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Abstract: A predator-prey model interaction under fluctuating water level with non-selective harvesting is

proposed and studied in this paper. Sufficient conditions for the permanence of two populations and the extinction

of predator population are provided. The non-negative equilibrium points are given, and their stability is studied by

using the Jacobian matrix. By constructing a suitable Lyapunov function, sufficient conditions that ensure the

global stability of the positive equilibrium are obtained. The bionomic equilibrium and the optimal harvesting

policy are also presented. Numerical simulations are carried out to show the feasibility of the main results.
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1 Introduction

Lotka-Volterra systems are one of the most classical and important systems in the field of mathematical

biology research and were initially independently proposed in the 1920s by the American biophysicist

Lotka when studying a chemical reaction and the Italian mathematician Volterra when studying

competition between fish. Generally, we present a kind of predator-prey system between two populations

depending on the Lotka-Volterra model as follows:
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where x and y denote the density of the prey population and predator population, respectively, and ( = …)a i j, 1, 2ij

are all positive constants. In system (1.1), a xy12 refers to the quantity of prey that was eaten by the predator per

unit time. Thus, a x12 means the quantity of prey that was eaten by one predator per unit time, which is described
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as the predation rate and denoted as ( )Φ x . Then, ( )Φ x is called the functional response function of prey.

Some scholars have devoted their efforts to investigate the predator-prey system in previous studies [1–4].

Rosenzweig-Macarthur found that the predation rate would be affected not only by the prey

population but also by the predator population. In view of this, Rosenzweig-Macarthur improved the

Lotka-Volterra model with the consideration of the functional response function as ( )Φ x y, ,
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Later, various scholars studied the predator-prey system with different kinds of functional response

functions, such as Holling-style functional response function [5–16]. Recently, in reference [17], Fellah et al.

proposed a predator-prey system with a new kind of functional response function,
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This study is based on two interdependent fishes in an artificial lake in French: the pike (B), which is

the most important predator, and the roach (G), which is the prey. The functional response function is

based on the following general considerations. When a predator attacks a prey, it has access to a certain

quantity of food depending on the water level. When the water level is low, during autumn, the predator

is more in contact with the prey, and the predation increases. When the water level is high in spring, it is

more difficult for the predator to find a prey and the predation decreases. Thus, it is assumed that

accessibility function r(t) for the prey is continuous and 1-periodic: the minimum value r1 is reached in

spring, and the maximum value r2 is attained during autumn. The functional response function is

given by
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where D measures other causes of mortality outside of predation and γB is the maximum predator needs.

Obviously, the functional response function given in system (1.2) is reasonable and universal in most of

the lakes.

Belkhodja et al. [18] proposed and studied the prey-predator system based on system (1.2) as follows,

in which the harvesting of prey population was considered:
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It is different from system (1.2) that the authors provide ∫= ( )b r t td
0

1
as the mean function of predation

rate. In reference [18], the authors investigated the dynamics of system (1.3) and established the sufficient

criteria for the boundedness, permanence, and predator extinction. Then, the local and the global stability of

the equilibrium of system (1.3) are studied. Finally, the authors investigated the bionomic equilibrium and

the optimal harvesting policy of system (1.3).

Most of the time, it is difficult to harvest only one kind of fishes independently when we fish in the

lakes. As studied in references [19–21], we take nonselective harvesting into consideration for the sake of

economic profit. We studied a kind of prey-predator system with nonselective harvesting as follows:

Predator-prey system interaction under fluctuating water level  459



= − −
+

−

= − +
+

−

x

t
rx

x

K

bx

y D
γ y q mEx

y

t
βy α

bx

y D
γ y q mEy

d

d
1 min , ,

d

d
min , ,

1

2








































(1.4)

where x(t) and y(t) denote the densities of the prey and predator, respectively, at time t and

r K b α β γ q q m D E, , , , , , , , , ,1 2 are positive constants: r means the intrinsic growth rate of prey, K means

the carrying capacity for prey, b is the mean function for the predation rate of prey, β is the death rate of

predator, γ means the maximum consumption rate of resource by predator, α means the conversion rate

from prey that was eaten by the predator to newborn predators, D measures other causes of mortality

outside of predation, q1 and q2 denote the catchability coefficients of the prey and predator species,

respectively, E is the effort devoted to the harvesting of human beings, and m is the fraction of the stock

available for harvesting and 0 < m < 1.

