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ON A PREDATOR-PREY SYSTEM OF HOLLING TYPE

JITSURO SUGIE, RIE KOHNO, AND RINKO MIYAZAKI

(Communicated by Hal L. Smith)

Abstract. We consider the predator-prey system with a fairly general func-
tional response of Holling type and give a necessary and sufficient condition
under which this system has exactly one stable limit cycle. Our result extends
previous results and is an answer to a conjecture which was recently presented
by Sugie, Miyamoto and Morino.

1. Introduction

The purpose of this paper is to give a necessary and sufficient condition for the
uniqueness of limit cycles of a predator-prey system of the form

ẋ = rx
(
1− x

k

)
− xpy

a+ xp
,

ẏ = y

(
µxp

a+ xp
−D

)
,

(1.1)

where ˙= d/dt; x and y represent the prey population (or density) and the predator
population (or density), respectively; r, k, a, µ, D and p are positive parameters (p
is not always an integer). The parameters are as follows:

(i) r and k are the intrinsic rate of increase and the carrying capacity for the
prey population, respectively;

(ii) p
√
a is the half-saturation constant for the predator;

(iii) µ and D are the birth rate and the death rate for the predator, respectively.

The function
xp

a+ xp
is often called a functional response of Holling type when

p = 1 or p = 2. System (1.1) is an important model on population dynamics (refer
to [3], [5], [8]–[10] and references therein). If

µ > D and k > λp
def
= p

√
aD

µ−D,(1.2)
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then system (1.1) has the only critical point (λp, νp) in the first quadrant
{
(x, y) :

x > 0 and y > 0
}
, where

νp =
rµ

D

(
1− λp

k

)
λp.

It is clear that system (1.1) has no limit cycles when assumption (1.2) fails.
Many attempts have been made to give sufficient conditions and necessary con-

ditions to guarantee the existence and the uniqueness of limit cycles of (1.1). For
example, see [1], [2], [4], [6]. The following theorems are well-known. (Results in
[1], [2], [4], [6] were stated in a slightly different form.)

Theorem A. Let p = 1. Then, under the assumption (1.2), system (1.1) has a
unique stable limit cycle if and only if

(D + µ)λ1 < Dk.

Theorem B. Let p = 2. Then, under the assumption (1.2), system (1.1) has a
unique stable limit cycle if and only if

2Dλ2 < (2D − µ)k.

In a recent paper [12], Sugie, Miyamoto and Morino gave a necessary condi-
tion for the existence of limit cycles of (1.1) with p = 3 and made the following
conjecture.

Conjecture. Let p be any positive integer. Then, under the assumption (1.2),
system (1.1) has no limit cycles if and only if(

pD − (p− 2)µ
)
λp ≥

(
pD − (p− 1)µ

)
k.(1.3)

In this paper we prove that the conjecture is true and extend any positive integer
p in the conjecture to any positive real number p satisfying a certain condition
(Theorems 2.1 and 3.1). To be exact, if condition (1.3) holds, then system (1.1) has
no limit cycles; otherwise, system (1.1) has a unique limit cycle. Since the solutions
of (1.1) are positive and bounded for all future time, from the Poincaré-Bendixson
theorem, we see that under the assumption (1.2), condition (1.3) is necessary and
sufficient for the equilibrium (λp, νp) to be globally asymptotically stable.

2. Uniqueness of limit cycles

Kuang and Freedman [8] gave the following result on the uniqueness of limit
cycles of the system:

ẋ = xρ(x) − yφ(x),

ẏ = y
(− ν + ψ(x)

)
,

(2.1)

where ν > 0; all the functions are sufficiently smooth on [0,∞) and satisfy

φ(0) = ψ(0) = 0 and φ′(x) > 0, ψ′(x) > 0 for x > 0.(2.2)
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Theorem C. Assume (2.2). If there exist constants x∗ and m with 0 < x∗ < m
such that

ψ(x∗) = ν and (x−m)ρ(x) < 0 for x 6= m;(2.3)

d

dx

(
xρ(x)

φ(x)

) ∣∣∣∣
x=x∗

> 0;(2.4)

d

dx

 xρ′(x) + ρ(x) − xρ(x) φ′(x)
φ(x)

− ν + ψ(x)

 ≤ 0 for x 6= x∗,(2.5)

then system (2.1) has exactly one limit cycle which is globally asymptotically stable.

