PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 125, Number 7, July 1997, Pages 2041-2050
S 0002-9939(97)03901-4

ON A PREDATOR-PREY SYSTEM OF HOLLING TYPE
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(Communicated by Hal L. Smith)

ABSTRACT. We consider the predator-prey system with a fairly general func-
tional response of Holling type and give a necessary and sufficient condition
under which this system has exactly one stable limit cycle. Our result extends
previous results and is an answer to a conjecture which was recently presented
by Sugie, Miyamoto and Morino.

1. INTRODUCTION

The purpose of this paper is to give a necessary and sufficient condition for the
uniqueness of limit cycles of a predator-prey system of the form

. T Py
xzm:(l——)——,
k a+ xP

(1.1) | o
=y ,

where "= d/dt; x and y represent the prey population (or density) and the predator
population (or density), respectively; r, k, a, u, D and p are positive parameters (p
is not always an integer). The parameters are as follows:

(i) r and k are the intrinsic rate of increase and the carrying capacity for the
prey population, respectively;

(ii) ¥/a is the half-saturation constant for the predator;

(iii) p and D are the birth rate and the death rate for the predator, respectively.
P

The function ;v—p is often called a functional response of Holling type when
p=1or p=2. System (1.1) is an important model on population dynamics (refer
to [3], [5], [8]-[10] and references therein). If

def
(1.2) w>D and k>\, = D’
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then system (1.1) has the only critical point (),, ;) in the first quadrant {(z,y):

z>0andy > O}, where
T A
Vp:5<1—?p>Ap

It is clear that system (1.1) has no limit cycles when assumption (1.2) fails.

Many attempts have been made to give sufficient conditions and necessary con-
ditions to guarantee the existence and the uniqueness of limit cycles of (1.1). For
example, see [1], [2], [4], [6]. The following theorems are well-known. (Results in
[1], [2], [4], [6] were stated in a slightly different form.)

Theorem A. Let p = 1. Then, under the assumption (1.2), system (1.1) has a
unique stable limit cycle if and only if

(D + )\ < Dk.

Theorem B. Let p = 2. Then, under the assumption (1.2), system (1.1) has a
unique stable limit cycle if and only if

2D\, < (2D — p)k.

In a recent paper [12], Sugie, Miyamoto and Morino gave a necessary condi-
tion for the existence of limit cycles of (1.1) with p = 3 and made the following
conjecture.

Conjecture. Let p be any positive integer. Then, under the assumption (1.2),
system (1.1) has no limit cycles if and only if

(1.3) (pD = (p—2)u)A\p = (pD — (p — D) k.

In this paper we prove that the conjecture is true and extend any positive integer
p in the conjecture to any positive real number p satisfying a certain condition
(Theorems 2.1 and 3.1). To be exact, if condition (1.3) holds, then system (1.1) has
no limit cycles; otherwise, system (1.1) has a unique limit cycle. Since the solutions
of (1.1) are positive and bounded for all future time, from the Poincaré-Bendixson
theorem, we see that under the assumption (1.2), condition (1.3) is necessary and
sufficient for the equilibrium (\,, ;) to be globally asymptotically stable.

2. UNIQUENESS OF LIMIT CYCLES

Kuang and Freedman [8] gave the following result on the uniqueness of limit
cycles of the system:

@1) J=y( v+ (@),

where v > 0; all the functions are sufficiently smooth on [0, c0) and satisfy

(2.2) #(0)=v0)=0 and ¢'(x)>0, ¢'(z)>0 for z>0.
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Theorem C. Assume (2.2). If there exist constants * and m with 0 < z* < m

such that
(2.3) Y(E*)=v and (z—m)p(x) <0 for x#m;
HERI
/ _ ¢’ ()
25) % p! (x) +_p£xi w(:ip)(iv) @\ <0 for x ",

then system (2.1) has exactly one limit cycle which is globally asymptotically stable.

By means of Theorem C, we will show that ‘only if’-part of Conjecture in Sec-
tion 1 is correct.

Theorem 2.1. Let p be a positive number with p <1 or p> 2. If (1.2) and
(2.6) (pD = (p—2)u)A\p < (pD — (p — D)k
are satisfied, then system (1.1) has a unique limit cycle.

Proof of Theorem 2.1. We can rewrite system (1.1) as system (2.1) with v = D,

@7 p@)=r(1-3). ¢@) =S and %)= pé).

It is clear that ¢(x) and ¢(x) satisfy assumption (2.2).
Let

*

=X and m=k.

Then by (1.2) we see that * < m. Assumption (2.3) is satisfied. In fact, we have
Y(Ap) = D;
plx) >0 if 0<xz<k and px)<0 if z>k.

