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                    Abstract 

   This paper decides the behaviour of cellular automata, including the 

existence of fixed points and the order of configurations, using the poly

nomial representation of configurations with respect to a basis derived from 

a series of state transition. We are mainly concerned with cellular automata 

with local transition rule 90 since the method described here can be used for 

any finite cellular automata with a little alternations [7].

1. Introduction 

   In this paper, we are concerned with cellular automata that have linearly-sited 

cells, and each cell of them has value 0 or 1. S. Wolfram gave a standard numbering to 

transition rules of this kind of cellular automata [8]. We are mainly concerned with 

local transition rule 90, that is decided so that the value of a cell is the sum of the 

values of its two nearest neighbourhoods at the previous time step, where the sum is 

computed modulo 2. We assume the boundary condition to be null, that is, for the left

most cell, the value of the left-hand neighbourhood is regarded as 0, and for the right

most cell, it is treated similarly. 

   Figure 1 gives an example of state transition of eight cells. The first column 

denotes the initial configuration. It can be selected arbitrarily. In this case, we choose 

the first vector of the standard basis. The second column denotes the configuration at 

the next time step and so on. We see the state transition to be periodic, and its order is 

fourteen.
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10100010000000101000100000001010001000000010100010000000 

01000100000001010001000000010100010000000101000100000001 

00101010000010001010100000100010101000001000101010000010 

00010000000101000100000001010001000000010100010000000101 

00001010001000000010100010000000101000100000001010001000 

00000100010101000001000101010000010001010100000100010101 

00000010100010000000101000100000001010001000000010100010 

00000001010001000000010100010000000101000100000001010001

Fig. 1. An example of the state transition.

   We treat the automaton in more mathematical manner. Let F2 = {0, 1} be the 

finite field of order 2, and let Vm be the vector space FT-1. Vm is the set of all 

configurations of m  1 cells. For convenience we use m instead of m  1. The transition 

rule is a linear transformation on Vm and its representative matrix Am of degree m  1 

is 

/0 1 
1 0 1 

1 0 1 

Am= 

                                                                                                                                                  •                                        

• 
. • 1 

                             1 0 / 

   For convenience, we denote it as follows: 

                       ca  90(m) = (Vm, Am).

2. The Polynomial Representation of Configurations 

   Let e1, e2, ... , em_i be the standard basis of Vm. We choose m  1 vectors 

f =Amle1(i = 1, ...,m  1) 

from Vm. Since the matrix (fi, f2, • • , fm_i) is regular, fi, f2, ... , fm_i is a basis of Vm. 

We call it the transition basis. We defined Vm as a vector space over F2, but we can 

regard it as an F2[t]module by defining the polynomial multiplication of a vector v E 

Vm and a polynomial f(t) E F2[t] as follows: 

f(t) • V = f(Am)V. 

Of course, substituting another matrix for f(t), we get another F2[t]module, and in 

fact, we use another one later. But if e ( = ei) is taken as the vector v, we always 

substitute Am for f(t). Since the vectors fi, f2, ... , fm_i are a basis of Vm, any vector v 

E F2 can be uniquely represented as follows:
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                  v =  al fl + a2f2 + ... + am-ifm-1 (a, E F2). 

By the definition of the polynomial multiplication, we can rewrite the above equation 

as 

                        v = (al + a2t + ... + am_itm 2)• el. 

Therefore we can uniquely choose a polynomial f(t) E F2[t] satisfying the equation v = 

f(t) • fi under the condition deg(f(t)) < m  2. We call the polynomial f(t) the 

polynomial representation of v, and emphasizing the configuration v, we often denote it 
by fv(t). 

   We define another square matrix B,n of degree m  1 by 

                     0 

1 0 

1 0 

                                                                                                                                        • Bm = 

• 0 

1 0 

Similarly to the case of Am, we get F2[t]module by defining the polynomial multipli

cation on V,n as follows: 

                        f(t) • V = f(Bm)V. 

If f ( = fi) is taken as the vector v, we always use the matrix Bm. If a polynomial f(t) E 
F2[t] is written as 

                 f(t) = al + a2t + ... + a,n_lt»i-2 (ai E F2), 

we have 

                        f(t) • f = `(al, a2, ... , am-i)•

3. The Polynomial cpn,(t) 

   In describing the behavior of ca  90(m), we often use the polynomial cpm(t). We 

recall the definition of it and some formulas from Matsumoto [6] . The polynomial 

99,n(t) E F2[t] is defined by the equations cp0(t) = 0, cpl(t) = 1 and 

qm(t) = trpm-1(t) + cpm-2(t) (m > 2).(1) 

From the definition, we have some fundamental formulas . For any m >_ 1, 

deg(cpm(t)) = m  1,(2) 

