numerator belong to the set {h, i, j, k, l}
and the integers in the denominator belong to {j + k − h, k + l − i, l + h−
j, h+ i− k, i+ j − l}.

(iii) The sum of the integers in the numerator equals the sum of the
integers in the denominator.

It is easy to see that the following elements of Φ:

(3.7) ι, ϕ, τϕ, τ 2ϕ, τ 3ϕ, τ 4ϕ, ϕτϕ, ϕτ 2ϕ, ϕτ 3ϕ,

ϕτ 4ϕ, τ 2ϕτϕ, ϕτ 2ϕτϕ,

where ι denotes the identity, yield distinct factors of the type (3.6), and
hence are pairwise left-inequivalent mod T, i.e. representatives of all the 12
left cosets of T in Φ.

Let the permutations (3.7) be denoted by χ1,χ2, . . . ,χ12 respectively.
The corresponding transformation formulae for I(h, i, j, k, l) are the follow-
ing:
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I(h, i, j, k, l)

= I(h, i, j, k, l) (χ1)

=
h!i!

(i+ j − l)!(l + h− j)!I(i+ j − l, l + h− j, j, k, l) (χ2)

=
i!j!

(j + k − h)!(h+ i− k)!
I(j + k − h, h+ i− k, k, l, h) (χ3)

=
j!k!

(k + l − i)!(i+ j − l)!I(k + l − i, i+ j − l, l, h, i) (χ4)

=
k!l!

(l + h− j)!(j + k − h)!
I(l + h− j, j + k − h, h, i, j) (χ5)

=
l!h!

(h+ i− k)!(k + l − i)!I(h+ i− k, k + l − i, i, j, k) (χ6)

=
h!i!j!

(k + l − i)!(h+ i− k)!(i+ j − l)!
× I(k + l − i, h+ i− k, k, l, i+ j − l) (χ7)

=
i!j!k!

(j + k − h)!(i+ j − l)!(l + h− j)!
× I(j + k − h, h, l, i+ j − l, l + h− j) (χ8)

=
k!l!h!

(k + l − i)!(i+ j − l)!(l + h− j)!
× I(i, k + l − i, i+ j − l, l + h− j, j) (χ9)

=
l!h!i!

(h+ i− k)!(j + k − h)!(l + h− j)!
× I(h+ i− k, j + k − h, l + h− j, j, k) (χ10)

=
j!k!l!

(h+ i− k)!(j + k − h)!(k + l − i)!
× I(h+ i− k, j + k − h, h, i, k + l − i) (χ11)

=
h!i!j!k!l!

(h+ i− k)!(k + l − i)!(i+ j − l)!(l + h− j)!(j + k − h)!

× I(h+ i− k, k + l − i, i+ j − l, l + h− j, j + k − h). (χ12)

Denote the integrals occurring in the above formulae by I(1), . . . , I(12)

respectively. Let M (1), N (1) be the integers (2.9), associated with I(1) =
I(h, i, j, k, l), and for every r = 1, . . . , 12 let M (r), N (r) be the corresponding
integers associated with I(r). Thus we have, for 1 ≤ r ≤ 12,

I(r) = I(χr(h),χr(i),χr(j),χr(k),χr(l))
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and

M (r) = max{χr(j + k − h), χr(k + l − i), χr(l + h− j),
χr(h+ i− k), χr(i+ j − l)},

N (r) = max{τr(M (r)), min{τ 2
r (M (r)), τ 3

r (M (r))}, τ 4
r (M (r))},

where

τr = χrτχ
−1
r .

R e m a r k 3.1. As we have already noted, the natural mapping Φ→ Φ
considered above is an anti-isomorphism. Hence, for any χ ∈ Φ and % ∈ T,
the integral

(3.8) I(χ%(h),χ%(i),χ%(j),χ%(k),χ%(l))

is obtained by applying to

(3.9) I(χ(h),χ(i),χ(j),χ(k),χ(l))

the transformation % ∈ T = 〈τ, σ〉 corresponding to the permutation %. Since
the M,N defined by (2.9) are the same for each of ten integrals equivalent
under the action of the transformation group T , the same integers M,N
are associated with the integrals (3.8) and (3.9). Therefore, for every r =
1, . . . , 12 the pair M (r), N (r) is associated with each of the ten integrals
obtained by applying to (h, i, j, k, l) the elements of the left coset χrT.
Thus if for any given χ ∈ Φ we replace I(1) = I(h, i, j, k, l) with

I ′(1) = I(h′, i′, j′, k′, l′) = I(χ(h),χ(i),χ(j),χ(k),χ(l)),

and accordingly each I(r) with

I ′(r) = I(χ′r(h
′),χ′r(i

′),χ′r(j
′),χ′r(k

′),χ′r(l
′)),

where

χ′r = χχrχ
−1,

we have

I ′(r) = I(χχr(h),χχr(i),χχr(j),χχr(k),χχr(l)),

and the permutations χχ1, . . . ,χχ12 are pairwise left-inequivalent mod T.
Hence the 12 pairs M ′(r), N ′(r) associated with I ′(r) (r = 1, . . . , 12) are the
pairs M (r), N (r) in a different order.