For the sake of convenience, let

H(z) = wp/(x) + p(x) — 2p(x) %)
and
Wa) =~ D for o £ X,
Since
o )l
S e ()
we get

el 5]

= %{(pl? —(p—1)p)k — (pD — (p— 2)u)>\p} >0

by (2.6). Hence, assumption (2.4) holds.
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From (2.7) and (2.8) it turns out that

V0= {01 - 2 1) )
- k((u —szp _ aD) {ak(l —p)+a(p—2)z+ kaP — 2xp+1},

Differentiating this equality and using the fact that aD = (u — D)Ap, we obtain

r(p— D)
k((n— D)aP — aD

W' () = )2{2:1:% — 2+ )X —a(p—1)(p—2))a”
+ kp (XN —a(p—1)) 2" +a(p— 2))\5}.

Taking (2.6) into account, we have

kp (A —a(p—1)) = . ipD (pD — (p = Dp)k
> 2 UipD (pD = (p = 2)p) Ny
=pAp (2)\5 —a(p— 2)) .
Hence
/x T(/J'_D) x?p_ P _ aqlp — _ P
W@ > o _an{Q (20 + DAL — alp— 1)(p ~ 2))
+pAy (202 —a(p— 2)) 2P + alp — 2)Ag}
= r(p— D) 21U (z a(p — T
= k((#_D)zp_aD)QQ U(z) +alp - 2)V(z)),
where

Uz) = 2P — (p+ 1))\51‘ —i—p)\gH and V(x)=(p— 1) —p)\pxp_l + AD.

Since U'(z) = (p+ 1)(z? — A8) and V'(z) = p(p — 1)a?~2(z — )p), it follows that
forx >0

Ulz) 2 U(Xp) = 0;

V() <V(\) =0 if p<1 and V(z)>V(\,)=0 if p>1.
We therefore conclude that if p <1 or p > 2, then
20P U () +a(p — 2)V(z) >0

for x > 0. Thus, assumption (2.5) is also satisfied.
Using Theorem C, we see that system (1.1) has a unique stable limit cycle. The
proof is complete.

Remark 2.1. In the above proof, if 1 < p < 2, then W/(z) < 0 for z sufficiently
small and so assumption (2.5) fails. Hence, we cannot use Theorem C.
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3. NON-EXISTENCE OF LIMIT CYCLES

In this section we will show that ‘if-part of Conjecture in Section 1 is true. To
see this, we need Theorem D below which was stated in [11] ( we can find a similar
result to Theorem D in [7]).

By changing variables

u=x—2N,, v=Ilogy—logy, and dT:—a

system (1.1) can be transformed into the system

du

— =1p(e’ — 1) — F(u),
5) ZZ ( ) — F(u)

E:_g(u)u

where

D
F(u):r(l—u+/\>a+ u—|—)\ —I/p and g(u)=p—D— a

) OFSWI
Note that F'(u) and g(u) are defined for v > —\, and satisfy
F(0)= and ug(u) >0 for u#O0.
Define

G(u) = / g(s)ds.
0
Then the inverse function of w = G(u)sgnu exists. Let G~ (w) be the inverse.
Theorem D. Suppose that
(3.2) F(G'(~w)) # F(G"'(w)) for 0<w< M,
where M = G(—X, +0). Then (3.1) has no limit cycles and neither has (1.1).

Unfortunately, however, it is difficult to construct explicitly the inverse function
G~1(w) because

aD 1 1
Du —|— — if 1,
(lu ) -1 ((u + )\p)p—l )\g—l > p #

(u— D)u — aD(log(u + Ap) — log Ap) if p=1.

G(u) =

Hence, to prove the following result, we intend to check (3.2) without calculating
G~ (w) directly.

Theorem 3.1. Let p be a positive number with p < % or p>1. If (1.2) and
(3.3) (pD = (p—2)u)Ap > (pD — (p — V) k
are satisfied, then system (1.1) has no limit cycles.

Proof of Theorem 3.1. When p = 1, the theorem is an immediate consequence of
Theorem A. We thus consider only the case p # 1. By virtue of Theorem D, it is
enough to prove that (3.3) implies (3.2). We will show this by way of contradiction.
Suppose that

F(G™H(~wo)) = F(G™ (wo))
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for some wg € (0, M). Then we have
(3.4) F—a)=F(8) and G(-a)=G(9)

where o = —G7!(—wyp) and B = G~!(wp). Here we note that —\, < —a < 0 < S.
For simplicity, let

(3:5) vy=XM—a and 6=\, +0.
Then (3.4) becomes

o 4 (5 40) = -0 (g 0)
(3.7) 6pa_1 _ 7pa_1 (p=1)(e Eﬁ)(ﬂ -D)

Substituting (3.7) into the right-hand side of (3.6) and using the fact that a4+ 8 =
6 — v, we obtain

a pD —(p—1)p
(38) F'ﬁ"}/—FT(é—k):O
Similarly, we get
a pD—(p—1p _
(39) 61)—_1+6+T(’7—1€)—0.
Hence, from (1.2) and (3.5), it turns out that
(3.10) pD — (p—1)p > 0.
Now, we define the function
D a
hiz) = — k
) pD —(p—1)p (zp‘l +Z) "

for z > 0 and consider two curves n = h(§) and & = h(n) in the (£, 7)-plane. Then
the curves are symmetric with respect to the straight line n = £. The equalities
(3.8) and (3.9) show that the curves intersect each other at the point (v, §) which
is in the region R = {(&,m): 0 < £ < A\, < n}. We divide our argument into two
cases.