By means of Theorem C, we will show that ‘only if’-part of Conjecture in Sec-
tion 1 is correct.

Theorem 2.1. Let p be a positive number with p ≤ 1 or p ≥ 2. If (1.2) and(
pD − (p− 2)µ

)
λp <

(
pD − (p− 1)µ

)
k(2.6)

are satisfied, then system (1.1) has a unique limit cycle.

Proof of Theorem 2.1. We can rewrite system (1.1) as system (2.1) with ν = D,

ρ(x) = r
(
1− x

k

)
, φ(x) =

xp

a+ xp
and ψ(x) = µφ(x).(2.7)

It is clear that φ(x) and ψ(x) satisfy assumption (2.2).
Let

x∗ = λp and m = k.

Then by (1.2) we see that x∗ < m. Assumption (2.3) is satisfied. In fact, we have
ψ(λp) = D;

ρ(x) > 0 if 0 < x < k and ρ(x) < 0 if x > k.

For the sake of convenience, let

H(x) = xρ′(x) + ρ(x) − xρ(x) φ
′(x)
φ(x)

and

W (x) = − H(x)

ψ(x)−D for x 6= λp.

Since

d

dx

(
xρ(x)

φ(x)

)
=
H(x)

φ(x)
= r

{
(1− p)

(
1− x

k

) a+ xp

xp
(2.8)

− x(a+ xp)

kxp
+ p

(
1− x

k

)}
,

we get

d

dx

(
xρ(x)

φ(x)

) ∣∣∣∣
x=λp

= r

{
(1 − p)

(
1− λp

k

)
µ

D
− λpµ

kD
+ p

(
1− λp

k

)}
=

r

kD

{(
pD − (p− 1)µ

)
k − (pD − (p− 2)µ

)
λp

}
> 0

by (2.6). Hence, assumption (2.4) holds.
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From (2.7) and (2.8) it turns out that

W (x) = − r

µxp −D(a+ xp)

{
(1−p)

(
1−x

k

)
(a+ xp)− x(a+ xp)

k
+ p

(
1−x

k

)
xp
}

= − r

k
(
(µ−D)xp − aD) {ak(1− p) + a(p− 2)x+ kxp − 2xp+1

}
.

Differentiating this equality and using the fact that aD = (µ−D)λpp, we obtain

W ′(x) =
r(µ−D)

k
(
(µ−D)xp − aD)2

{
2x2p − (2(p+ 1)λpp − a(p− 1)(p− 2)

)
xp

+ kp
(
λpp − a(p− 1)

)
xp−1 + a(p− 2)λpp

}
.

Taking (2.6) into account, we have

kp
(
λpp − a(p− 1)

)
=

ap

µ−D
(
pD − (p− 1)µ

)
k

>
ap

µ−D
(
pD − (p− 2)µ

)
λp

= pλp
(
2λpp − a(p− 2)

)
.

Hence

W ′(x) >
r(µ−D)

k
(
(µ−D)xp − aD)2

{
2x2p − (2(p+ 1)λpp − a(p− 1)(p− 2)

)
xp

+ pλp
(
2λpp − a(p− 2)

)
xp−1 + a(p− 2)λpp

}
=

r(µ−D)

k
(
(µ−D)xp − aD)2 (2xp−1U(x) + a(p− 2)V (x)

)
,

where

U(x) = xp+1 − (p+ 1)λppx+ pλp+1
p and V (x) = (p− 1)xp − pλpxp−1 + λpp.

Since U ′(x) = (p + 1)(xp − λpp) and V ′(x) = p(p − 1)xp−2(x − λp), it follows that
for x > 0

U(x) ≥ U(λp) = 0;

V (x) ≤ V (λp) = 0 if p ≤ 1 and V (x) ≥ V (λp) = 0 if p > 1.

We therefore conclude that if p ≤ 1 or p ≥ 2, then

2xp−1U(x) + a(p− 2)V (x) ≥ 0

for x > 0. Thus, assumption (2.5) is also satisfied.
Using Theorem C, we see that system (1.1) has a unique stable limit cycle. The

proof is complete.

Remark 2.1. In the above proof, if 1 < p < 2, then W ′(x) < 0 for x sufficiently
small and so assumption (2.5) fails. Hence, we cannot use Theorem C.
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3. Non-existence of limit cycles

In this section we will show that ‘if’-part of Conjecture in Section 1 is true. To
see this, we need Theorem D below which was stated in [11] ( we can find a similar
result to Theorem D in [7]).

