On a Problem of da Costa

João Marcos

Abstract

The two main founders of paraconsistent logic, Stanisław Jaśkowski and Newton da Costa, built their systems on distinct grounds. Starting from different projects, they used different tools and ultimately designed quite different calculi to attend their needs. How successful were their enterprises? Here we discuss the problem of defining paraconsistent logics following the original instructions laid down by da Costa. We present a new approach to \mathbf{P}^{1}, the first full solution - proposed by Antônio Mário Sette - to the problem of da Costa, and argue in favor of yet another solution we shall study here: the logic \mathbf{P}^{2}. Both \mathbf{P}^{1} and \mathbf{P}^{2} constitute maximal 3-valued paraconsistent fragments of classical logic. Constructive completeness proofs are here presented for both logics.

1 Requisites to paraconsistent calculi

When proposing the first paraconsistent propositional system, in 1948, Jaśkowski expected it to enjoy the following properties (see [17]):

Jas1 when applied to inconsistent systems it should not always entail their trivialization;
Jas2 it should be rich enough to enable practical inferences;
Jas3 it should have an intuitive justification.
A few years later, in 1963, da Costa would independently tackle a similar problem, this time proposing a whole hierarchy of paraconsistent propositional calculi, known as C_{n}, for $0<n<\omega$. His requisites to these calculi were the following (see [12]):
NdC1 in these calculi the principle of non-contradiction, in the form $\neg(A \wedge \neg A)$, should not be a valid schema;
NdC2 from two contradictory formulae, A and $\neg A$, it would not in general be possible to deduce an arbitrary formula B;

NdC3 it should be simple to extend these calculi to corresponding predicate calculi (with or without equality);
NdC4 they should contain the most part of the schemata and rules of the classical propositional calculus which do not interfere with the first conditions.

Some vagueness in the formulation of the above conditions does not necessarily represent an inconvenient, as it paves the way for the proposal of a myriad of different solutions to the general problem of paraconsistency (and such solutions continue to appear).

Comparing the two sets of clauses above in some detail, let us just observe that clause NdC1 could not have worried Jaśkowski, for his first so-called discussive calculus had a non-adjunctive character, not allowing for the deduction of a 'self-contradictory' formula of the form $A \wedge \neg A$ from two given contradictory formulae, A and $\neg A$. At any rate, as it will be argued below, the somewhat fetishistic attention initially put on the status of the formula $\neg(A \wedge \neg A)$ has since long been distinguished from the more general problem of paraconsistency. We could next go on and notice some similarity between clauses Jas1 and NdC2, and between clauses Jas2 and NdC4. But then what could be said about the remaining clauses? Well, on the one hand, da Costa's preoccupation with the answer to NdC3 gives one of the main reasons why he is often suggested by some authors to be the 'real founder of paraconsistent logic' (see, for instance, [2] or [16]), despite Jaśkowski's prior construction. On the other hand, perhaps the absence of Jas3 from da Costa's set of requisites gives an excuse for the difficulty one may encounter in establishing intuitive interpretations for the calculi C_{n}. Semantics for these calculi, in terms of bivalent non-truth-functional valuations, were provided no earlier than 1977 (see [13, 20]). Doubting those semantics really explained the paraconsistent character of these calculi, Carnielli and the author have recently worked out some new interpretations to them, in terms of possibletranslations semantics, splitting them into suitable three-valued logics (see [22] and [5]).

The problem of defining paraconsistent logics satisfying Jas1-Jas3 was soon to be dubbed the problem of Jaśkowski (see, for instance, [14, 19]). But of course these clauses look much too vague. Jaśkowski himself assumed them to formulate, in general terms, 'the problem of logic of contradictory systems'. It is hard to believe in fact that any proposer of a paraconsistent logic would willingly acknowledge or aim his own logic not to satisfy any of those clauses. This way, the problem of Jaśkowski reveals itself as nothing but the most general problem of paraconsistency. Nevertheless, even from this bare characterization, many solutions to the 'problem of Jaśkowski' were proposed, ranging from the reinterpretation -by Błaszczuk and Dziobiak, and others- of some well-known modal logics, following the line initiated by Jaśkowski himself with the modal logic $S 5$, to the investigation of some many-valued logics related to the hierarchy of Łukasiewicz -by D'Ottaviano and da Costa, and many others. Good related bibliographies can be found in [19] and [11].