0 1 m _ q9m-i(t)cpm(t)(3) 
1 t(Pm(t) cpm+l(t)
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€Pm+l(t)€Pm-1(t) + €Pm(t)2 = 1.(4) 

   Next, we see the factorization of cpm(t) in F2, where F2 is the algebraic closure of 

F2. Now, we set 

                        m = 2sm' ((m', 2) = 1), 

m'-1 
m1 = -------2 

and we denote the primitive m'-th root of unity by ~, and set iji = ~i +-i . We have 

the factorization of cpm(t) as follows: 
mi 

               99m(t) = t25-1 n (t 25+1(5) 
i=1

4. Lemmas 

   In this section, we give a few lemmas, and decide the Jordan normal form of Am. 

PROPOSITION 4.1. If m >_ 2 and e E Vm(= FT-1), then 

4m(t)e = 0. 

   PROOF. The proof is by induction on m. For m = 2, 3, it is trivial. Now, assume 

the theorem to be true in the case of m  2; cpm _ 2(t)e = 0 on Vm_2. Correcting 

errors derived from the difference between Vm_2 and Vm, we have (Pm_2(t)e = em_2 on 

Vm. Similarly, cpm_1(t)e = em_i holds on Vm. Therefore, we have 

            cpm(t)e  (tmm-1(t) + (Pm2(t))e = Amem_i + em_2 = 0, 

as required. 1 

PROPOSITION 4.2. If cpm(t) is written as 

                    99m(t) = tm-1 + am-2tm-2 + ... + alt + a0, 

then 
m-1 

Amfm_i = E ai_ifi• 
i=1 

   PROOF. From Proposition 4.1, we have 

                0 = cpm(t)e 

= (Am-1 + am-2 Am-2 + ... + aiAm + ao)e 

                       m 

                        = Am-1e + am-2fm-1 + ... + aif2 + aof1 
                                             m

~-1L~ Amfm-1+ ai—lfi• 
                                               i=1 

Transposing the term Amfm-1 to the left-hand side, we get the result. 

   Let ` A m be the representative matrix of the transition rule of a ca  90(m) with 

respect to the basis fl, f2, • • • , fm_1. It is transposed for convenience. The index m is
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often omitted. By the Proposition 4.2, setting 

 (Pm(t) = tm-1 + am-2tm-2 + ... + al + a0, 

we have, 

0 1 

0 1 

0 1 

tA=(6) 

0 1 

                       a0 al ... am-3 am-2 

It is easy to confirm the characteristic polynomial of the matrix (6) is cpm(t). Let Hm be 

the set of non-zero roots of the polynomial cpm(t). From factorization (5), we have Hm, 
= {rii = + = 1, ..., ml}. Denoting the n x n Jordan block corresponding to 
the eigenvalue a E F2 by Jn(a), we have the Jordan normal form J of A as follows: 

mi 

                J = ® J25+1 Oh) ® J2,-1(0)• (7) 
                                         i=1 

Next we give the matrix P satisfying the equation 

A = PJP-1.(8) 

For a E F2, we define an (m  1) x n matrix Pn(a) by 

1 

a 1 

         a2 (i)a' 1 

                                                                                   • 

                                                                                                                                                                  •                                                                                                                                                                                                            •                                                                                                                      

• 

• 

1 2 m-2—3—2—4—2—n-1 
(1)~(m2)~...(mn-1)~ 

that is, the (i, j)element of Pn(a) is 

(1 < i m  1, 1 < j < n) 

The matrix P satisfying the equation (8) is as follows: 

                   P = (P25+i(r)1), ... , P25+i(iimi), P2s 1(0))•
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   PROPOSITION 4.3. If a polynomial f(t) E F2[t] satisfies deg(f(t)) < m — 2, then for 

any a E F2, 

f(a) 

f(a) 

`P
„(a) f (t) • f' = V" (cr) 

                                                                                                                                                                             • 

                                                (n„ 

                         (n —-----------1)!f(a)

5. Applications to Transition Diagrams 

   Vector space Vm is a direct sum of the set of infinite images and the set of infinite 

kernels; Vm = ImA °O KerA °° . First, we decide the construction of the kernel tree that 

is the transition diagram whose verteces are restricted to the infinite kernel and the 

edge from 0 to 0 is removed. It is a binary tree, except the root has only one edge, and 

each leaf has the same depth. So, we can decide the construction of the kernel tree only 

by the depth of it. A vertex corresponding to infinite image appears as a node on a 

loop, and each node is connected to a tree isomorphic to the kernel tree. So, we can 

decide the global constitution of transition diagram by the order of each loop. 

