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Abstract

The ring Z[1+
√−19
2 ] is usually given as a first example of a principal

ideal domain (PID) that is not a Euclidean domain. This paper gives
an elementary and more direct proof that Z[1+

√−19
2 ] is indeed a PID.
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1 Introduction

In a course on abstract algebra, one proves that all Euclidean domains are

principal ideal domains (PIDs). The ring Z[1+
√−19
2

] is then usually given as a

“simple” example of a PID that is not a Euclidean domain. However, details

of this example are usually omitted. Some textbooks leave it as a series of

exercises for the student. There have been efforts to simplify the proof that

Z[1+
√−19
2

] is indeed a PID but not a Euclidean domain, such as [6], [5] and,

most recently, [2]. A comparative survey of the various papers can be found

in [3].
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For ease of notation, let ω = 1+
√−19
2

henceforth.

It is straightforward to show that Z[ω] in not Euclidean and this paper

includes an existing proof for completeness. However, the proof that Z[ω] is a

PID is slightly more difficult. For example, the proofs in [6] and [3] leverage

on a theorem due to Dedekind and Hasse, and the ensuing proof requires a

breakdown into 5 cases, each corresponding to different elements of Z[ω]. The

proof in [2] is a simplification, intended to make the material more accessible

to mathematics students. However, it still requires a partitioning of Z[ω] into

7 cases.

This paper provides an elementary and more direct proof that Z[ω] is a

PID. It is written with the same motivation as [2], utilising only introductory

abstract algebra and the absolute value of a complex number, to improve

access to comprehension. By partitioning Z[ω] differently, the proof in this

paper requires a breakdown into only 3 cases.

2 Z[ω] is not a Euclidean Domain

This proof that Z[ω] is not a Euclidean domain is similar to the proof in [2]

and, as mentioned earlier, is included here for completeness.

Firstly, note that ω2 = ω−5. Thus, Z[ω] = {a+bω | a, b ∈ Z}. Also, as the

minimal polynomial of ω over Z is x2 − x + 5, which is Eisenstein and hence

irreducible, Z[ω] is an integral domain. For any element α ∈ Z[ω] ⊂ C, we

have the usual absolute value |α| = αα, where α denotes the usual complex

conjugate of α. It is easy to see that for any α ∈ Z[ω], α ∈ Z[ω] as well.

We begin by proving some useful properties relating to the absolute values of

elements in Z[ω].

Lemma 2.1. For α ∈ Z[ω] \ 0, |α| ∈ N.

Proof. As α = a + bω for some a, b ∈ Z,

|α| = [a + b(1+
√−19
2

)][a + b(1−√−19
2

)] = a2 + ab + 5b2 ∈ Z≥0.

Since α �= 0, |α| �= 0. Thus, |α| ∈ N.

Lemma 2.2. For α ∈ Z[ω], the following statements are equivalent:

(i) α = −1 or 1.

(ii) α is a unit in Z[ω].

(iii) |α| = 1.
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Proof. (i) ⇒ (ii) is clear.

For (ii) ⇒ (iii), if α is a unit in Z[ω], then ∃β ∈ Z[ω] such that αβ = 1.

Then 1 = |αβ| = |α||β|. By Lemma 2.1, we must have |α| = |β| = 1.

For (iii) ⇒ (i), we write α = a + bω for some a, b ∈ Z. Then 1 = |α| =

a2 + ab+5b2 = (a+ b
2
)2 + 19

4
b2. As a, b ∈ Z, we must have b = 0, which in turn

implies that a2 = 1.

Our proof that Z[ω] is not Euclidean features some “special elements”

of Z[ω], namely ±1,±2 and ±3. Lemma 2.2 showed that ±1 are the only

units in Z[ω]. The following lemma shows that ±2 and ±3 are irreducible in

Z[ω]. Recall that an element of a ring is irreducible if it satisfies the following

properties:

(i) It is a nonzero non-unit in the ring; and

(ii) If it is written as a product of 2 elements of the ring, exactly 1 of them

is a unit.

Lemma 2.3. ±2 and ±3 are irreducible in Z[ω].

Proof. As ±1 are units, it suffices to prove that 2 and 3 are irreducible.

2 is clearly a nonzero non-unit in Z[ω], since 1
2

/∈ Z[ω]. Suppose we write

2 = αβ for some α, β ∈ Z[ω]. Then 4 = |2| = |α||β|. By Lemma 2.1, this

implies that (|α|, |β|) = (1, 4), (2, 2) or (4, 1). By Lemma 2.2, the first and the

last cases would imply that either α or β is a unit respectively and, hence, 2

is irreducible.

