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ON A π; SET OF POSITIVE MEASURE

HISAO TANAKA

Dedicated to Professor Katuzi Ono for his 60th birthday anniversary

Introduction. Some basis results for arithmetic, hyperarithmetic {HA)

or Πl sets which have positive measure (or which are not meager, i.e., of

the second Baire category) have been obtained by several authors.1) For

example, every non-meager Σg set must have a recursive element (Shoenfield-

Hinman, Hinman [2]) but there exists a non-meager Π£ set (as well as of

measure 1) that contains no recursive element (Shoenfield [7]), and every

J]n set (i.e., arithmetic set) of positive measure contains an arithmetic ele-

ment (Sacks [5], and Tanaka [12]).2) In view of these results, Hinman [2]

asked whether a Σ3 s e t of positive measure must contain a recursive ele-

ment. The main aim of this note is to give a negative answer for this

question; thus, there is a ΠJ set of positive measure with no recursive element

(§1). In §2, we shall mention some remarks on hierarchy problems.

§1. Answer for the question.

LEMMA 1. For each positive integer k, the measure of every Baire's interval

of order k is not greater than 1/k (k + 1).

Proof Let {aί9 , ak, } be an arbitrary sequence of positive in-

tegers. We define pk = [a19 ,ak] as follows:

(1)

= Pk-l<*k + Pk-2-

Further, let q0 = 0 and qk = [a2, ,βfc] (fc^ l). Then, by (1), we have

Received October 28, 1968
χ) In the present paper, sets means subsets of Baire's zero-space NN. Measure means

the Lebesgue measure, and we shall write μ(E) for the measure of a measurable set E.
2) An element of Baire's space is regarded as a 1-place number-theoretic function.
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(2) qk = ft-iβ* + qk-2 {k>.2).

It is well-known by elementary number theory that the following equations

hold:

(3) I>*q*-i - Pt-iQu = ( - ! ) " {kT>l)9

(4) 1J + J J + . . . + l\ = Jb-i"*+Q*-2 if k^2.
I ax [ a2 \ ak pk^ak + pk.2

Let δ = <#!, , aky be an arbitrary Baire's interval of order k. Then by

(3) and (4), we have

Since pfc>/b for all ft^l, ^(^) ̂  __ -1 __ if fc^2. Hence we have

(5) μ(δ) ^

if fc ̂ 3 . Obviously (5) holds for i = l or 2, too. (Q.E.D.)

In the following, a method by which one can evaluate the outer-

measure of a countable set is available.

For each numbers p and e we shall define a set Mp>e as follows:

p+*+i (32/) [ΓΛe, a?, 2/) & α(a?) = U(y)l

and let

Mp = U M p, e.

For each φ and e, Mp>e is either the empty set or a Baire's interval of

order p + e + 19 and Mp is a Σ i set which contains all recursive elements.

By Lemma 1, we have

μ(MP)^ Σ μ(Mp>e)^ Σ i
(ί? + e + 1) (p + e + 2) ί? + 1

Thus we obtain the

THEOREM 2. There exists a Σ? «^ M ( c i V x F )

{α: <p, α> e M] contains all recursive elements and satisfies the following condition:
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COROLLARY 3. There exists a HI set of positive measure that contains no

recursive elements

This gives a negative answer for Hinman's problem. By a theorem

obtained by Sacks [5] and the author [12] (see Introduction), any set ob-

tained in Corollary 3 must contain an arithmetic element.

COROLLARY 4. There exists a 2SΪ set of measure 1 which has no recursive

element.

It follows from Shoenfield-Hinman's Theorem [2; p. 1] (see Introduc-

tion) that such a set as in Corollary 4 is an example of arithmetic, meager (first

Baire category) sets having measure I.4)'5)

§2. Some r e m a r k s . 1°) Evidently, there is a 2? set E of measure

1 such that E ΐ> % where Sft is the set of all 1-place recursive functions.

