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A B S T R A C T  
Using an integral formulation, the equation for a plate resting on an elastic foundation, of a spring constant k and 
containing a crack of length 2c, is solved for the Kirchhoff bending stresses. The inverse square root singular behavior 
of the stresses peculiar to crack problems is obtained. Furthermore, this singularity may be related to that found in an 
unsupported plate by 

O'y . . . . . .  1 q- a 2  2 

where a is for small values of the parameter 2 is a positive constant. 

Nomenclature 

G 
h , ,  

k 
M(C) M(P) 

y ~ ' ~ y  

mo 
q (x, y) 

w (~, y) 
w (~(x, y) 

2c = crack length 
D = Eha/[12(1 - v2)] = flexural rigidity of  a plate 
E = Young ' s  modu lus  of  elasticity 

= Shear  modu lus  of  elasticity 
= Thickness  of  a plate 
= F o u n d a t i o n  modu lus  of  a plate 
= Bending m o m e n t s  as defined in text 
= Cons tan t  as defined in text 
= La te ra l  load 
= Shear  force as defined in text 

Transverse  deflection of  a plate in bending  
Transverse  deflection of  a con t inuous  plate which has not  been weakened by 
the crack 

W (c) (x, y) = Transverse  deflection of a plate  involving per turba t ions  induced by  the presence 
of the crack 

W(+C)= lira W(C)(x, y), W_ (~) -- l im W(~)(x, y) 
y-*0  + y ~ O -  

X, Y, Z = Rec tangu la r  coordina tes  in middle  plane of a plate 
X Y Z 

x - - = - - ,  y - - - ,  z - =  
c c c 

- (i? 
fl ~ ( - i )  ~ 
y = 0.578 Euler 's  cons tant  
a, O; eei°= x + l + iy 
~ - x - ~  

- (k /D?c  
v = Poisson 's  rat io  
vo---- 1 - - v  
ax, ay, zxy = Stress c o m p o n e n t s  
a~ ), @~), vxy,,(c) = Pe r tu rba t ion  stress c o m p o n e n t s  due to the presence of the crack 

6Dmo 
~b = h 2c  2 

\ 
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Introduction 

In a previous treatment of this problem, the stress field in the vicinity of a semi-infinite line 
crack of a plate resting on an elastic foundation was determined [1]. 

It was recognized at the time that a semi-infinite crack was not of much practical value and 
that a finite crack would be by far more desirable. Unfortunately, the latter presented 
numerous mathematical complexities and consequently it was put aside. Recently, however, 
the author, using techniques which he had developed earlier [2], was able to investigate the 
case of a finite crack and the results are reported herein. 

The results have direct value in civil engineering applications such as roadways, airports 
and indirect value in the fracture of initially curved vessels [3]. 

Formulation of the Problem 

Consider a homogeneous and isotropic thin plate of uniform thickness h. The plate is resting 
on an elastic foundation of a spring constant k and contains a line crack of length 2c (see fig. 1). 
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Top view 
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Figure 1 

The differential equation governing the displacement function W(x, y), with x and y as dimen- 
sionless rectangular coordinates, is given in the classical theory by 

q (x, y) c 4 (1) 
(V 4 .~_ ~4) W (x, y) = D 

The boundary conditions at the crack are those of free edges. Inasmuch as classical 
bending theory is used, only two boundary conditions along the crack may be satisfied. In 
particular, one must require that the normal moment and equivalent vertical shear to vanish, 
i.e. 

lim (M,~ = 0 for - l < x < l .  (2) 
lyl-*O \ /Vy  

It is required, in addition, that the function W and all its partial derivatives be continuous 
for all x and y, except for points on the segment - 1  < x <  1, y=0 .  In order not to loose any 
generality, one may assume that at infinity the plate is loaded in some general manner. 