For the applications given in the next sections, we require the following

Lemma 3.1. There exists s, 1 ≤ s ≤ 12, such that for every r = 1, . . . , 12
we have M (r) ≤M (s) and N (r) ≤ N (s).

P r o o f. Since

M (1) = max{j + k − h, k + l − i, l + h− j, h+ i− k, i+ j − l}
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and

M (12) = max{k, i, l, j, h},
it is plain that

M = max
1≤r≤12

M (r)

= max{h, i, j, k, l, j + k − h, k + l − i, l + h− j, h+ i− k, i+ j − l}.
By Remark 3.1 we may assume with no loss of generality that

M = max
1≤r≤12

M (r) = i+ j − l,

for otherwise we should replace I(1) = I(h, i, j, k, l) with I(χ(h),χ(i),χ(j),
χ(k),χ(l)) for a permutation χ ∈ Φ such that M = χ(i+ j − l).

From the expressions for M (1), . . . ,M (12) we see that each of the integers
h, i, j, k, l, j + k − h, k + l− i, l+ h− j, h+ i− k, i+ j − l occurs exactly
in six among M (1), . . . ,M (12). Let M (r1), . . . ,M (r6) be those containing the
maximal integer i+ j − l in their expressions, whence

M = M (r1) = . . . = M (r6) = i+ j − l,
and let

N = max{N (r1), . . . , N (r6)}
(we actually have {r1, . . . , r6} = {1, 3, 5, 6, 10, 11}, but we do not need this
information). In order to show that M,N is the maximal pair M (s), N (s) we
are seeking, we must prove that N (r) ≤ N for any r 6= r1, . . . , r6.

If r = rm, 1 ≤ m ≤ 6, we know that

N ≥ N (rm) ≥ max{τrm(i+ j − l), τ 4
rm(i+ j − l)},

where τrm(i+ j− l) and τ 4
rm(i+ j− l) are (cyclically) consecutive to i+ j− l

on either side in the expression for M (rm). If we pick the integers consecutive
to i+ j − l in the expressions for M (r1), . . . ,M (r6), we see that

(3.10) j + k − h, h+ i− k, h, i, j, k ≤ N.
Also, for any r 6= r1, . . . , r6 the expression for M (r) contains exactly four
among the integers

(3.11) j + k − h, h+ i− k, h, i, j, k.
If the integer Qr different from (3.11) in the expression for M (r) satisfies
Qr ≤ N, then N (r) ≤M (r) ≤ N ; if Qr > N then Qr = M (r) by (3.10), and

N (r) = max{τr(Qr), min{τ 2
r (Qr), τ 3

r (Qr)}, τ 4
r (Qr)}

is the maximum of three integers among (3.11), whence N (r) ≤ N by
(3.10).

We conclude this section with two conjectures.
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Conjecture 3.1. Let h, i, j, k, l and h′, i′, j′, k′, l′ be any non-negative
integers. If

I(h, i, j, k, l) = I(h′, i′, j′, k′, l′),
then there exists a permutation % ∈ T = 〈τ ,σ〉 such that

h′ = %(h), i′ = %(i), j′ = %(j), k′ = %(k), l′ = %(l).

Conjecture 3.2. Let h, i, j, k, l and h′, i′, j′, k′, l′ be any non-negative
integers such that

j + k − h, k + l − i, l + h− j, h+ i− k, i+ j − l
and

j′ + k′ − h′, k′ + l′ − i′, l′ + h′ − j′, h′ + i′ − k′, i′ + j′ − l′
are also non-negative. If

I(h, i, j, k, l)
I(h′, i′, j′, k′, l′)

∈ Q,

then there exists a permutation χ ∈ Φ = 〈ϕ, τ ,σ〉 such that

h′ = χ(h), i′ = χ(i), j′ = χ(j), k′ = χ(k), l′ = χ(l).

4. The p-adic valuation. Given five non-negative integers h, i, j, k, l
such that j + k − h, k + l − i, l + h − j, h + i − k, i + j − l are also non-
negative, we consider again the integrals I(1), . . . , I(12) obtained by applying
to (h, i, j, k, l) the permutations (3.7), and for every r = 1, . . . , 12 the pair
M (r), N (r) associated with I(r), as is described in Section 3. By Remark 3.1
we may and shall assume, with no loss of generality, that the maximal pair
M (s), N (s) considered in Lemma 3.1 is obtained for s = 1, for otherwise we
should replace I(1) = I(h, i, j, k, l) with

I ′(1) = I(h′, i′, j′, k′, l′) = I(s) = I(χs(h),χs(i),χs(j),χs(k),χs(l)).