The problem of da Costa, as we shall call the problem of defining paraconsistent logics respecting clauses $\mathbf{N d C 1} \mathbf{- N d C 4}$, looks much more determinate. Da Costa assumed the latter set of clauses to be 'natural', but admitted that NdC3 and NdC4 were somewhat vague. But we need not regard $\mathbf{N d C} 4$ as vague. Under a quite reasonable account, we shall here interpret it as restricting our search
space to maximal fragments of classical logic, i.e., those fragments for which any proper extension collapses into classical logic itself. So, from now on we will be studying some propositional logics in which: (NdC1) the schema $\neg(A \wedge \neg A)$ is not provable; (NdC2) the derivation $A, \neg A \vdash B$, for arbitrary A and B, is not allowed; ($\mathbf{N d C 4}$) the condition of maximality is fulfilled, that is, the addition to one of these logics of a new schema, unprovable in this logic but provable in classical logic, renders to this logic the full strength of classical logic.

2 Some non-solutions

2.1 Infinitely many, not enough

Immediately after stating the problem, da Costa presented the calculi $C_{n}, 0<$ $n<\omega$. Each C_{n} was axiomatized by the following schemata:

$$
\begin{aligned}
& \left(\mathbf{1}_{\mathbf{n}}\right) A \rightarrow(B \rightarrow A) \\
& \left.\left(\mathbf{2 n}_{\mathbf{n}}\right) \quad(A \rightarrow B) \rightarrow((A \rightarrow(B \rightarrow C)) \rightarrow(A \rightarrow C))\right) \\
& \left(\mathbf{3}_{\mathbf{n}}\right) A \rightarrow(B \rightarrow(A \wedge B)) \\
& \left(\mathbf{4}_{\mathbf{n}}\right)(A \wedge B) \rightarrow A \\
& \left(\mathbf{5}_{\mathbf{n}}\right)(A \wedge B) \rightarrow B \\
& \left(\mathbf{6}_{\mathbf{n}}\right) A \rightarrow(A \vee B) \\
& \left(\mathbf{7}_{\mathbf{n}}\right) B \rightarrow(A \vee B) \\
& \left(\mathbf{8}_{\mathbf{n}}\right) \quad(A \rightarrow C) \rightarrow((B \rightarrow C) \rightarrow((A \vee B) \rightarrow C)) \\
& \left(\mathbf{9}_{\mathbf{n}}\right) A \vee \neg A \\
& \left(\mathbf{1 0}_{\mathbf{n}}\right) \neg \neg A \rightarrow A \\
& \left(\mathbf{1 1}_{\mathbf{n}}\right) B^{(n)} \rightarrow((A \rightarrow B) \rightarrow((A \rightarrow \neg B) \rightarrow \neg A)) \\
& \left(\mathbf{1 2}_{\mathbf{n}}\right)\left(A^{(n)} \wedge B^{(n)}\right) \rightarrow\left((A \wedge B)^{(n)} \wedge(A \vee B)^{(n)} \wedge(A \rightarrow B)^{(n)}\right)
\end{aligned}
$$

having only Modus Ponens (MP): $A, A \rightarrow B \vdash B$ as inference rule. In the above axioms, we let B° abbreviate the formula $\neg(B \wedge \neg B)$ (the one mentioned in NdC1), and we let B^{n}, for $0 \leq n<\omega$, be recursively defined by setting $B^{0} \xlongequal{\text { def }} B$ and $B^{n+1} \xlongequal{\text { def }}\left(B^{n}\right)^{\circ}$. We then finally define $B^{(n)}$, for $0<n<\omega$, by setting $B^{(1)} \stackrel{\text { def }}{=} B^{1}$ and $B^{(n+1)} \stackrel{\text { def }}{=} B^{(n)} \wedge B^{n+1}$.

If one added reductio ad absurdum to axioms $\left(\mathbf{1}_{\mathbf{n}}\right)-\left(\mathbf{1 0}_{\mathbf{n}}\right)$, one would obtain classical propositional logic. But axiom (11 $\mathbf{1 1}_{\mathbf{n}}$) provides a qualified form of reductio, helping to prevent the validity of $B^{(n)}$ in C_{n}. For a given formula G, if $G^{(n)}$ is valid in a theory having C_{n} as its underlying logic, we say that G is n-consistent. We say, in that case, that axiom $\left(\mathbf{1 2}_{\mathbf{n}}\right)$ regulates the propagation of n-consistency. It is easy to check that n-consistency also propagates through negation, that is, that the schema $A^{(n)} \rightarrow(\neg A)^{(n)}$ is provable in C_{n}. Consequently, we can classically evaluate a given formula G in C_{n} if, and only if, all of its variables are n-consistent. From now on we shall drop the index n in 'consistent' and in 'consistency' whenever there is no risk of confusion.