Thus if one seeks the solution to the crack plate problem in the form 

W(x, y) = WO')(x, y )+  We)(x, Y), (3) 

then the moments and stress resultants may be correspondingly written as My = M f  ) + M¢ ~), etc. 
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Suppose, however, that one has already found a particular solution* satisfying equation (1) 
but there is a residual normal moment My and equivalent vertical shear Vy along the crack 
Ix[< 1 of the form 

M~p) _ Dmo 
c2 (4) 

vr ") = 0 (s) 
where, for simplicity, mo will be taken to be a constant. 

Assuming, therefore, that a particular solution has been found, we need to find a function 
W(C)(x, y) such that it satisfies the homogeneous part of the partial differential equation (1) 
and the following boundary conditions: 

at y = 0  and Ix[< 1 
D [0 2 W (cl 02 W (c)] Dmo 

MU)(x, O)= - ~ [~-~-y2 + V ~ x 2  ] = c-- 2 -  (6) 

D [0 3 W (c) . 0 3 W (c) 3 
v'(c)(x' °) : - J  L ~ Y  + (2-v) ~ - y  J = o (7) 

at y = 0  and [xl > 1 

O[~y. c~" ] = 0  1,2, (8) lira (W(+ c)) - - -  (W_ u)) (n :0 ,  3). 
ly[--'o OY n 

To complete the formulation of the problem, we require that the displacement function 
W (~) (x, y) together with its first partial derivatives be finite at infinity. 

Method of Solution 

We construct the following integral representation which has the proper behavior at infinity 

-f W(¢)(x' Y-+) = o' {P1 e x p [ - ( s 2 + c t 2 ~ 2 ) ½ [ Y [ ] + P 2  exp[ - ( s2+f1222)~[Y[}  cos  xsds, (9) 

where P1, P2 are arbitrary functions of s to be determined from th e boundary conditions and 
the + signs refer to y > 0 and y < 0 respectively. 

Assuming that one can differentiate under the integral sign, formally substituting equation 
(9) into (7) one has 

°fo - (s +fi 2 )  (VoS - f l  2 ) P 2 } c o s x s d s = 0  (10) + ? s  {(s2+~,~2 F(vos2_~2)[2)Pl+ 2 2 2 ~  2 ~ 

which may be satisfied, for all values of x, if one chooses 

P1 = ( s2 + 132)[2)~ (Vo $ 2  - -  f12)[2)p (s) (11) 

P2 = - (  s2 + ~222) ~ (Vo s2 - ~222)p(s) • (12) 

Similarly, substituting (9) into (6) and utilizing equations (11) and (12) or/e obtains 

;o o lim - {(VoS2-St-ct2)[2)2(s2-Jr-fi2~2)~exp[-(s2+o~2)[2)½lYl]+ 
lyl=O 

_ (% s 2 + 132)[2)2 (s 2 + ~2)[2)~ exp  [ -  (s 2 +/32)[2)~ lyl] P (s) cos  x s  d s  = , n o  ; 

for Ixl<l.  (13) 

Next, it can easily be seen that the continuity conditions may be satisfied if one considers the 
following expression to vanish 
• As an illustration of how the local solution may be combined in a particular case, see reference [1]. 
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o ' (S4+24)}P(s )  c o s x s d s = O  for Ix l> l .  (14) 

We have, therefore, reduced our problem to solving the dual integral equation (13), (14) for 
the unknown function P (s). However, because we are unable to solve dual integral equations 
of this type, we will reduce the problem to a singular integral equation. If one lets 

X0 U(X)= ( s 4 + 2 4 ) ½ P ( s ) c o s x s d s ;  for Ixl<l (15) 

Then by Fourier inversion: 

(s 4 + 24) ~ P (s) = 2 fo 7 u(~) cos {sd{, (16) 

where the function u(~), due to the symmetry of the problem, is even. Thus, formally, sub- 
stituting (16) into (13) one, after changing the order of integration and rearranging, has 

f l for Ixl<l  (17) L ( 2 l x - ~ [ ) u ( ~ ) d ~  = -morcX  
- 1  

where the kernel L is given by the expression 

(co }- (Vo s 2 + e2 22)2 exp [ - ( s  z + ~222)~ lyt] 
g(2lx-~l)--  lira Jo [ 7 ( ~  + 