For r = 1, . . . , 12 and n = 1, 2, . . . we define

I(r)
n = I(χr(h)n,χr(i)n,χr(j)n,χr(k)n,χr(l)n) = a(r)

n − b(r)n ζ(2),

where χr is the rth permutation in the list (3.7). By Theorem 2.2 we have
b
(r)
n ∈ Z and dM(r)ndN(r)na

(r)
n ∈ Z.

For brevity, we shall omit the superscript r = 1 throughout. Thus, here
and in the sequel we abbreviate

In = I(hn, in, jn, kn, ln) = an − bnζ(2),

and we denote again by M,N the integers (2.9).
The transformation formula

I(h, i, j, k, l) =
h!i!

(i+ j − l)!(l + h− j)!I(i+ j − l, l + h− j, j, k, l)
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given in Section 3, corresponding to the permutation χ2 = ϕ, yields

In = an − bnζ(2) =
(hn)!(in)!

((i+ j − l)n)!((l + h− j)n)!
I(2)
n

=
(hn)!(in)!

((i+ j − l)n)!((l + h− j)n)!
(a(2)
n − b(2)

n ζ(2)).

It follows that

(4.1) ((i+ j − l)n)!((l + h− j)n)!an = (hn)!(in)!a(2)
n .

Let dMndNnan = An and dM(2)ndN(2)na
(2)
n = A

(2)
n , whence An, A

(2)
n ∈ Z.

Multiplying (4.1) by dMndNn we get

(4.2) ((i+ j − l)n)!((l + h− j)n)!An = K(hn)!(in)!A(2)
n ,

where

K =
dMndNn

dM(2)ndN(2)n

is an integer since M (2) ≤M and N (2) ≤ N.
For any prime p and any integer H > 0 we denote by vp(H) the p-adic

valuation of H, i.e. the exponent of p in the factorization of H into prime
powers. Define

αp = vp(((i+ j − l)n)!((l + h− j)n)!) and βp = vp((hn)!(in)!).

We have

vp(H!) =
∑

m≥1

[
H

pm

]
,

whence vp(H!) = [H/p] if p >
√
H. Since

M = max
1≤r≤12

M (r)

= max{h, i, j, k, l, j + k − h, k + l − i, l + h− j, h+ i− k, i+ j − l},
for any prime p satisfying

(4.3) p >
√
Mn

we have

αp =
[

(i+ j − l)n
p

]
+
[

(l + h− j)n
p

]

and

βp =
[
hn

p

]
+
[
in

p

]
.

Let

ω = {n/p},
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where {x} = x− [x] denotes the fractional part of x. For any integer H we
have

Hn

p
= H

[
n

p

]
+Hω,

whence [
Hn

p

]
= H

[
n

p

]
+ [Hω].

Therefore

αp − βp = [(i+ j − l)ω] + [(l + h− j)ω]− [hω]− [iω].

Lemma 4.1. Let t, u, v, w ∈ R satisfy t+ u = v + w. Then

−1 ≤ [t] + [u]− [v]− [w] ≤ 1.

P r o o f. We have

[t] + [u]− [v]− [w] = {v}+ {w} − {t} − {u},
whence

−2 < −{t} − {u} ≤ [t] + [u]− [v]− [w] ≤ {v}+ {w} < 2.

By Lemma 4.1 we have −1 ≤ αp − βp ≤ 1. Hence, removing from (4.2)
the primes p >

√
Mn dividing the factorials on both sides, we obtain

(4.4) (p1 . . . pλ)PAn = K(p′1 . . . p
′
λ′)P

′A(2)
n ,

where p1, . . . , pλ are the distinct primes satisfying (4.3) for which αp−βp = 1,
i.e.

[hω] + [iω] < [(i+ j − l)ω] + [(l + h− j)ω],

p′1, . . . , p
′
λ′ are the distinct primes satisfying (4.3) for which αp − βp = −1,

i.e.

(4.5) [(i+ j − l)ω] + [(l + h− j)ω] < [hω] + [iω],

and P, P ′ are products of primes ≤ √Mn.

From (4.4) we see that p′1, . . . , p
′
λ′ divide An. Therefore, any prime p

satisfying (4.3) and (4.5) divides An.
The above argument applies to each of the transformation formulae in

Section 3 corresponding to the permutations χ2,χ3,χ4,χ5,χ6. Thus we
have proved the following
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Theorem 4.1. Let ω = {n/p}. Any prime p >
√
Mn satisfying at least

one of the following five inequalities:

(4.6)

[(i+ j − l)ω] + [(l + h− j)ω] < [hω] + [iω],

[(j + k − h)ω] + [(h+ i− k)ω] < [iω] + [jω],

[(k + l − i)ω] + [(i+ j − l)ω] < [jω] + [kω],

[(l + h− j)ω] + [(j + k − h)ω] < [kω] + [lω],

[(h+ i− k)ω] + [(k + l − i)ω] < [lω] + [hω],

divides An = dMndNnan.