The semantical counterparts of the calculi C_{n}, mentioned in section 1, show that the binary connectives have their usual classical meanings. But the same does not happen with negation. Thus, for instance, no negated formula $\neg G$ may be a theorem of C_{n}, unless all of its variables are consistent. A classical negation for a given formula A may be defined in each C_{n} by setting $\sim A \xlongequal{\text { def }} \neg A \wedge A^{(n)}$. It might easily be checked that all formulae built using only the connectives \wedge, \vee, \rightarrow and \sim behave classically.

The logics in the sequence $C_{1}, C_{2}, C_{3}, \ldots$ are increasingly weaker, ultimately leading to a logic that is the deductive limit of the sequence (the logic $C_{\text {Lim }}$, presented in [8]). So, even if C_{1} were maximal, no C_{n} with $n>1$ could also be maximal. To show that clauses $\mathbf{N d C 1}$ and $\mathbf{N d C 2}$ are respected by the calculus C_{1}, the strongest calculus in the hierarchy, da Costa employed the following set of truth-tables, up to a renaming of the corresponding truth-values (see [12], p.499):

\wedge	T	t	F
T	T	T	F
t	T	T	F
F	F	F	F

\vee	T	t	F
T	T	T	T
t	T	T	T
F	T	T	F

\rightarrow	T	t	F
T	T	T	F
t	T	T	F
F	T	T	T

	\neg	\sim
T	F	F
t	T	F
F	T	T

where T and t are the designated values. It is an easy exercise to check that these truth-tables provide a sound, but not complete, semantics to each C_{n}, while neither $\neg(A \wedge \neg A)$ nor $A, \neg A \vdash B$ are satisfied if we pick the values t and F, respectively, for A and B. In what follows, the logic defined by these truth-tables will be called \mathbf{P}^{1}, following [26].

It is well-known that no C_{n} is characterizable by a finite-valued set of truthtables (see [1] and [6]), and it is equally known that no C_{n} is a maximal fragment of classical logic. In fact, there are some surprisingly simple examples of classically valid schemata which are not provable by any C_{n}, but could be added to them without causing their collapse into classical logic. Let B^{\diamond} abbreviate the formula $\neg(\neg B \wedge B)$, and let ${ }^{n} B$, for $0 \leq n<\omega$, be recursively defined by setting ${ }^{0} B \xlongequal{\text { def }} B$ and ${ }^{n+1} B \stackrel{\text { def }}{=}\left({ }^{n} B\right)^{\diamond}$. We then define $B^{\langle n\rangle}$, for every $0<n<\omega$, by setting $B^{\langle 1\rangle} \stackrel{\text { def }}{=} B$ and $B^{\langle n+1\rangle} \xlongequal{\text { def }} B^{\langle n\rangle} \wedge^{n+1} B$. Some new axioms that one might now consider adding to the calculi C_{n} are:
$\left(\mathbf{1 3}_{\mathbf{n}}\right) B^{\langle n\rangle} \rightarrow B^{(n)}$
(14n) $A \rightarrow \neg \neg A$
The logics in the new hierarchy axiomatized by $\left(\mathbf{1}_{\mathbf{n}}\right)-\left(\mathbf{1 4}_{\mathbf{n}}\right)$ were called $C_{n}^{\neg\urcorner}$, for $0<n<\omega$, and studied in [22] and [5]. For any given n, one can show each of these axioms to be independent of the others (see [22]). The bewildering fact that $B^{(n)}$ and $B^{\langle n\rangle}$ are not equivalent in C_{n}-and in particular $\neg(B \wedge \neg B)$ is not equivalent to $\neg(\neg B \wedge B)$ - is one of the consequences of the local failure of the rule of intersubstitutivity of provable equivalents. Anyway, we must admit that we
have no reason to believe that 'the principle of non-contradiction', mentioned in clause $\mathbf{N d C 1}$, should have only the form $\neg(A \wedge \neg A)$, but not the form $\neg(\neg A \wedge A)$. Thus we might expect these formulae to receive identical treatment, what does not happen in C_{n}.