[yl-+O 

(Vo s2 + fi222)2 exp [ -  (s 2 + fi222)~ lYl] [ 
- 7(s2 ~ j s i n ( x - ¢ ) s d s  (lSa) 

and its asymptotic form for small 2's is: 

L(2[~[) (4-vo)voe222~ + ( 3 v ~ -  8 ) ~ + ( 1 9  ) 8Vo+8 irc24~ 73v z -  80Vo+128 ~6/~6ff3 

(y+ ln  ~ - ]  0 ((28~ 6 In 21~1)) (18b) 
- - - T 6  + " 

We require that the solution u({) be H61der continuous for some positive H61der index # 
for all x in the Closed interval [-- 1, 1]. In particular u({) is to be bounded near the ends of the 
crack. A method for constructing such a solution is given in reference (2). Without going into 
the details, one may find a series expansion of u({) for small values of the parameter 2, i.e. 

u ( ¢ )  = 
n=0 

where 
mo 

( 4 -  Vo)VoA 1 = - -'Tf~2 2 x 

3VZo- 8Vo + 8 rc~ z 
x 1+ (4-v0)vo 32 

(19) 

rls  _36vo+24 3V2o_6Vo+2]~* (20a) 

~222 I_l 1v2-24Vo + 12 10Vo2-24Vo+ 16 @ -24) 1 
( 4 - v ° ) v ° A 2 = -  6--4- 9 + - 3 +ln A1 (20b) 

(4-  Vo)VoA3 - 5vg- 12v o + 8 Aa (20c) 
16-60 

Finally, using equations (19), (16), (12), (11) and (9) one may derive the following expression 
for the complementary displacement function W (c)(x, y), i.e., 
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w(~)(x, y+-) = 

f~ m t (VoS2 -- r 2  22) exp [_(s 2 + ~2/~2)½ ]y]] --  (VoS2 __0~2 22) exp [__(S 2 Jr_ 1~2 ~2)@ [y[] 

( s ~ + ~ ) ~  : ~ 7 ~  ~ × j u  L 

~'t. s ~U-  + "'" cos xsds (21) 

from which*, the stresses at the surface z = h/2c may be computed as: 

i ( 3-3v 0 1 - v  502) o"~ ) - (~))~ ~ cos 2 ~ - -  cos + O(e °) (22) 

a~C) = Pb / I l l+  5v 0 
(2,0~ ~ - - U -  cos 

10) 
+ - T - c o s  ~- + o(~ °) (23) 

,r(c, Pb ( 7 + V . 0 1--Vsin~)+ (24) 0(~ °) xy = (20~ T sin 2 4 

where 
~b { 3V~--8Vo+ 8 r c 2 2 2 4  ~15v~-36Vo+24( 2)  3v~-6Vo+2]~ -1 

Pb-- (4--~0) 1+ (4--%)% 32 + ~ L ~---V~O 7+1n4 + ~ - J J  
(25) 

which for v =½ reduces to : 
- i  

3 { 9 n22 324 [9.1+ 10 In 2]} (26) 
P b = S b ~  1 + 5 - ~  + 1280 

As a consequence of the Kirchhoff boundary condition, the bending shear stress 4 c) does - - x y  

not vanish along the free edge. For the flat sheet this difficulty was discussed by Knowles 
and Wang who considered Reissner bending theory [4]. 

Returning to the stresses along the crack prolongation, for example the normal stress 
a(yC)(x, 0), one finds using equations (23) and (25) that for small values of the parameter 2 

a~(~, O) [1 9 7c 2] -1 
- -  ~ (2e) -~  + ~ ~ 2 (27a) 
fib 

On the other hand, for large values of the parameter 2, reference [1] gives 

a~)(e,O) ~ (20_ ~ 2_~. (27b) 
ab 

1.00 _ ~  

0.8 ',- %% 

.~ 0.6 ~' " '  

lib ~ ~  
0.4 .. 