This paper is organized as follows. In Section 2, we obtain the sufficient conditions that ensure the

permanence of two populations and the extinction of predator population. In Section 3, we give all the

nonnegative equilibrium points of the system under the necessary assumptions and discuss their local and

global stabilities. In Section 4, we investigated the bionomic equilibrium of the system to guarantee the

permanence of two populations under reasonable harvesting efforts. The optimal harvesting policy is

discussed in Section 5. Finally, we conclude with the results obtained in the paper in Section 6.

2 Permanence

In this section, we study the permanence of two populations. From the standpoint of biology, we are only

interested in the dynamics of system (1.4) in � �≔ {( ) ∈ ≥ ≥ }+ x y x y, , 0, 02 2 with the initial condition

( ) = > ( ) = >x x y y0 0, 0 00 0 .

Obviously, if >E r

q m1
in system (1.4), then < 0x

t

d

d
, as a result, both prey and predator population will

go to extinction. Hence, we assume that

≤ <E r

q m
0 .

1
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Lemma 1. �+
2 is an invariant set for system (1.4).

For the proof of Lemma 1 refer to the proof of Lemmas 1 and 2 in the literature [18].

Lemma 2. The solution of system (1.4) satisfying the initial value in the �+
2 is bounded and ultimate bound.
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Let = +υ β q mE2 . By using the theory of differential inequality, we obtain

< ( ) ≤ ( ) {− } + ( − {− })w t w υt
ω

υ
υt0 0 exp 1 exp .

Thus, we get { }< ( ) ≤ ( )w t w0 max 0 ,
ω

υ
. Moreover, we have ( ) ≤→+∞w tlimt

ω

υ
, from which we can

conclude that all the solutions of system (1.4) that start in �+
2 are confined to the region U,

�{ }= ( ) ∈ ( ) < ++U x y w x y ε, : ,
ω

υ

2 , for any ε. □

For the research of the permanence behavior of the system, we give the definition of permanence and

nonpermanence at first.

Definition 1. [18] System (1.4) is called permanent if there exist positive constants < ≤m M0 ⁎ ⁎ such that
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for all solutions (x(t), y(t)) of system (1.4) with positive initial values.

The system is said to be nonpermanent if there is a positive solution (x(t), y(t)) of system (1.4)

such that
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Before we establish the persistence for system (1.4), we need to provide a lemma.

Lemma 3. [2] If a, b > 0 and ≤ ( ≥) ( )( − ( ))x t a bx tresp.
x

t

d

d
with x0 > 0, then we have

( ) ≤ ( ) ≥
→+∞ →+∞

x t
a

b
x t

a

b
lim sup resp. lim inf .
t t








The necessary assumptions should be provided before we study the permanence of the populations:

+
( − + + − )
( + − )

<bx

y D

bK r q mE β q mE b

rD β q mE b
γmax ,

4
,

0

0

1 2
2

2









(H1)

≤ < −E
r b

q m
0 ,

1

(H2)

+
− −

<β q mE

r q mE b

αbK

rD
.

2

1

(H3)

Proposition 1. If assumptions (H1)–(H3) hold, then system (1.4) is permanent, i.e., for any positive solution

(x(t), y(t)) with ( ) > ( ) >x y0 0, 0 0 of system (1.4), there exist < ≤ ( = …)m M i0 1, 2i i
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Now, we give the following proposition before proving the permanence of system (1.4).

□

Proposition 2. If hypothesis (H1) holds, then for all t ≥ 0 we have
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Then, we have
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d 0 , which leads to a contradiction. Therefore, ( ) <μ t 0 for all ≥t 0. □

Therefore, system (1.4) is reduced to the simple form as follows when hypothesis (H1) holds.
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Now, the proof of the permanence of system (1.4) will continue.

From the first equation of (2.1), we get
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then the populations can be permanent. It means that the harvesting effort of human beings should be smaller

than a threshold to ensure that both of the species survive. In example 1, we give a model of system (2.1) with

different values for E to study the influence of the harvesting effort on the permanence of the populations. We

find that the number of predator populations decreases depending on the increase in the harvesting effort E.

The threshold E* we obtained in example 1 is about 7.9955. But from the results (Figure 1) we know, if E ≤ 16.5,

the prey and the predator can be permanent (Figure 1(1)–(5)); if E ≥ 16.8, the predator population goes to

extinction finally (Figure 1(6)). Obviously, the threshold E* for the permanence of the populations is between
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16.5 and 16.8, which is larger than 7.9955. In fact, conditions (H1)–(H3) for the permanence of the system are

sufficient but not necessary. Still, the threshold E* is reasonable because the number of predators is less when

the harvesting effort E > E*, which is bad for the protection and maintenance of the ecological population.