By changing variables

u = x− λp, v = log y − log νp and dτ = − xp

a+ xp
dt,

system (1.1) can be transformed into the system

du

dτ
= νp(e

v − 1)− F (u),

dv

dτ
= − g(u),

(3.1)

where

F (u) = r

(
1− u+ λp

k

)
a+ (u+ λp)

p

(u+ λp)p−1
− νp and g(u) = µ−D − aD

(u+ λp)p
.

Note that F (u) and g(u) are defined for u > −λp and satisfy

F (0) = 0 and ug(u) > 0 for u 6= 0.

Define

G(u) =

∫ u

0

g(s)ds.

Then the inverse function of w = G(u) sgnu exists. Let G−1(w) be the inverse.

Theorem D. Suppose that

F
(
G−1(−w)

) 6= F
(
G−1(w)

)
for 0 < w < M,(3.2)

where M = G(−λp + 0). Then (3.1) has no limit cycles and neither has (1.1).

Unfortunately, however, it is difficult to construct explicitly the inverse function
G−1(w) because

G(u) =

(µ−D)u+
aD

p− 1

(
1

(u+ λp)p−1
− 1

λp−1
p

)
if p 6= 1,

(µ−D)u− aD( log(u+ λp)− logλp
)

if p = 1.

Hence, to prove the following result, we intend to check (3.2) without calculating
G−1(w) directly.

Theorem 3.1. Let p be a positive number with p ≤ 1
2 or p ≥ 1. If (1.2) and(

pD − (p− 2)µ
)
λp ≥

(
pD − (p− 1)µ

)
k(3.3)

are satisfied, then system (1.1) has no limit cycles.

Proof of Theorem 3.1. When p = 1, the theorem is an immediate consequence of
Theorem A. We thus consider only the case p 6= 1. By virtue of Theorem D, it is
enough to prove that (3.3) implies (3.2). We will show this by way of contradiction.
Suppose that

F
(
G−1(−w0)

)
= F

(
G−1(w0)

)
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for some w0 ∈ (0,M). Then we have

F (−α) = F (β) and G(−α) = G(β)(3.4)

where α = −G−1(−w0) and β = G−1(w0). Here we note that −λp < −α < 0 < β.
For simplicity, let

γ = λp − α and δ = λp + β.(3.5)

Then (3.4) becomes

(k − γ)
(

a

γp−1
+ γ

)
= (k − δ)

( a

δp−1
+ δ

)
;(3.6)

a

δp−1
=

a

γp−1
− (p− 1)(α+ β)(µ−D)

D
.(3.7)

Substituting (3.7) into the right-hand side of (3.6) and using the fact that α+ β =
δ − γ, we obtain

a

γp−1
+ γ +

pD − (p− 1)µ

D
(δ − k) = 0.(3.8)

Similarly, we get

a

δp−1
+ δ +

pD − (p− 1)µ

D
(γ − k) = 0.(3.9)

Hence, from (1.2) and (3.5), it turns out that

pD − (p− 1)µ > 0.(3.10)

Now, we define the function

h(z) = − D

pD − (p− 1)µ

( a

zp−1
+ z

)
+ k

for z > 0 and consider two curves η = h(ξ) and ξ = h(η) in the (ξ, η)-plane. Then
the curves are symmetric with respect to the straight line η = ξ. The equalities
(3.8) and (3.9) show that the curves intersect each other at the point (γ, δ) which
is in the region R =

{
(ξ, η) : 0 < ξ < λp < η

}
. We divide our argument into two

cases.

Case (i) p > 1. From (3.10) it follows that h(z) has the maximum value h(z∗) with

z∗ = p
√
a(p− 1) because

h′(z) = − D

pD − (p− 1)µ

(
1− a(p− 1)

zp

)
.

It is clear that

h(z)→ −∞ as z → 0+.

By (3.3) and (3.10) we also see that

z∗ < λp and h(λp) ≤ λp.

In fact, we have

λpp − zp∗ =
aD

µ−D − a(p− 1) =
a

µ−D
(
pD − (p− 1)µ

)
> 0;
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λp − h(λp) = λp +
Dλp

pD − (p− 1)µ

(
a

λpp
+ 1

)
− k

= λp +
λpµ

pD − (p− 1)µ
− k

=

(
pD − (p− 2)µ

)
λp −

(
pD − (p− 1)µ

)
k

pD − (p− 1)µ
≥ 0.