We now consider the transformation formulae in Section 3 containing
three factorials in the numerator and three in the denominator, e.g. the
formula corresponding to the permutation χ7 = ϕτϕ. With notation similar
to the above, we have

(4.7) ((k + l − i)n)!((h+ i− k)n)!((i+ j − l)n)!An
= L(hn)!(in)!(jn)!A(7)

n ,

where A(7)
n = dM(7)ndN(7)na

(7)
n and L = dMndNn/(dM(7)ndN(7)n) are inte-

gers.

For any prime p >
√
Mn let

γp = vp(((k + l − i)n)!((h+ i− k)n)!((i+ j − l)n)!)

and

δp = vp((hn)!(in)!(jn)!),

whence, as before,

γp − δp = [(k + l − i)ω] + [(h+ i− k)ω] + [(i+ j − l)ω]− [hω]− [iω]− [jω]

= V1 + V2,

where

V1 = [(h+ i− k)ω] + [(k + l − i)ω]− [lω]− [hω]

and

V2 = [lω] + [(i+ j − l)ω]− [iω]− [jω]

satisfy −1 ≤ Vm ≤ 1 (m = 1, 2) by Lemma 4.1. Therefore −2 ≤ γp− δp ≤ 2.
Removing from (4.7) the primes p >

√
Mn dividing the factorials, we now

have

(4.8) (p1 . . . pλ)(q1 . . . qµ)2PAn = L(p′1 . . . p
′
λ′)(q

′
1 . . . q

′
µ′)

2P ′A(7)
n ,

where p1, . . . , pλ; q1, . . . , qµ; p′1, . . . , p
′
λ′ ; q

′
1, . . . , q

′
µ′ are the distinct primes
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satisfying (4.3) for which γp − δp = 1, 2,−1,−2 respectively, and P, P ′ are
products of primes ≤ √Mn.

From (4.8) we see that p′1, . . . , p
′
λ′ and q′21 , . . . , q

′2
µ′ divide An. Therefore,

any prime p >
√
Mn for which γp − δp < 0, i.e.

(4.9) [(k + l − i)ω] + [(h+ i− k)ω] + [(i+ j − l)ω] < [hω] + [iω] + [jω],

divides An, and any prime p >
√
Mn for which γp − δp = −2 is such that

p2 |An. Note that the condition γp−δp = −2 is equivalent to V1 = V2 = −1,
i.e. to

(4.10)
{

[(h+ i− k)ω] + [(k + l − i)ω] < [lω] + [hω],
[lω] + [(i+ j − l)ω] < [iω] + [jω].

It is easy to show that any prime p satisfying (4.9) must also satisfy
at least one of (4.6), so that (4.9) yields no further primes besides those
considered in Theorem 4.1. Hence (4.9), as well as the similar inequalities
given by the transformation formulae corresponding to the permutations
χ8,χ9,χ10,χ11, can be disregarded. To prove this, let

Vk = [(i+ j − l)ω] + [(l + h− j)ω]− [hω]− [iω],

Vl = [(j + k − h)ω] + [(h+ i− k)ω]− [iω]− [jω],

Vh = [(k + l − i)ω] + [(i+ j − l)ω]− [jω]− [kω],

Vi = [(l + h− j)ω] + [(j + k − h)ω]− [kω]− [lω],

Vj = [(h+ i− k)ω] + [(k + l − i)ω]− [lω]− [hω],

whence

γp − δp = [(k + l − i)ω] + [(h+ i− k)ω]

+ [(i+ j − l)ω]− [hω]− [iω]− [jω]

= 1
2 (Vk + Vl + Vh − Vi + Vj).

If (4.9) holds we have Vk + Vl + Vh + Vj < Vi where, by Lemma 4.1, Vk, Vl,
Vh, Vi, Vj would be either 0 or 1 if all the inequalities (4.6) were false. Thus
Vk = Vl = Vh = Vj = 0, Vi = 1, whence γp−δp = 1

2 (Vk+Vl+Vh−Vi+Vj) =
− 1

2 , a contradiction since γp − δp is an integer. Hence (4.9) implies at least
one of (4.6).

From (4.10) and the similar inequalities given by the transformation
formulae corresponding to χ8,χ9,χ10,χ11 we obtain the following

Theorem 4.2. Let ω = {n/p}. Any prime p >
√
Mn satisfying at least

one of the following five conditions:
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(4.11)

[(h+ i− k)ω] + [(k + l − i)ω] < [lω] + [hω] and

[lω] + [(i+ j − l)ω] < [iω] + [jω],

[(i+ j − l)ω] + [(l + h− j)ω] < [hω] + [iω] and

[hω] + [(j + k − h)ω] < [jω] + [kω],

[(j + k − h)ω] + [(h+ i− k)ω] < [iω] + [jω] and

[iω] + [(k + l − i)ω] < [kω] + [lω],

[(k + l − i)ω] + [(i+ j − l)ω] < [jω] + [kω] and

[jω] + [(l + h− j)ω] < [lω] + [hω],

[(l + h− j)ω] + [(j + k − h)ω] < [kω] + [lω] and

[kω] + [(h+ i− k)ω] < [hω] + [iω],

is such that p2 divides An = dMndNnan.