Case (i) p > 1. From (3.10) it follows that h(z) has the maximum value h(z,) with

ze = {/a(p — 1) because
ry D _alp—1)
Ple) = )i (1 >

- pD—(p-1 2P

It is clear that
h(z) = —co as z— 07.
By (3.3) and (3.10) we also see that
ze <Ap and  h(Ap) < A

In fact, we have
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D
)\p—h()\p):)\p—i—#(%—i—l)—k
'y

pD—(p—1u
el
_)\p+pD_(p_1)M k
_ (D= (=2~ (D= =Dk _
pD—(p—1n =

Thus, the curve n = h(€) crosses the straight line n = £ at two points P(z1, z1) and
Q(ZQ, ZQ) with

(3.11) 0< 2o <z <21 < Ap.

Because of the symmetry of n = h(£) and £ = h(n), the curve £ = h(n) also passes
through the points P and @ (see Figure 1).

477
K n=¢
L &= h(n)

R

N [

i P>

I T E

FIGURE 1. The parameters p=4,a=1,D =25k =2, un =26
and the function h(z) = =2 (& +2) + 2

Since h(z) is strictly decreasing for z > z1, the curve £ = h(n) (n > 21) can be
rewritten as 7 = h=(£) (¢ < 21). Taking notice of (3.10), we obtain
(3.12) h'(z) <0< h"”(z) for z>0.
Hence, it follows from (3.11) that

313 W) 2O =t (1 M) -,
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and therefore,

(3.14) (h™Y)(z1) = < -1
Next, consider the curvature

h"(§)

K =——"—=

{1+ ®©)"}"
at a point (£,h(€)) on the curve n = h(£). Then we have

1 2 2
K'(§) = ——————={n"(©{1+ ()"} =30 © ("(©)"}.
{1+ ®©)}*

Consequently, by (3.12), the curvature K(¢) is negative and strictly increasing for
& > z.. This fact means that the absolute value of curvature of n = h(§) is larger
than that of = h=1(¢) in the interval [z, 21). Hence, together with (3.13) and
(3.14), we see that the curve n = h(£) lies below the curve n = h71(£) in this
interval. It is obvious that the curves n = h(¢) and n = h=1(¢) do not meet for
0 < & < z,. We therefore conclude that the curves n = h(§) and £ = h(n) have no
common point in the region R. This is a contradiction.

Case (ii) p < 3. As in the proof of the case (i), we have

(3.15) h(Ap) < Ap.

The curve n = h(€) intersects the straight line n = £ at a point because
R(z) <0 for z>0;

h(z) -k as z— 0" and h(z) - -0 as z — 0.

Let P(z1, 21) be the point of intersection. Then by (3.15) we see
(3.16) 0<z <A\
The curve £ = h(n) also passes through the point P (see Figure 2).

Rewrite £ = h(n) as n = h™1(£). Since
(3.17) h"(z) <0< h'(z) for z>0,
it follows from (3.16) that

1
h(z1)

Consider again the curvature K (£) at a point (£,(£)) on the curve n = h(§).
By (3.17), the curvature K () is positive for £ > 0. Also, a simple calculation yields

_ap(l—p)D3(&” +a(l —p))((p+ D& +a(l - p)(1 - 2p))
23 3
{1+ (W(©)7}* (pD + (1 = p)p) €+
for £ > 0. Hence, taking into account (3.18), we see that the curves n = h(§) and
& = h(n) fails to cross in the region R. This contradicts the fact that (v,6) is a
common point in R.

Thus, we find a contradiction in both cases (i) and (ii). The proof is now
complete.

(3.18) W) <H(O)=—1 and (A (z1) = > 1.

K'(§) < <0
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n=¢

0 211 Ap 2
FIGURE 2. The parameters p = %, a=2,D=1,k=2u=3
and the function h(z) = —y/z — 32 + 2.

Remark 3.1. By examining the slope and the curvature of n = h(§), where

h(§) = Ma_DD(log(k—a—g)—logf) +¢ for 0< &<k —a,

the proof of the case p =1 can be carried out in the same way.
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