Thus, the curve η = h(ξ) crosses the straight line η = ξ at two points P (z1, z1) and
Q(z2, z2) with

0 < z2 < z∗ < z1 ≤ λp.(3.11)

Because of the symmetry of η = h(ξ) and ξ = h(η), the curve ξ = h(η) also passes
through the points P and Q (see Figure 1).

Figure 1. The parameters p = 4, a = 1, D = 25, k = 9
2 , µ = 26

and the function h(z) = − 25
22

(
1
z3 + z

)
+ 9

2

Since h(z) is strictly decreasing for z ≥ z1, the curve ξ = h(η) (η ≥ z1) can be
rewritten as η = h−1(ξ) (ξ ≤ z1). Taking notice of (3.10), we obtain

h′′(z) < 0 < h′′′(z) for z > 0.(3.12)

Hence, it follows from (3.11) that

h′(z1) ≥ h′(λp) = − D

pD − (p− 1)µ

(
1− a(p− 1)

λpp

)
= −1,(3.13)
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and therefore, (
h−1

)′
(z1) =

1

h′(z1)
≤ −1.(3.14)

Next, consider the curvature

K(ξ) =
h′′(ξ){

1 +
(
h′(ξ)

)2} 3
2

at a point
(
ξ, h(ξ)

)
on the curve η = h(ξ). Then we have

K ′(ξ) =
1{

1 +
(
h′(ξ)

)2} 5
2

{
h′′′(ξ)

{
1 +

(
h′(ξ)

)2}− 3h′(ξ)
(
h′′(ξ)

)2}
.

Consequently, by (3.12), the curvature K(ξ) is negative and strictly increasing for
ξ ≥ z∗. This fact means that the absolute value of curvature of η = h(ξ) is larger
than that of η = h−1(ξ) in the interval [z∗, z1). Hence, together with (3.13) and
(3.14), we see that the curve η = h(ξ) lies below the curve η = h−1(ξ) in this
interval. It is obvious that the curves η = h(ξ) and η = h−1(ξ) do not meet for
0 < ξ ≤ z∗. We therefore conclude that the curves η = h(ξ) and ξ = h(η) have no
common point in the region R. This is a contradiction.

Case (ii) p ≤ 1
2 . As in the proof of the case (i), we have

h(λp) ≤ λp.(3.15)

The curve η = h(ξ) intersects the straight line η = ξ at a point because

h′(z) < 0 for z > 0;

h(z)→ k as z → 0+ and h(z)→ −∞ as z →∞.
Let P (z1, z1) be the point of intersection. Then by (3.15) we see

0 < z1 ≤ λp.(3.16)

The curve ξ = h(η) also passes through the point P (see Figure 2).

Rewrite ξ = h(η) as η = h−1(ξ). Since

h′′′(z) < 0 < h′′(z) for z > 0,(3.17)

it follows from (3.16) that

h′(z1) ≤ h′(λp) = −1 and (h−1)′(z1) =
1

h′(z1)
≥ −1.(3.18)

Consider again the curvature K(ξ) at a point
(
ξ, h(ξ)

)
on the curve η = h(ξ).

By (3.17), the curvature K(ξ) is positive for ξ > 0. Also, a simple calculation yields

K ′(ξ) < −ap(1− p)D
3
(
ξp + a(1− p))((p+ 1)ξp + a(1− p)(1− 2p)

){
1 +

(
h′(ξ)

)2} 5
2
(
pD + (1 − p)µ)3ξ3p+2

< 0

for ξ > 0. Hence, taking into account (3.18), we see that the curves η = h(ξ) and
ξ = h(η) fails to cross in the region R. This contradicts the fact that (γ, δ) is a
common point in R.

Thus, we find a contradiction in both cases (i) and (ii). The proof is now
complete.
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Figure 2. The parameters p = 1
2 , a = 2, D = 1, k = 2, µ = 3

and the function h(z) = −√z − 1
2z + 2.

Remark 3.1. By examining the slope and the curvature of η = h(ξ), where

h(ξ) =
aD

µ−D
(
log(k − a− ξ)− log ξ

)
+ ξ for 0 < ξ < k − a,

the proof of the case p = 1 can be carried out in the same way.
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