For the case (|α|, |β|) = (2, 2), writing α = a + bω for some a, b ∈ Z, we

would get 2 = |α| = a2 + ab + 5b2 = (a + b
2
)2 + 19

4
b2. But then a, b ∈ Z means

that b = 0, which in turn implies that a2 = 2, a contradiction.

The proof that 3 is irreducible is similar.

Theorem 2.4. Z[ω] is not a Euclidean domain.

Proof. Assume the contrary, i.e. that Z[ω] is a Euclidean domain. Then there

exists a Euclidean degree function D : Z[ω] \ 0 → N satisfying the Euclidean

Division Algorithm:

For α, β ∈ Z[ω] where β �= 0, there exist q, r ∈ Z[ω] such that α = βq + r and

either r = 0 or D(r) < D(β).

As the range of D is N, we can choose m ∈ Z[ω] such that D(m) is as small

as possible subject to m not being zero or a unit. Then let q, r ∈ Z[ω] be the

quotient and remainder, respectively, when we divide 2 by m in Z[ω], i.e.
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2 = mq + r, where r = 0 or D(r) < D(m).

D(m) is already as small as possible subject to m being a nonzero non-unit.

So either r = 0, or else D(r) < D(m) implies that r is a unit in Z[ω], i.e.

r = −1 or 1 (by Lemma 2.2).

If r = 0, then m divides 2. Since m is not a unit and 2 is irreducible in

Z[ω] (by Lemma 2.3), this means that m = −2 or 2. (Again, we have used the

fact that the only units in Z[ω] are -1 and 1.)

If r = −1, then m divides 3. By a similar line of reasoning as in the case

above, m = −3 or 3.

If r = 1, then m divides 1, which is a contradiction since m is not a unit

by assumption.

Thus, we have shown that the possible choices for m (i.e. the nonzero non-

unit elements of Z[ω] with minimal degree D) are ±2 and ±3.

Next, we divide ω by m in Z[ω], getting

ω = mq′ + r′, for some q′, r′ ∈ Z[ω] where r′ = 0 or D(r′) < D(m).

By the same argument as above, this implies that r′ = −1, 0 or 1.

If r′ = −1, then m divides 1+ω in Z[ω]. But as m ∈ {±2,±3}, 1
m

(1+ω) /∈
Z[ω], a contradiction.

If r′ = 0, then m divides ω in Z[ω]. But as m ∈ {±2,±3}, 1
m

(ω) /∈ Z[ω], a

contradiction.

If r′ = 1, then m divides −1+ω in Z[ω]. But as m ∈ {±2,±3}, 1
m

(−1+ω) /∈
Z[ω], a contradiction.

3 Z[ω] is a Principal Ideal Domain

This proof is based on a combination of ideas from [1] and [7]. Importantly, it

hinges on the absolute values of elements in Z[ω] and, thus, uses Lemma 2.1

from the previous section.

Theorem 3.1. Z[ω] is a principal ideal domain.

Proof. Let I be any nonzero ideal in Z[ω]. As Lemma 2.1 showed that the

absolute values of nonzero elements in Z[ω] are natural numbers, we can pick a

nonzero β ∈ I such that |β| is as small as possible among the nonzero elements

of I. We seek to show that I = (β), i.e. I is a principal ideal generated by β.
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Assume the contrary. Then there exists a nonzero α ∈ I \ (β). Consider
α
β
∈ C. As ω = 1

2
+

√
19
2

i ∈ C, we can pick m ∈ Z such that

−
√

19
4

< Im(α
β

+ mω) ≤
√

19
4

where Im refers to the imaginary part of a complex number. We now split

up the argument into 2 cases, depending on the value of Im(α
β

+ mω).

Case 1. −
√

3
2

< Im(α
β

+ mω) <
√

3
2

In this more straightforward case, we can pick n ∈ Z such that

−1
2

< Re(α
β

+ mω + n) ≤ 1
2

where Re refers to the real part of a complex number. Since Im(α
β
+mω+n) =

Im(α
β

+ mω), we also have

−
√

3
2

< Im(α
β

+ mω + n) <
√

3
2

.

Thus, |α
β
+mω+n| < (1

2
)2+(

√
3

2
)2 = 1, and |α+(mω+n)β| = |α

β
+mω+n||β| <

|β|.
But as α, β ∈ I and mω + n ∈ Z[ω], it follows that α + (mω + n)β ∈ I.

Since |β| is as small as possible among the absolute values of nonzero elements

in I, |α + (mω + n)β| < |β| implies that α + (mω + n)β = 0. Thus, α ∈ (β),

which contradicts our assumption.

Case 2. Either −
√

19
4

< Im(α
β

+ mω) ≤ −
√

3
2

, or
√

3
2

≤ Im(α
β

+ mω) ≤
√

19
4

If −
√

19
4

< Im(α
β

+ mω) ≤ −
√

3
2

, then let α′ = −α − mωβ.