R e m a r k 4.1. If we apply the permutation σ to (4.11) we get the
conditions:

(4.12)

[(l + h− j)ω] + [(j + k − h)ω] < [kω] + [lω] and

[lω] + [(i+ j − l)ω] < [iω] + [jω],

[(k + l − i)ω] + [(i+ j − l)ω] < [jω] + [kω] and

[kω] + [(h+ i− k)ω] < [hω] + [iω],

[(j + k − h)ω] + [(h+ i− k)ω] < [iω] + [jω] and

[jω] + [(l + h− j)ω] < [lω] + [hω],

[(i+ j − l)ω] + [(l + h− j)ω] < [hω] + [iω] and

[iω] + [(k + l − i)ω] < [kω] + [lω],

[(h+ i− k)ω] + [(k + l − i)ω] < [lω] + [hω] and

[hω] + [(j + k − h)ω] < [jω] + [kω],

which are easily seen to be equivalent to (4.11), since the decomposition
γp − δp = V ′1 + V ′2 , with

V ′1 = [(k + l − i)ω] + [(i+ j − l)ω]− [jω]− [kω]

and

V ′2 = [kω] + [(h+ i− k)ω]− [hω]− [iω],

shows that the first of (4.11) is equivalent to the second of (4.12), and sim-
ilarly for the other conditions. Hence Theorem 4.2, as well as Theorem 4.1,
is invariant under the actions of τ and σ.

We finally consider the last transformation formula corresponding to the
permutation χ12. For any prime p >

√
Mn let

εp = vp(((h+ i−k)n)!((k+ l− i)n)!((i+j− l)n)!((l+h−j)n)!((j+k−h)n)!)
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and

ζp = vp((hn)!(in)!(jn)!(kn)!(ln)!),

whence

εp − ζp = [(h+ i− k)ω] + [(k + l − i)ω] + [(i+ j − l)ω] + [(l + h− j)ω]

+ [(j + k − h)ω]− [hω]− [iω]− [jω]− [kω]− [lω]

= 1
2 (Vk + Vl + Vh + Vi + Vj).

By Lemma 4.1 we have − 5
2 ≤ 1

2 (Vk + Vl + Vh + Vi + Vj) ≤ 5
2 . Since εp − ζp

is an integer, we get −2 ≤ εp − ζp ≤ 2. If all the inequalities (4.6) are false
we have εp − ζp = 1

2 (Vk + Vl + Vh + Vi + Vj) ≥ 0. Hence any prime p for
which εp − ζp < 0 satisfies at least one of (4.6). If εp − ζp = −2 we get
Vk + Vl + Vh + Vi + Vj = −4 whence, by Lemma 4.1, four among Vk, Vl, Vh,
Vi, Vj are −1 and the remaining one is 0. If e.g. Vk = Vl = Vh = Vj = −1,
Vi = 0, we obtain γp − δp = 1

2 (Vk + Vl + Vh − Vi + Vj) = −2, and we have
seen that this condition is equivalent to (4.10), i.e. to the first of (4.11). In
a similar manner, any other case where εp − ζp = −2 implies one of (4.11).
Hence the transformation formula corresponding to χ12 yields no further
primes besides those given by Theorems 4.1 and 4.2.

We now follow Hata’s method (see [7], Section 5) to define an integer
Dn such that Dn | dMndNn and Dnan ∈ Z. To this purpose, however, we
employ our Theorems 4.1 and 4.2 in place of Hata’s analysis of the p-adic
valuation of binomial coefficients.

Let Ω be the set of ω ∈ [0, 1) satisfying at least one of the inequalities
(4.6), and let Ω′ be the set of ω ∈ [0, 1) satisfying at least one of the
conditions (4.11). Since each of (4.11) implies one of (4.6), we have Ω′⊂ Ω.
Clearly Ω and Ω′ are unions of finitely many intervals [αq, βq), where each
αq or each βq is a rational number whose denominator divides at least one
of the integers h, i, j, k, l, j + k− h, k+ l− i, l+ h− j, h+ i− k, i+ j − l.

Again we assume that the maximal pair M (s), N (s) considered in Lemma
3.1 is M (1) = M, N (1) = N.

Lemma 4.2. If ω ∈ Ω then ω ≥ 1/M. If ω ∈ Ω′ then ω ≥ 1/N.

P r o o f. Since

M = max{j + k − h, k + l − i, l + h− j, h+ i− k, i+ j − l} = max
1≤r≤12

M (r)

= max{h, i, j, k, l, j + k − h, k + l − i, l + h− j, h+ i− k, i+ j − l},
for any ω satisfying ω < 1/M we have

ω <
1
M
≤ min

{
1
h
,

1
i
,

1
j
,

1
k
,

1
l

}
,
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whence

[hω] = [iω] = [jω] = [kω] = [lω] = 0.

