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ON A PROBABILISTIC GRAPH-THEORETICAL METHOD

JAROSLAV NESETRIL AND VOJTÉCH RÖDL

Abstract. We introduce a method by means of which one can simply prove

the existence of sparse hypergraphs with large chromatic number. Moreover

this method gives the full solution of an Erdös-Ore problem.

Introduction. The existence of sparse (i.e. without short cycles) graphs with

a large chromatic number is a classical combinatorial problem. It has been

answered affirmatively by probabilistic means by Erdös [1] and for

hypergraphs by Erdös and Hajnal [2] and a construction was provided by

Lovász [5]. While in [8] the present authors suggested a different construction

of these objects, the purpose of this note is to provide a new hopefully simpler

probabilistic method.

This method allows to prove existence of sparse hypergraphs which contain

a certain ordered subhypergraph for every ordering of its vertices. This has

been asked by Erdös [4] in response to a theorem of Ore and Gallai

(Corollary 3). The results may be strengthened so as to answer a question of

Bollobás as well (Corollary 4).

Preliminaries. A graph G is a couple ( V, E) where V is a set (of vertices)

and E C [V]2 = [e C V; \e\ = 2). A A;-graph (/c-uniform hypergraph) is a

couple where F is a set and E C [V]k = [e Q V; \e\ = k}. An embedding/:

(V, E) —» (K', E') is a 1-1 mapping which satisfies

(l)/isl-l;

(2) e E £ <=> [f(x); x E e) E £". A cycle of length s in a k -graph ( V, E) is

a sequence
x0, ex, X], e2, . . . , es, xs, e0

which satisfies x, E e¡, x¡_x E e¡ for i E [I, 2, . . . , s} and xs E e0, x0 E e0

and there are i,j with e¡ =£ er

Chromatic number of a /<-graph is a minimal number of colours which are

sufficient for colouring of vertices in such a way that no edge is mono-

chromatic. It can be proved easily that a Ä>graph (V, E) does not contain

2-cycles iff \e n e'\ < 1 for all e i= e', e, e' E E and generally a /c-graph does

not contain cycles of length < í iff | U E'\ > (k — l)\E'\ + 1 for every

E' cE,\E'\<s (see e.g. [2], [5]).

The following lemma is a key fact for our method. The lemma may be
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easily proved by probabilistic argument (see e.g. [3]). We sketch a proof for

completeness.

Lemma. For all positive integers k and s there exists a k-graph (X, E),

\X\ = n without cycles of length < s and with \E\ > «1 + 1/J edges for all n

sufficiently large.

Proof. Let us consider a set 2Jcx of all A;-graphs (X, E)¡\X\ = n with

m = 2[/i1 + l/'1] edges. Then

and the average number of edges contained in cycles of length < 5 is less

than

- = o(n)

(5)
where c(s,j) > 0 is a function of s,j which does not depend on n.

Consequently for all n sufficiently large there exists an example of a

Â>graph G = (X, E), \X\ = », \E\ = 2[«1 + 1/s] such that G contains at most

[/?l + 1/i] edges contained in circuits of length < s. After deleting these edges

we are left a A:-graph with at least [nx + x/s] edges without cycles of length < i.

We find it convenient to use this lemma for constructing of special sparse

graphs. This will be clear from below.

Results and applications.

Theorem 1 ([1], [2]). For all positive integers k, n, s there exists a k-graph

(X, F) without cycles of length < s with chromatic number > n.

Proof. Put p = n(k — I) + 1. Let (X, E) be a p-graph without cycles of

length < s, \X\ = N and with [A1 + 1/i] edges. Let ©x be the family of all

A-graphs (X, F) which contain in each edge of E exactly one edge of F. The

following holds:

(1) \®x\ = (pk)[N' + 1 '] as (X, E) does not contain 2-cycles the choice of edges

of F in edges of E is mutually independent.

(2) G does not contain cycles of length < s for each G E%x.

However the number of ¿-graphs in the class ©x which admit a given

«-coloration is less then ((pk) - l)t'v'+'/*l + 1. The theorem follows as

--(('H   <w-(i)
for N sufficiently large.

2'(*../) {(k-i)j)

Theorem 2. Let G = ((V, <), E) be an ordered k-graph (i.e. (V, E) is a
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k-graph; (V, <) is a totally ordered set) without cycles of length < s. Then

there exists a k-graph ( V, E') without cycles of length < s such that for every

ordering (V, =^ ) there exists a monotone mappingf: (V, <) -^ (V, <! ) which

is an embedding (V, E) -» (V, E').

Proof. Let ( V, E) be a /t-graph. Denote by m the number of A>graphs with

the vertex set V which are isomorphic to ( V, E). If m = 1 one may put

(V, E') = (V, E). (One can show easily that in this case either E =0 or
E = [V]k.)

Let us suppose that m > 1. Put | V\ = p. Let (X, U) be ap-graph without

cycles of length < s with [Nx + x/s] edges. Let ®x be the class of all /c-graphs

G = (X, F) which satisfy:

(1) G\e = (e, F n [«?]*) =* (V, E) for each edge e E U;

(2)F= UeeU(Fn[ef).
Then (i) G does not contain a cycle of length < s for each G E ®x;

(ii) |@J = m^' + ,/'\

On the other hand for each ordering < of the set X the number of those

G = (X, F) E ®x for which there exists no monotone embedding (( V, < ),

E) -+ ((X, < ), F) is less than (m - l)lN'^l/'x + 1.

Consequently the set of those G E ®x which admit an ordering (X, < ) for

which there is no monotone embedding

((V, <),E)-+({X,<),F)

is less than N\(m — l)lN * 'K This proves the theorem as the last quantity is
o(mx-N*+l"x).

Corollary 3. For every s there exists a graph G = (V, E) without cycles of

length < 5 which contains for every ordering =^ of its vertices a cycle of length

s with the ordering given in the Figure 1.

1 2 3 r- 1 t

Figure 1

(For j = 3 the statement is evident, for s = 4 it was proved by Ore. Gallai

showed that the Grötsch graph is an example for 5 = 4. For s > 4 this was

asked by Erdös [4].)

Corollary 4. For every s there exists a graph (V, E) without cycles of

length < s which is not a subgraph of a Hasse-diagram of a partially ordered

set.
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This follows immediately from Corollary 3 and answers a question of B.

Bollobás.

Theorem 2 is related to the concept of ordering property of a class of

graphs and hypergraphs defined in [6]. Let ^ be a class of hypergraphs. We

say that ® has ordering property if for every hypergraph G = (V, E) E &\

there exists a hypergraph G' = (V, E') E ® such that for every ordering <

of V and every ordering < of V there exists a monotone mapping /:

( V, < ) -> ( V, < ) which is an embedding G —> G'.

The ordering property plays an important role in the study of partition

properties of classes of hypergraphs. Using this concept one can reformulate

the above Theorem 2.

Theorem 5. Let 31 be a finite set of 2-connected graphs. Let si = Forb(9i) be

the class of all finite graphs which do not contain any graph E 91 as an induced

subgraph. (Thus G E Forb(3i) iff there exists no embedding A -» G for any

A E 31.) Then si has the ordering property.

It is not a simple matter to prove the ordering property of a class ®

constructively. This was done for the class of all finite graphs in [11], for the

class of all finite graphs without Kk in [9], for the class of all finite graphs

without cycles of length 3, 5, . . . 2k + 1 in [10]. (The type representation of

finite graphs was mainly used.)

Concluding remarks. 1. Theorem 5 has a hypergraph analogue.

2. The ordering property plays an important role in the study of partition

properties of graphs. In fact this was the original motivation of this paper.
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