Once again, we have built an increasingly weaker sequence of paraconsistent logics. Now, to show that clauses NdC1 and NdC2 are respected by the calculus $\left.\left.C_{1}\right\urcorner\right\urcorner$, we could employ the same truth-tables and designated values of \mathbf{P}^{1} above, except for the truth-table of negation, which should read as below.

	\neg
T	F
t	t
F	T

The logic defined by this new set of truth-tables will be called \mathbf{P}^{2}. Evidently, \mathbf{P}^{2} is an upper deductive limit to both hierarchies C_{n} and $C_{n}^{\neg\urcorner}$.

Is $C_{1}^{\neg\urcorner}$ maximal? Nope. Let's facilitate the propagation of consistency, stipulating that any single given consistent component of a formula should be enough so as to guarantee the consistency of the whole formula, that is, let's substitute axiom (12 $\mathbf{1 2}_{\mathbf{n}}$) for a stronger one:
$\left(\mathbf{1 2}_{\mathbf{n}}^{\star}\right)\left(A^{(n)} \vee B^{(n)}\right) \rightarrow\left((A \wedge B)^{(n)} \wedge(A \vee B)^{(n)} \wedge(A \rightarrow B)^{(n)}\right)$
This axiom $\left(\mathbf{1 2}_{\mathbf{n}}^{\star}\right)$ is not provable in any $C_{n}^{\neg\urcorner}$, yet it is validated both by the truth-tables of \mathbf{P}^{1} and those of \mathbf{P}^{2}. With this new axiom, one can now of course think of a new hierarchy of calculi, which we might here call $C_{n}^{!}$(the first of these calculi was proposed and studied in [9] under the name Ciboe). In these calculi, a formula G is to be evaluated classically if at least one of its variables is consistent. Accordingly, no negated formula $\neg G$ will be a theorem of $C_{n}^{!}$unless at least one of its variables is consistent. But, again, the strongest calculus of the hierarchy, $C_{1}^{!}$, is still not maximal...

To sum up with, so far we have described, along all the above hierarchies, no full solution to the problem of da Costa.

2.2 Through these many-valued eyes

An interesting sample of paraconsistent logic was studied by D'Ottaviano and da Costa in 1970 (see [14]). The three-valued logic J_{3} was presented by these authors as a solution to the problem of Jaśkowski. Its set of truth-tables is:

\wedge	1	$\frac{1}{2}$	0
1	1	$\frac{1}{2}$	0
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0
0	0	0	0

\vee	1	$\frac{1}{2}$	0
1	1	1	1
$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$
0	1	$\frac{1}{2}$	0

\rightarrow	1	$\frac{1}{2}$	0
1	1	$\frac{1}{2}$	0
$\frac{1}{2}$	1	$\frac{1}{2}$	0
0	1	1	1

	\neg	∇
1	0	1
$\frac{1}{2}$	$\frac{1}{2}$	1
0	1	0

where 1 and $\frac{1}{2}$ are the designated values. Originally, J_{3} was presented having as primitive connectives \vee, \neg, and the 'modal' ∇, the remaining connectives being defined by setting $A \wedge B \xlongequal{\text { def }} \neg(\neg A \vee \neg B)$ and $A \rightarrow B \xlongequal{\text { def }} \neg \nabla A \vee B$. It is not hard to see that the truth-tables definable by J_{3} and by Eukasiewicz's L_{3} coincide (but note that L_{3} has only 1 as designated value): the negation, the conjunction and the disjunction of L_{3} are identical to those of J_{3}, so one has to show but how to define the implication \supset of E_{3} inside J_{3}-this could be done by setting $A \supset B \xlongequal{\text { def }}(\nabla \neg A \vee B) \wedge(\nabla B \vee \neg A)$ — and how to define the connective ∇ of J_{3} in E_{3} - that might come out as $\nabla A \xlongequal{\text { def }} \neg A \supset A$.