Therefore all the inequalities (4.6) are false, and we get ω 6∈ Ω.
Take now any ω satisfying ω < 1/N.As in the proof of Lemma 3.1 we may

assume with no loss of generality that M = i+j− l. For otherwise we should
replace h, i, j, k, l with τm(h), τm(i), τm(j), τm(k), τm(l) respectively,
where m is such that M = τm(i+ j− l), and this leaves unchanged the pair
M,N as well as the sets Ω and Ω′. By (3.10) we have

ω <
1
N
≤ min

{
1
h
,

1
i
,

1
j
,

1
k

}
,

whence

[hω] = [iω] = [jω] = [kω] = 0.

Therefore

[lω] + [(i+ j − l)ω] ≥ [iω] + [jω] = 0,

[hω] + [(j + k − h)ω] ≥ [jω] + [kω] = 0,

[(j + k − h)ω] + [(h+ i− k)ω] ≥ [iω] + [jω] = 0,

[(k + l − i)ω] + [(i+ j − l)ω] ≥ [jω] + [kω] = 0,

[kω] + [(h+ i− k)ω] ≥ [hω] + [iω] = 0.

Thus all the conditions (4.11) are false, whence ω 6∈ Ω′.
We now define

∆n =
∏

p>
√
Mn

{n/p}∈Ω

p, ∆′n =
∏

p>
√
Mn

{n/p}∈Ω′

p (n = 1, 2, . . .),

where p denotes a prime. From Theorems 4.1 and 4.2 it follows that

(4.13) ∆n∆
′
n |An.

If p |∆n we have ω = {n/p} ∈ Ω, whence ω ≥ 1/M by Lemma 4.2.
Therefore n/p ≥ ω ≥ 1/M, p ≤Mn, p | dMn. Hence

(4.14) ∆n | dMn.

Similarly, if p |∆′n then ω = {n/p} ∈ Ω′, whence n/p ≥ ω ≥ 1/N again by
Lemma 4.2, and we have p ≤ Nn, p | dNn. Hence

(4.15) ∆′n | dNn.
Thus, if we define

(4.16) Dn =
dMndNn
∆n∆

′
n

,
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we have Dn ∈ Z and Dn | dMndNn by (4.14) and (4.15), and

Dnan =
An

∆n∆
′
n

∈ Z

by (4.13).
In order to get from this an irrationality measure of ζ(2), we recall the

following well-known lemma (see [8], Lemma 4):

Lemma 4.3. Let α ∈ R, and let (rn), (sn) be sequences of integers satis-
fying

lim
n→∞

1
n

log |rn − snα| = −R
and

lim sup
n→∞

1
n

log |sn| ≤ S
for some positive numbers R and S. Then

µ(α) ≤ S

R
+ 1.

Since
DnIn = Dnan −Dnbnζ(2)

with Dn, bn and Dnan integers, we apply Lemma 4.3 with

rn = Dnan, sn = Dnbn.

Thus we need

lim
n→∞

1
n

logDn, lim
n→∞

1
n

log In, lim sup
n→∞

1
n

log |bn|.

Since dMndNn = exp((M +N)n+ o(n)) by the prime number theorem, we
have by (4.16)

lim
n→∞

1
n

logDn = M +N − lim
n→∞

1
n

log∆n − lim
n→∞

1
n

log∆′n.

As is shown by Hata (see [6] and [7]), the last two limits exist and can be
easily computed by means of

ψ(x) =
Γ ′(x)
Γ (x)

,

the logarithmic derivative of the Euler gamma-function. The result is

lim
n→∞

1
n

log∆n =
\
Ω

dψ(x), lim
n→∞

1
n

log∆′n =
\
Ω′
dψ(x).

Therefore

(4.17) lim
n→∞

1
n

logDn = M +N −
( \
Ω

dψ(x) +
\
Ω′
dψ(x)

)
.
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5. The irrationality measure of ζ(2). We now evaluate

lim
n→∞

1
n

log In, lim sup
n→∞

1
n

log |bn|,

under the assumption that the integers h, i, j, k, l, j + k − h, k + l − i,
l + h− j, h+ i− k, i+ j − l are all strictly positive. Since

In = I(hn, in, jn, kn, ln) =
1\
0

1\
0

(
xh(1− x)iyk(1− y)j

(1− xy)i+j−l

)n
dx dy

1− xy ,

it is plain that

(5.1) lim
n→∞

1
n

log In = max
0<x,y<1

log
xh(1− x)iyk(1− y)j

(1− xy)i+j−l
.

Note that the maximum exists, since by the assumption h, i, j, k, l > 0 the
function

(5.2) f(x, y) =
xh(1− x)iyk(1− y)j

(1− xy)i+j−l

is continuous on the compact square [0, 1]× [0, 1], zero on the boundary and
positive inside.

From Lemma 2.6 we get, for any %1, %2 > 0 and any n,

1
n

log |bn| ≤ log
%h1 (1 + %1)i(1/%1 + %2)k(1 + 1/%1 + %2)j

(%1%2)i+j−l

= log
(1 + %1)i(1 + %1%2)k(1 + %1 + %1%2)j

%j+k−h1 (%1%2)i+j−l
.