By denoting

= ( + )
( − )

b
rD β q mE

αK r q mE
,⁎ 2

1

we can derive the next proposition easily depending on the result of Proposition 1.

Figure 1: Persistence with different harvesting efforts.
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Proposition 3. If b < b*, then the predator population goes to extinction.

Proof. Using the result in Proposition 2, we have
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By the differential inequalities, we get
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The exponent part in the right of the inequalities is negative when b < b*, which means that the predator

population ( ) →y t 0 as → +∞t . Thus, the predator goes to be extinctive. □

Remark 2. From Proposition 3, we get the following: if b < b*, then the predator population is going to be

extinctive. Thus, the predation rate should be larger than a threshold to avoid this case. From a biological

point of view, the predator or prey disappears when the predation rate is sufficiently small or large. In

example 2, we take different values for b and find that if b ≤ 1.5, then the predator population goes to

extinction (Figure 2(1)). But if b ≥ 25.5, from the population ecology perspective, the prey population is almost

extinct at some time (Figure 2(6)). If 1.6 ≤ b ≤ 25.5, both of the populations can be permanent (Figure 2(2)–(5)).

As we stated in system (1.1), the predation rate depends on the water level in the lake. Thus, if there are too

much or too little rain in a period of time, the harvesting of the fishes should decrease or stop for the lake.

3 Stability dynamics

Under hypotheses (H0) and (H1), we study the dynamical behavior in this section.

3.1 Equilibrium

It is easy to calculate from system (2.1) that there are three equilibria in �+
2 :
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k1 1 .
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From equation (3.1.1), we obtain
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x
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⁎

and y* satisfies
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( ) + + =A y By C 0,⁎ 2 ⁎ (3.1.2)
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Figure 2: Persistence with different predation rates.

466  Na Zhang et al.



If <b b⁎, then >C 0 and >B 0. Thus, there exist two negative real roots or a pair of conjugate imaginary

roots with the existence of negative real parts for equation (3.1.2) since >A 0. Then, only trivial

equilibrium Q1 exist.

If >b b⁎, then <C 0 and system (2.1) has a unique positive equilibrium ( )x y,⁎ ⁎ since >A 0.

After that, we study the dynamical behavior of system (2.1) in terms of the stability of the three

equilibria as follows.

3.2 Stability

Theorem 1. (1) The extinction equilibrium point ( )Q 0, 00 is a saddle point, then it is unstable.

(2) The trivial equilibrium ( )Q x , 01
1 is stable if and only if <b b⁎.

(3) The interior equilibrium ( )Q x y,⁎ ⁎ ⁎ is locally asymptotically stable when >b b⁎.
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( ) = − − −J
r q mE

β q mE
0, 0

0

0
.

1

2









 (3.2.1)

The eigenvalues of (3.2.1) are = − >λ r q mE 01
0

1 and = − − <λ β q mE 02
0

2 , which means that the

equilibrium ( )Q 0, 00 is a saddle point and it is unstable.

(2) The Jacobian matrix of equilibrium ( )Q x , 01
1 is

( ) =
− ( − ) −

− − + ( − )
J x

r q mE bDx

β q mE
αbK

rD
r q mE

, 0
0

.1

1 1

2 1













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(3.2.2)

The eigenvalues of (3.2.2) are = −( − ) <λ r q mE 01
1

1 and = − − + ( − )λ β q mE r q mE
αbK

rD2
1

2 1 . If <b b⁎,

then <λ 02
1 and the equilibrium ( )Q x , 01

1 is stable. On the other hand, if >b b⁎, then the equilibrium

( )Q x , 01
1 is unstable and the system has a unique positive equilibrium ( )Q x y,⁎ ⁎ ⁎ .