0.2 

0.0 
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Figure 2 
S T R E S S  I N T E N S I T Y  F A C T O R  VS X 

* It can easily be shown that the imitted terms lead to non-singular stress contributions, and therefore, are omitted. 
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Since the behavior of the stress intensity factor at the two extremes is known, one may 
construct, as an engineering approximation, a curve with the proper asymptotes. Such a plot 
is given in figure 2. 

A Particular Solution 

As an illustration of how the local solution may be combined in a particular case, consider a 
rectangular strip, infinitely long in the x-direction and of finite width y* in the y-direction. 
Furthermore, let the plate be subjected to a constant moment M* and zero shear at y-- +y*, 
and simultaneously subjected to a uniform normal loading qo. Reference [1] gives the solu- 
tion of this problem as 

qo 2y 2y 2y 2y 
w (p)(y) = ~ + A cos ~ cosh ~ + B sin ~ sinh ~ (28) 

where the coefficients A and B are given by 

A -  
D24 sinh ( ~ f ) c o s h  t-~U] + cos ( ~ * )  sin ( ~ * )  

(2y*~ sin h (2y*] [2v*'~ {2y*~ 
M* \ 2 ~ / \ 2 ~ / + sin ~-~-~ / cos [ T ) . c o s h  

B -  
D 2  2 / 2y*\ 

cosh ~ ) s i n h  ( ~ * ) +  sin ()~?]\2~] cos (22~+ *) 

from which one may easily deduce that 

c o s  6Din o 6DM* \ ~ - ]  sink (~_~*) + sin ( ~ * )  cosh (2 ~ )  

6b-=h2c - - ~ =  h z c 2 ___/2Y*\ ( ~ * )  (@f) ( ~ , )  (29) 
c o s h / ~ - )  sinh + sin cos 

Conclusions 

The following conclusions may be deduced from the foregoing analysis: 
(i) the stresses are proportional to e -~. 
(ii) the stresses have the same angular distribution as that of a flat plate. 
(iii) the stress intensity factors are functions of the spring constant k and in the limit as k--,0 

we recover the unsupported plate. A typical term for small values of the parameter 
(k/D) ~ c 2 is of the form: 

O'sup' ~ 1 + a ~ c ~" (30) 
O-unsup. 

where a is a positive constant. This result indicates that the stresses, and consequently 
the strains, appear to decrease in magnitude by a factor which depends on the spring 
constant, the crack length, and the material properties. 
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RI~SUMI~ 
A l'aide d'une formule d'int6gration, on a r6solu I'6quation d'une plaque reposant sur un support de constante 
61astique k, comportant une fissure de 1ongueur 2c, et soumise ~ des contraintes de flexion de Kirchhoff. On aboutit 

une distribution des contraintes dont l'amplitude varie en raison inverse du carr6 de la distance, comportement 
singulier propre aux probI~mes de fissuration. 

En outre, cette singularit6 peut 8tre raise en balance avec celle que I'on trouve dans une plaque non support6e, par 
l'expression: 

I O'YsuPP°r t6e ~ - -  

0"r . . . . .  ppor  t~¢ 1 + a.~ 2 

o/1 a est une constante positive pour de petites valeurs du param~tre 2. 

Z U S A M M E N F A S S U N G  
Ffir eine auf einem elastischen Fundament (Elastiziffttskonstante k) ruhende Platte, welche einen Rig der L~inge 2c 
aufweist und Kirchhoff Biegebeanspruchungen ausgesetzt ist, konnte die Gleicbung mit Hilfe einer Integralformel 
gelSst werden. 

Es ergibt sich das den Rigproblemen eigene singulare Gesetz des umgekehrten Verh/iltnisses zur Quadratwurzle. 
AuBerdem karm diese Singularit/it mit der ffir eine nicht gestfitzte Platte ermittelten fiber die Gleichung: 

ffy,o,t~tzt 1 

O'Yuages t¢~ tz  t 1 + a 2  2 

in Zusammenhang gebracht werden, wobei a fiir kleine Werte des Parameters 2 eine positive Konstante ist. 
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