   THEOREM 5.1. We can select bases of ImA°° and KerA°° as follows: 

                        (t2, 2I1T1A t,. , t/Fz, 
                KerA°° _ com(t) com(t) com(t)  

t ' t2 , ... , t2'-1 F Z 

   For any configuration, we can decide whether it is an element of ImA°° or not, by 
the next theorem. 

   THEOREM 5.2. For any configuration x E Vm, 

                x E ImA°° fx(t) E 0 (mod deg 2s). 

   Next, we decide the order of each configuration, using the polynomial representation. 

Let A be the set of all orders. It is easily seen that A = {1, 2, ... , 2s+1} x ford (r/,)} U 

{1}.  For each A= 2`A' E A (A' : odd), we define the discriminant as follows: 

1'A(t) _F1tzs-1(t— 02'.(10) 

ord(ij;)IA' 

We often use the quotient polynomial IMO of IA(t) defined as follows in stead of 

q(m) = PA(OA(t).(11) 

Figure 2 gives an example of the quotient polynomials in the case of m = 60. 

   THEOREM 5.3. For any infinite image x,
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Fig. 2. An example of quotient polynomials.

6. Local Properties of ca — 90(m) 

   If the configuration el + em_i E Vm is included in ImA°°, we denote the order of 

it by K(m). First, we discuss the existence of K(m). 

   THEOREM 6.1. K(m) exists if and only if 4 J m. 

   PROOF. In the case m is odd, the linear transformation A is regular, so the result 

is trivial. In the case m is even, we apply Proposition 5.2 to the polynomial 1 + cpm_1(t) 

which is the polynomial representation of e1 + em_1. If m = 2m'(m': odd), we have 

cpm(t) + 1 = 0 (mod deg 2), 

so ei + em_i E ImAoc. If m = 2sm'(s >_ 2, m' : odd), then 

cpm(t) = t2c-1 (mod deg 2s) 

com_2(t) = t (mod deg 2) 

so, 

cpm_1(t)2 + 1  t2s (mod deg 2= + 2). 

Hence, 

c9m_1(t) + 1 0 (mod deg 25).
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Therefore, K(m) doesn't exist in this case. 

    PROPOSITION 6.2. For all  rji E 11,n', 

rPm(ni) = 0,(12) 

(Pm107) = 1,(13) 

and if m is odd, then 

cPm1(i?i)' = ili1.(14) 

   PROOF. (12) is trivial. (13) is easily seen by substituting rii for (4). From the 

differentiation of (2), we have 

99m(t) = q)m_i(t) + tTm-1(t)' + 99m2(t)'. 

Substituting iji for it, we have (14). 

   PROPOSITION 6.3. If ni E Hm-, then 

   n\ 
                                1      r1i 

                      (1)11n-171? 
t J(r1

i)n =. ' •(15) 

                         (mn 2)Tln—m+2 (mn 3)777—m+3 . . . . 1]n / 

t .12(702sutx—dm(2)-1 =1 (rill 1(16) 
   PROOF. The proof is by induction on n. (16) directly follows from (15). 

   THEOREM 6.4. If m is odd, then 

K(m) 1 2subord,, (2) _ 1 

   PROOF. By the matrix ̀ P, the configuration vector (cgm_1(t) + 1) • f is mapped on 

the vector 

cPm1(7l1) + 1 0 

                         / cPm1(rll)' 1111 

(Pm1(r12) + 1 0 

         tP(cp
m_i(t) + 1) • f = Tm1012)' = n21 . 

99m1(r^m) + 10 
/ 

                            ~Pm1(r1m1)' 11m1/ 
Denoting this vector by x, we have
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                            ! J2suburdrn(2)— lx 

               _ 2suburdrn(2) _ l!2subordrn(2-) _ l            —(!J2~r]l) ®... ®J2(rlm
l))x 

                  = x, 

by Proposition 6.3. 1 

   At last, we discuss the existence of fixed points. 

   THEOREM 6.5. There exist nontrivial fixed points if and only if 3 m. In this case, 

the subspace of fixed points is given as follows:  

 pm(t)  

t— 1 F2. 

   PROOF. First, we search fixed points in the algebraic closure F2 m-1, and then we 

confirm they are included in FT-1. Assume that J has a nontrivial fixed point in F2'1, 

that is, there exists one Jordan block of J such that 

               tJ
2s+1(0 — I25+1(17) 

is degenerate. It is equivalent to = 1 and + 1 = 0. It means is a third root 

of unity, so we have 31m. It is easily seen that the dimension of the kernel of (17) is 1. 

By 

             P2s+1(rl~)9)t(t)=0 (rh 1) 
t  1t(0, ... , 0, 1) = 1) 

we see the polynomial representation 

ggm(t)  

t-1 

gives a unique nontrivial fixed point.
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