(3) The Jacobian matrix of equilibrium ( )Q x y,⁎ ⁎ ⁎ is given by

( ) =
− −

( + )

+
−
( + )

J x y

r

K
x

bDx

y D

αby

y D

αbx y

y D

, .⁎ ⁎

⁎
⁎

⁎ 2

⁎

⁎

⁎ ⁎

⁎ 2



















(3.2.3)

We get

( ) <    ( ) >J x y J x ytr , 0, det , 0.⁎ ⁎ ⁎ ⁎

Thus, the eigenvalues of (3.2.3), denoted as λ1
⁎ and λ2

⁎, are negative or a pair of conjugate complex

numbers with negative real parts, which means that the equilibrium ( )Q x y,⁎ ⁎ ⁎ is locally asymptotically

stable when >b b⁎. □

Remark 3. From the discussion of the local stability of the three equilibria we have, the trivial equilibrium

= ( )Q 0, 00 is unstable and the interior equilibrium = ( )Q x y,⁎ ⁎ ⁎ is locally asymptotically stable when
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>b b⁎ (Figure 3). But the trivial equilibrium = ( )Q x , 01
1 is stable when <b b⁎ (Figure 4) and unstable when

>b b⁎. Thus, we believe that there exists a transcritical bifurcation when =b b⁎.

Moreover, from the discussion so far, we know that the local stability of the equilibria depends on the

relationship between b and b*. In example 5, we simulate the local stability of the system as the value of b

changes from 0.5 to 20, where b* = 1.5 (Figure 5). From the result, we can see that the predator goes to

extinction and the trivial equilibrium Q1 is stable when b ≤ 1.5; both of the prey and the predator can

coexist, and the positive equilibrium Q* is locally asymptotically stable when b > 1.5. For the coexistence

equilibrium, the number of prey fishes decreases and the number of predator fishes increases first and

then decrease when b changes from 2 to 20.

In fact, we can prove that the positive equilibrium ( )Q x y,⁎ ⁎ ⁎ is globally asymptotically stable when it

exists by constructing a suitable Lyapunov function.

Figure 3: Stability of the boundary equilibrium.

Figure 4: Stability of the coexistence equilibrium.
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3.3 Global stability

Theorem 2. The positive equilibrium ( )Q x y,⁎ ⁎ ⁎ of system (2.1) is globally asymptotically stable when >b b⁎.

Proof. Let

( ) = ( − ) − + ( − ) −V x y x x x
x

x
θ y y y

y

y
, ln ln ,⁎ ⁎

⁎
⁎ ⁎

⁎
































where θ is a positive constant.

Then, ( ) ≥V x y, 0 and ( ) =V x y, 0 if and only if = =x x y y,⁎ ⁎.

The time derivative of V along the solution of system (2.1) is given below:

= − +   −

= ( − ) ( − ) − −
+
− ( − ) − −

+

+ ( − ) − − +
+
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+
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+ ( + ) ( − )( − )
( + )( + )
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( + )( + )
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x x

x

x

t
θ
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y

y
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K
x
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K
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k
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y D y D
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Choosing = ( + )θ ,
D

α y D⁎ we obtain

= − ( − ) −
( + )( + )

( − )V

t

r

k
x x

bx D

y D y D
y y

d

d
.⁎ 2

⁎

⁎ 2
⁎ 2

Then, we have ≤ 0V

t

d

d
and = 0V

t

d

d
if and only if ( ) = ( )x y x y, , .⁎ ⁎ Therefore, the positive equilibrium

( )Q x y,⁎ ⁎ ⁎ of system (2.1) is globally asymptotically stable when it exists. □

Figure 5: Stability of system (2.1) depends on b.
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4 Bionomic equilibrium

The bionomic equilibrium is an amalgamation of the concepts of biological equilibrium and economic

equilibrium. The economic equilibrium is said to be obtained when the TR (the total revenue obtained by

selling the harvested biomass) equals Tc (the total cost for the effort devoted to harvesting).

Let c = constant fishing cost per unit effort, p1 = the price per unit biomass of prey fish, p2 = the price

per unit biomass of predator fish.

Then, the net revenue at any time is given by

( ) = + −π x y E p q mEx p q mEy cE, , ,1 1 2 2

where ∈ [ ]E E0, max and Emax means the maximum harvesting effort that humans provide.

Then, the bionomic equilibrium ( )∞ ∞ ∞ ∞Q x y E, , is given as follows:

− −
+
− =

− +
+
− =

+ − =

r
x

K

by

y D
q mE
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y D
q mE
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1 0

0
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(4.1.1)

We obtain that

= −

=
+
−

∞
∞

∞
∞

∞

x
c p q m y

p q m

E
q m

αbx

y D
β

,

1
,

2 2 2

1 1 1

2 2
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





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where y
∞

satisfy

+ + =A y B y C 0,1
2

1 1 (4.1.2)

where

= >
= [ ( + ) − ] − + +
= [ ( + ) − ] −

A rp q m

B q mK βp q rp q q rc p q q mbK αp q mbKq rDp q m

C D q mK βp q rp q q rc αbcKq

0,

,

.