Thus, denoting %1 = u, %1%2 = v, we obtain

lim sup
n→∞

1
n

log |bn| ≤ min
u,v>0

log
(1 + u)i(1 + v)k(1 + u+ v)j

uj+k−hvi+j−l
.

Again by our assumption the minimum exists, since the function

(5.3)
(1 + u)i(1 + v)k(1 + u+ v)j

uj+k−hvi+j−l

is easily seen to be large outside a compact subset of {u > 0, v > 0}.
If we make the change of variables u = −x, v = xy − 1, the function

(5.3) becomes

(−1)h+i+j+k+l x
h(1− x)iyk(1− y)j

(1− xy)i+j−l
.

Therefore

(5.4) lim sup
n→∞

1
n

log |bn| ≤ min
x,y<0
xy>1

log
∣∣∣∣
xh(1− x)iyk(1− y)j

(1− xy)i+j−l

∣∣∣∣.
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It is easy to see that there are exactly two stationary points of the func-
tion (5.2) satisfying x(1− x)y(1− y) 6= 0, since the system

h

x
− i

1− x +
(i+ j − l)y

1− xy =
k

y
− j

1− y +
(i+ j − l)x

1− xy = 0

is equivalent to

(5.5)





(l + h− j)(h+ i− k)x2

+ ((l + h− j)(j + k − h)− h(h+ i− k) + j(i+ j − l))x
− h(j + k − h) = 0,

y =
(h+ i− k)x+ k − h

(h+ i− k − j)x+ j + k − h.

Let (x0, y0) and (x1, y1) be the solutions of (5.5), with 0 < x0 < 1 and
x1 < 0. From (5.1) and (5.4) we obtain

lim
n→∞

1
n

log In = log
xh0 (1− x0)iyk0 (1− y0)j

(1− x0y0)i+j−l
,(5.6)

lim sup
n→∞

1
n

log |bn| ≤ log
∣∣∣∣
xh1 (1− x1)iyk1 (1− y1)j

(1− x1y1)i+j−l

∣∣∣∣.(5.7)

We can summarize some of the preceding results as follows. Let h, i, j, k, l
> 0 be integers such that

j + k − h, k + l − i, l + h− j, h+ i− k, i+ j − l > 0,

and such that the pair M = M (1), N = N (1) defined by (2.9) satisfies

(5.8) M (r) ≤M, N (r) ≤ N (r = 1, . . . , 12),

where

M (r) = max{χr(j + k − h), χr(k + l − i), χr(l + h− j),
χr(h+ i− k), χr(i+ j − l)},

N (r) = max{τr(M (r)), min{τ 2
r (M (r)), τ 3

r (M (r))}, τ 4
r (M (r))}

is the pair associated with the integral

I(r) = I(χr(h),χr(i),χr(j),χr(k),χr(l)),

as is described in Section 3. Let Ω be the set of ω ∈ [0, 1) satisfying at least
one of the inequalities (4.6), and let Ω′ be the set of ω ∈ [0, 1) satisfying at
least one of the conditions (4.11). Let

f(x, y) =
xh(1− x)iyk(1− y)j

(1− xy)i+j−l
,

let (x0, y0) and (x1, y1) be the stationary points of f(x, y) satisfying x(1 −
x)y(1−y) 6= 0, i.e. the solutions of (5.5), with 0 < x0, y0 < 1 and x1, y1 < 0,
and let ψ(x) = Γ ′(x)/Γ (x). Denote
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c0 = − log f(x0, y0), c1 = log |f(x1, y1)|,
c2 = M +N −

( \
Ω

dψ(x) +
\
Ω′
dψ(x)

)
.

Then, by (4.17), (5.6), (5.7) and Lemma 4.3, we get the following

Theorem 5.1. With the above notation and assumptions we have

µ(ζ(2)) ≤ c1 + c2
c0 − c2 + 1 =

c0 + c1
c0 − c2 ,

provided that c0 > c2.

We now consider some special cases of Theorem 5.1, by making three
different choices for h, i, j, k, l which yield good irrationality measures of
ζ(2). We first consider Hata’s integral

(5.9)
1\
0

1\
0

(
x15(1− x)15y14(1− y)14

(1− xy)12

)n
dx dy

1− xy ,

through which Hata proved first µ(ζ(2)) < 6.3489 (see [7]), and later µ(ζ(2))
< 5.687 ([7], Addendum) by applying to (5.9) our transformation στ.