If
√

3
2

≤ Im(α
β

+ mω) ≤
√

19
4

, then let α′ = α + mωβ.

In both instances, since α, β ∈ I and m,ω ∈ Z[ω], we see that α′ ∈ I.

But if α′ ∈ (β), then α = ∓(α′ − mωβ) ∈ (β) as well, which contradicts our

assumption that α /∈ (β). Thus, in both instances, we have found an element

α′ ∈ I \ (β) such that

√
3

2
≤ Im(α′

β
) ≤

√
19
4

.

Now, as in Case 1, we can find n ∈ Z such that



1410 Conan Wong

−1
2

< Re(α′
β

+ n) ≤ 1
2
.

Let α′′ = α′ + nβ ∈ I. Note that Im(α′′
β

) = Im(α′
β

). As before, if α′′ ∈ (β),

then α′ = α′′ − nβ ∈ (β) as well, which is a contradiction. Thus, we have

found an element α′′ ∈ I \ (β) such that

√
3

2
≤ Im(α′′

β
) ≤

√
19
4

, and −1
2

< Re(α′′
β

) ≤ 1
2
.

To finish the proof, we consider the element 2α′′
β

− ω ∈ C, which will give us

the desired contradictions via 2 subcases. Since ω = 1
2

+
√

19
2

i, we get that

−3
2

< Re(2α′′
β

− ω) ≤ 1
2
.

Noting that
√

19 <
√

27 = 3
√

3, we get
√

3−
√

19
2

>
√

3− 3
√

3
2

= −
√

3
2

. Thus,

−
√

3
2

<
√

3 −
√

19
2

≤ Im(2α′′
β

− ω) ≤ 0.

Case 2(a). −1
2

< Re(2α′′
β

− ω) ≤ 1
2

In this sub-case, since |2α′′
β

−ω| < (1
2
)2 +(−

√
3

2
)2 = 1, we see that |2α′′−ωβ| =

|2α′′
β

− ω||β| < |β|. Since α′′, β ∈ I, it follows that 2α′′ − ωβ ∈ I as well. But

as |β| is as small as possible among the absolute values of nonzero elements in

I, |2α′′ − ωβ| < |β| implies that 2α′′ − ωβ = 0. This means that ωβ
2

= α′′ ∈ I.

Now as ω ∈ Z[ω] and ωω = 5, we have 5
2
β = ω(ωβ

2
) ∈ I. And since β ∈ I,

we see that 1
2
β = 5

2
β − 2β ∈ I as well. But then 0 < |1

2
β| = 1

4
|β| < |β| contra-

dicts the minimality of |β| among the absolute values of nonzero elements in

I, which completes the proof of this sub-case.

Case 2(b). −3
2

< Re(2α′′
β

− ω) ≤ −1
2

In this sub-case, we “shift by 1” to get a proof similar to Case 2(a), i.e. we

consider 2α′′
β

− ω + 1 ∈ C. Clearly,

−1
2

< Re(2α′′
β

− ω + 1) ≤ 1
2
, and −

√
3

2
< Im(2α′′

β
− ω + 1) ≤ 0

since Im(2α′′
β

− ω + 1) = Im(2α′′
β

− ω).

Thus, |2α′′
β

−ω +1| < (1
2
)2 +(−

√
3

2
)2 = 1, and we see that |2α′′−ωβ +β| =

|2α′′
β

− ω + 1||β| < |β|. Since α′′, β ∈ I, it follows that 2α′′ − ωβ + β ∈ I as
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well. But as |β| is as small as possible among the absolute values of nonzero

elements in I, |2α′′−ωβ +β| < |β| implies that 2α′′−ωβ +β = 0. This means

that ω−1
2

β = α′′ ∈ I.

Now as ω − 1 ∈ Z[ω] and (ω − 1)(ω−1) = 5, we have 5
2
β = (ω − 1)(ω−1

2
β) ∈

I. By an argument identical to that in Case 2(a), 1
2
β ∈ I as well, contradicting

the minimality of |β| among the absolute values of nonzero elements in I and

completing the proof.

4 Concluding Remarks

The ring Z[ω] is an example of a quadratic integer ring. In general, for a

square-free integer D, let

θ =

{ √
D if D ≡ 2, 3 (mod 4)

1+
√

D
2

if D ≡ 1 (mod 4)

Then, Z[θ] is a quadratic integer ring (the ring of integers in the quadratic

number field, Q(
√

D)).

It is known that Z[θ] is a PID but not a Euclidean domain exactly when

D = −19,−43,−67 or −163 (see [3], [4] and [5]). This paper dealt with the

case D = −19. Perhaps a possible next step would be to find a unifying proof

(for all 4 cases) that is equally accessible to students in mathematics.
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