1 2 2
2

1 1 1 1 1 2 2 1 1 2 2 2 1 2 2
2

1 1 1 1 1 2 2 1

It is easy to check that if <C 01 , then − >B A C4 01
2

1 1 since >A 01 , there can be a unique positive

solution y
∞
. Moreover, if

<∞y
c

p q m
,

2 2
(H4)

there is a unique bionomic equilibrium of (4.1.1). The sufficient and necessary condition for <C 01 is

given by

( + )
+

<p q mDK βq rq

αbKq rDq
c.

1 1 1 2

1 2

(H5)

Theorem 3. If >b b⁎, and conditions (H4) and (H5) hold, then the bionomic equilibrium exists.

Remark 4. For the predator-prey system with nonselective harvesting we studied, the existence of the

bionomic equilibrium is of great significance. If = ∞E E , then the net income from fishing is 0. Thus, the

fishermen have to cut back on their fishing efforts to make profits, which means < ∞E E . For an open

access fishery, the situation will not last long because more and more fishermen are attracted by interests

and join in the fishing. Hence, the harvesting effort E increases and exceeds ∞E for some time, and then
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the total cost utilized in harvesting the prey fish and predator fish would outstrip the total revenues

obtained from the fishing. Obviously, some of the fishermen would give up fishing because they cannot

afford the loss. Therefore, the fishing effort E decreases and > ∞E E cannot be maintained indefinitely.

Briefly, when < ∞E E or > ∞E E , the fishing effort will change in the direction of = ∞E E . Therefore, the

existence of economic equilibrium provides a yardstick for the harvesting effort. To verify the existence of

the bionomic equilibrium, example 6 (Figure 6) is given in appendix. We use computer tools to obtain a

high precision solution rather than an exact solution.

Furthermore, as we can see in the market economy, the changes in fishing costs and fish prices have

an impact on the fishery. For this reason, we conducted the following research and obtained three tables.

Take = = = = = = = = =r K b α β q q m D12, 30, 8, 0.9, 2, 0.6, 0.8, 51 2 .

From Tables 1–3 we can see that the harvesting effort E
∞
in a bionomic equilibrium drops off with the

increase in the fishing cost. But E
∞

increases gradually when the price of prey fish or predator fish

increases. Thus, commercial fishing will be reduced with the increase in the fishing cost or the low price of

the fishes. On the contrary, E
∞

will decrease.

Figure 6: Bionomic equilibrium.

Table 1: The fishing cost c changes from 28 to 70 with = =p p7, 121 2

c 28 30 40 50 60 70

x
∞

7.7216 7.8122 8.2376 8.6214 8.9684 9.2833

y
∞

0.3568 0.6512 2.1392 3.6514 5.1851 6.7375

E
∞

17.4551 16.5693 13.1414 10.7812 9.0415 7.6970
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5 Optimal harvesting policy

In order to obtain the optimal harvesting policy [22] of system (2.1), we consider the present value J of a

continuous time stream of revenues

∫= {− }( + − )
+∞

J t p q mEx p q mEy cE texp δ d ,

0

1 1 2 2

where δ is the instantaneous annual rate of discount and ∈ [ ]E E0, max , where Emax means the maximum

harvesting effort that humans provide.

In this part, we study the optimal harvesting control of system (2.1), which is denoted as Eδ and the

corresponding states of the populations are xδ and yδ.

We construct the Hamiltonian function as follows:

= {− }( + − ) + − −
+
− + − +

+
−H t p q mEx p q Emy cE λ rx

x

K

bxy

y D
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




where λ1 and λ2 are the adjoint variables.

If E = 0, it is not meaningful to discuss the optimal harvesting policy. Today, with the highly developed

technology, we can make sufficient harvesting efforts so that the population go to extinction. Hence, by

the maximum principle, the maximum must occur at ( )x y E, ,δ δ δ , where ∈ ( )E E0,δ max and they satisfy

∂
∂
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(5.1)

For such a nonlinear homogeneous equation of higher order as above, it is difficult to provide an expression of

its solution. Taking into consideration another view point, we can obtain the optimal harvesting control by using