With our notation, the integral (5.9) is I(15n, 15n, 14n, 14n, 17n). The
pair M = M (1), N = N (1) associated with

(5.10) I(1) = I(15, 15, 14, 14, 17)

is M = 18, N = 16, and does not satisfy the technical assumption (5.8),
since it is easy to check that the maximal pair M (s), N (s) considered in
Lemma 3.1 is now M (s) = 18, N (s) = 17, and is obtained for s = 6 or
s = 11 (this justifies the exceptional treatment of the interval

[
1
17 ,

1
16

)
in

Hata’s Addendum [7]). Therefore, in order to apply Theorem 5.1 we must
rearrange the pairs M (r), N (r) (r = 1, . . . , 12) by replacing (5.10) e.g. with

I ′(1) = I(6) = I(16, 16, 15, 14, 14).
Thus we choose

h = 16, i = 16, j = 15, k = 14, l = 14,

whence

j+k−h = 13, k+l−i = 12, l+h−j = 15, h+i−k = 18, i+j−l = 17,

and the pair M = 18, N = 17 defined by (2.9) satisfies (5.8). The set Ω is
the union of the intervals[

1
16 ,

1
12

)
,
[

1
8 ,

1
6

)
,
[

3
16 ,

4
17

)
,
[

1
4 ,

5
18

)
,
[

2
7 ,

4
13

)
,
[

5
16 ,

1
3

)
,
[

5
14 ,

7
17

)
,
[

3
7 ,

8
17

)
,[

1
2 ,

7
13

)
,
[

9
16 ,

11
18

)
,
[

5
8 ,

2
3

)
,
[

11
16 ,

12
17

)
,
[

5
7 ,

10
13

)
,
[

11
14 ,

5
6

)
,
[

6
7 ,

8
9

)
,
[

13
14 ,

17
18

)
,

whence \
Ω

dψ(x) = 9.73032389 . . . ,
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and the set Ω′ is the union of the intervals[
1
14 ,

1
13

)
,
[

1
7 ,

2
13

)
,
[

3
14 ,

2
9

)
,
[

3
8 ,

5
13

)
,
[

7
16 ,

4
9

)
,[

4
7 ,

7
12

)
,
[

9
14 ,

11
17

)
,
[

13
16 ,

14
17

)
,
[

7
8 ,

15
17

)
,
[

15
16 ,

16
17

)
,

whence \
Ω′
dψ(x) = 1.92426716 . . . ,

so c2 = 23.34540893 . . . Also c0 = 36.08484700 . . . , c1 = 35.34675141 . . . By
Theorem 5.1 we obtain

µ(ζ(2)) < 5.607124.
As a second example, we make the somewhat simpler choice

h = 9, i = 8, j = 7, k = 7, l = 9,

whence

j+k−h = 5, k+ l−i = 8, l+h−j = 11, h+i−k = 10, i+j− l = 6.

The pair M = 11, N = 10 satisfies (5.8). The set Ω is the union of the
intervals[

1
9 ,

1
5

)
,
[

2
9 ,

3
11

)
,
[

2
7 ,

2
5

)
,
[

3
7 ,

1
2

)
,
[

5
9 ,

7
11

)
,
[

2
3 ,

7
10

)
,
[

5
7 ,

9
11

)
,
[

6
7 ,

10
11

)
,

whence \
Ω

dψ(x) = 7.29482030 . . . ,

and the set Ω′ is the union of the intervals[
1
7 ,

1
6

)
,
[

4
9 ,

5
11

)
,
[

4
7 ,

3
5

)
,
[

7
9 ,

4
5

)
,
[

8
9 ,

9
10

)
,

whence \
Ω′
dψ(x) = 1.27367214 . . . ,

so c2 = 12.43150754 . . . Here c0 = 19.23701154 . . . , c1 = 17.82935071 . . .
Theorem 5.1 gives

µ(ζ(2)) < 5.446528.
Our final example is

h = 12, i = 12, j = 14, k = 14, l = 13,

whence

j+k−h = 16, k+l−i = 15, l+h−j = 11, h+i−k = 10, i+j−l = 13.

The pair M = 16, N = 15 satisfies (5.8). The set Ω is the union of the
intervals[

1
14 ,

1
10

)
,
[

1
7 ,

1
5

)
,
[

3
14 ,

3
11

)
,
[

2
7 ,

5
16

)
,
[

1
3 ,

2
5

)
,
[

5
12 ,

7
15

)
,
[

1
2 ,

6
11

)
,[

4
7 ,

5
8

)
,
[

9
14 ,

7
10

)
,
[

5
7 ,

11
15

)
,
[

3
4 ,

13
16

)
,
[

5
6 ,

7
8

)
,
[

11
12 ,

15
16

)
,
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whence \
Ω

dψ(x) = 9.29787398 . . . ,

and the set Ω′ is the union of the intervals[
1
12 ,

1
11

)
,
[

1
6 ,

2
11

)
,
[

5
14 ,

4
11

)
,
[

3
7 ,

7
16

)
,
[

7
12 ,

3
5

)
,
[

11
14 ,

4
5

)
,
[

6
7 ,

13
15

)
,
[

13
14 ,

14
15

)
,

whence \
Ω′
dψ(x) = 1.76783442 . . . ,

so c2 = 19.93429159 . . . Also c0 = 31.27178857 . . . , c1 = 30.41828189 . . . By
Theorem 5.1 we now have

µ(ζ(2)) < 5.441243,

as is stated in the introduction.
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