2°) Contrasting with Corollary 4, if E is a Hi set of measure 1 then

E contains a recursive element. For, since every 2? set of measure 1 is an

open dense set, E is co-meager (the complement of a meager set) and hence

E is not meager. By the Shoenfield-Hinman Theorem, E contains a recur-

sive element.

3°) There is a Π? set consisting of a single element that is not ari-

thmetical. (Spector [10; Corollary 2])

4°) It is known as Kripke-Feferman-Harrison's Theorem (e.g. Mathias

[4; T 3200]) that every countable 21 set contains only HA elements. This

can be proved, for example, by the fact that a non-empty 21 set with no

HA element is dense-in-itself. The elements of a countable 21 set are not

necessarily enumerated by a HA function, as is obvious; but, by the follow-

ing proposition, the elements of a countable Δ ί set can be enumerated by a HA

function:

3) N. Tsukada has pointed out that this result can be straightforwardly extended in the
case of sets of level \a\ for c e O .

4) The referee called my attention to this fact.
5) Theorem 2, Corollaries 3 and 4 hold true for the case of the space 2N (instead of
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PROPOSITION 5. A countable Σ l set E can not contain HA elements

of arbitrarily high degrees; that is, there is a HA function φ such that

Proof. By the Kripke-Feferman-Harrison Theorem, we have

& β^τHa],

where β^τA means that β is Turing reducible to A, namely β is recursive

in A. Since E is Σί> the predicate described in the brackets is Iί\. Hence,

by KreisePs Lemma [3; Lemma 1], there exists a HA functional f Έ F "

such that

(Vβ)[β(ΞE->ΨφeiO & β^τHψ<β>l

The set [Ψ(β>: β&E} is a Σ ί subset of O. Therefore, by a fact known as

a direct consequence of Spector [9; Theorem 1], there exists a number

b <Ξ O such that

\b\ for all β e £.

Thus we obtain the following implication:

This completes the proof.

5°) It is a difficult work that one performs any enumeration of a

countable CA (i.e., co-analytic) subset of N1*. Now one knows Mansfield-

Solovay's Theorem [11; Appendix II], [4; Γ3206] and [6]: Let E be a Σ21-

in-α set (a is a code of E). If is has a non constructible-from-α element,

then E contains a perfect subset. By the theorem, we shall try to do this

work for a countable PC A set, thus:

For the sake of simplicity, we shall deal with effective case, i.e., with

a countable Σ2 set E, instead of a classical PC A set. By the above theo-

rem we have

(1) EdLf\NN.

Since E is Σ2, by Shoenfield's Theorem [4; T3101] together with (1) E is

a constructible set. Since a<^Lf)NN -± a^Fu K ^ c F " &19 we have
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E<ΞL & Ed F" ^ & Card (E) = Ko.

(L and F are GδdeΓs.) Hence by [8; p. 317] we have

E e F " ^ ; i.e., Od(E)< tf lβ

Thus we obtain

PROPOSITION 6.6) Let E be a countable Σ2 set. Then is itself is con-

structible and Od(E)<i<1.

Let <y = Od (E). Then (VjS) [/3e£ -> Or(β) < </].7> Note that Or(β)

Let 9 be a code for the countable ordinal σ. We shall inductively define

a as follows:

α(0) = (i"/)i6«(ai9)[α)Xα) F(9i) = β & /3 e £],

= ]9 & β^E &

Then we can see that a is Δ\-m-φ. Let βn = ωXω F{φ*(n )) {βn is a different

notation from φ^) Then E = {^OJAJ^* * }• Now, since

&(*) = 2/ ̂ -^ (36) (*β)[M(φ,e) & % , £ , A Φ ) ) & β(x) = 2/],

it is Σj3"in"^ a n d hence J|-in-^>. Consequently, E can be enumerated by a

dl-in-φ function. We do not know, however, what φ is.

If ψ is a constructible function (e.g., if &\ = ^ then it is the case), then

(iφ) [φtΞLΠNN & W(φ) & (VjS) [β S £ - • (3f) [Or(^) < pj)].

Hence we can choose a J3 function 9 satisfying the bracketed condition.

After all, E can be enumerated by a Δ\ function.
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