Table 3: The price of predator fish p2 changes from 10 to 16 with = =c p60, 71

p2 10 11 12 13 14 15 16

x
∞

9.1562 9.0561 8.9684 8.8910 8.8221 8.7604 8.7047

y
∞

6.0907 5.6007 5.1851 4.8279 4.5175 4.2452 4.0042

E
∞

8.2170 8.6477 9.0415 9.4034 9.7374 10.0468 10.3344

Table 2: The price of prey fish p1 changes from 5 to 11 with = =c p60, 122

p1 5 6 7 8 9 10 11

x
∞

9.2495 9.1098 8.9684 8.8256 8.6816 8.5368 8.3915

y
∞

6.5627 5.8617 5.1851 4.5329 3.9055 3.3027 2.7245

E
∞

7.8325 8.4140 9.0415 9.7203 10.4562 11.2563 12.1287

472  Na Zhang et al.



least squares method with computer tools, such as MATLAB. Take = =r K12, 30, = = =b α β8, 0.9, 2,

= = = =q q m D0.6, 0.8, 51 2 , = = =p p c7, 12, 601 2 , for example. We obtain the optimal harvesting

control as =E 3.1564δ and ( ) = ( )x y, 10.7536, 17.0249δ δ (Figure 7).

Figure 7: Optimal harvesting policy.
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6 Conclusions

A brief discussion is presented to conclude this work. We study a prey-predator system interaction under

fluctuating water level with nonselective harvesting. The permanence of two populations, the local

stability, and the global stability of the equilibria are investigated for the study of the behavioral dynamics

of the system. The bionomic equilibrium and the optimal harvesting policy are discussed. After each

conclusion, the corresponding simulation was given to prove that our conclusion is correct.

Through our research, we find that the predation rate plays a decisive role in both population

persistence and system stability. The predation rate depends on the water level in the lake. The predation

rate decreases when the water level increases and increases when the water level decreases. Thus, the

fishermen should adjust their catch of fish according to seasonal changes for the sake of long-term

survival of fish stocks.

In addition, the harvesting effort of human beings has a more significant impact on population

persistence. Overfishing can lead to rapid population reduction or even extinction. For example, in South

China Sea, there has been overfishing of fishery resources in recent years. As a result, the fishery resources

in the South China Sea have declined seriously, and the main economic fish resources have been greatly

reduced. There are serious problems in fisheries, such as the decline of fishing efficiency, the closure of

fishing vessels, and the decline of fishermen’s income. In order to protect fishery resources and the long-

term interests of fishermen in the South China Sea, the government and the South China Sea fishery

administration have taken various measures to protect fishery resources, such as establishing prohibited

fishing areas, suspending fishing periods, and so on.

7 Numerical simulations

Here, some numerical examples are presented to illustrate the practicability of the theoretical analysis

provided in our paper.

Example 1. Take = = = = = =r K b D α β12, 30, 6, 5, 0.9, 2, = = =q q m0.6, 0.81 2 and the initial condition

is ( ( ) ( )) = ( )x y0 , 0 25, 15 (Figure 1).

Example 2. Take = = = = = =r K D E α β12, 25, 5, 4, 0.4, 2, = = =q q m0.25, 0.81 2 and the initial condition

is ( ( ) ( )) = ( )x y0 , 0 15, 25 (Figure 2).

Example 3. Take = = =r K b12, 15, 4, = = = =D E α β5, 5, 0.25, 2, = = =q q m0.2, 0.81 2 . The initial

conditions are (x(0), y(0)) = (30, 25) (30, 20), (28, 15), (25, 13), (20, 15), (10, 25), (6, 10), (8, 20), (6, 6), and

(7, 15) (Figure 3).

Example 4. Take = = = = =r K b D E12, 30, 6, 5, 5, = =α β0.9, 2, = = =q q m0.6, 0.81 2 . The initial

conditions are (x(0), y(0)) = (30, 25) (30, 20), (28, 15), (25, 13), (20, 15), (10, 25), (6, 10), (8, 20), (6, 6), and

(7, 15) (Figure 4).

Example 5. Take = = = =r K D E12, 25, 5, 4, = =α β0.4, 2, = = =q q m0.25, 0.81 2 , and the initial

condition is ( ( ) ( )) = ( )x y0 , 0 30, 25 . The values of b for the lines from right to left are 0.5, 1, 1.5, 2, 4, 8, 12,

and 20 respectively (Figure 5).

Example 6. Take = = = =r K b D12, 30, 8, 5, = = = =α β q q0.6, 2, 0.6, 0.51 2 , =m 0.8, =p 7,1 =p 12,2

=c 60 (Figure 6).
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