Let's say that a truth-table is expressible by one of the above mentioned three-valued logics if it can be defined by a formula of their language, and let's call any such a truth-table semi-classical if the restriction of the inputs to $\{0,1\}$ (or $\{T, F\}$) in the variables of the formula that expresses it gives an output in $\{0,1\}$ (or $\{T, F\}$). Now it can be constructively shown that the unary and binary truth-tables expressible by $J_{3}\left(\right.$ and $\left.\mathrm{E}_{3}\right)$ are all and only the semi-classical threevalued truth-tables (see [22] or [10]). Moreover, this logic is also functionally precomplete, i.e., adding any new truth-table to it will lead to the expressibility of all possible three-valued truth-tables (check [10] again, where J_{3} appears under the name LFI1). It's worth noting that all logics in the hierarchies cited in section 2.1 above can be interpreted by way of possible-translations semantics based on the splicing of some three-valued logics whose truth-tables are expressible by J_{3}, but not by \mathbf{P}^{1}, nor by \mathbf{P}^{2} (see [22], or [5, 6]).

The logic J_{3} was first studied by Schütte, under the appellation $\boldsymbol{\Phi}_{\mathrm{v}}$ and a somewhat different signature (see [25]), and it constitutes a conservative extension of the logic $R M_{3}^{\tilde{\mathcal{S}}}$ (obtained by the addition to the latter of the connective ∇) presented in 1986 by Avron (see [3]) as an extension of Dunn-McCall's relevant calculus RM. Now, Avron has shown, by algebraic means, that $R M_{3}^{\tilde{\mathcal{S}}}$ is maximal with respect to classical logic. It was only natural to expect that J_{3} should also be maximal with respect to some version of classical logic written in the right signature, and this maximality has in fact recently been checked directly (see [22] and [10]). So, J_{3} satisfies $\mathbf{N d C 4}$. As J_{3} is indeed a paraconsistent logic, satisfying NdC2, and its first-order extension, satisfying NdC3, may be found in [15] or [10], J_{3} would seem to constitute a perfectly valid answer to the problem of da Costa, had it not been for the failure of $\mathbf{N d C 1}$: Yes, $\neg(A \wedge \neg A)$ is a theorem of J_{3} (and this gives the reason why the qualified form of reductio given by axiom $\left(\mathbf{1 1}_{\mathbf{n}}\right)$ fails to be valid in J_{3}-and it's the only axiom that fails among the above considered axioms). So it seems, again, that clause NdC1 might not be such a 'natural' requisite to a paraconsistent logic, as it was supposed to be... Note that the paper [21] extends the work done in the present paper by providing a more general background and set of solutions to the problem of da Costa (see more about this in the final section). There, for historical reasons, only the logics conforming to NdC1 are in fact called 'solutions' to the problem of da Costa
-the remaining ones are called 'semi-solutions' to that same problem.

3 The first solution: \mathbf{P}^{1}

Motivated by the inexistence until then of a semantics to the calculi C_{n} of da Costa, Sette studied in 1973 (see [26]) the three-valued calculus \mathbf{P}^{1}, whose truthtables are exhibited above, in section 2.1. He showed \mathbf{P}^{1} to be complete with respect to the following set of axioms:
$(\mathbf{P 1}) A \rightarrow(B \rightarrow A)$
$(\mathbf{P 2})(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)))$
(P3) $(\neg A \rightarrow \neg B) \rightarrow((\neg A \rightarrow \neg \neg B) \rightarrow A)$
$(\mathbf{P 4})(A \rightarrow B) \rightarrow \neg \neg(A \rightarrow B)$
(P5) $\neg(A \rightarrow \neg \neg A) \rightarrow A$
having (MP) as the sole inference rule. Here, only \rightarrow and \neg are taken as primitive connectives; the others may be defined by setting $\sim A \xlongequal{\text { def }} \neg(\neg A \rightarrow A), A \wedge B \xlongequal{\text { def }}$ $\neg(A \rightarrow \sim B)$, and $A \vee B \xlongequal{\text { def }} \sim A \rightarrow B$.

The axiomatization above seems to be rather economical, yet it could actually be made even more so, as axiom (P5) may be derived from the others (see [22]). Anyway, one may point a further defect in this axiomatization. We have already noticed above that \mathbf{P}^{1} not only provides an upper deductive bound to the calculi C_{n}, that is, all theorems and inferences of C_{n} are theorems and inferences of \mathbf{P}^{1}, but \mathbf{P}^{1} also satisfies clauses $\mathbf{N d C 1}$ and $\mathbf{N d C 2}$. Sette has proven \mathbf{P}^{1} to be maximal, so it also satisfies $\mathbf{N d C 4}$. But axioms (P1)-(P4) give no hints at all on the relation between the calculus \mathbf{P}^{1} and the calculi C_{n} : Which schemata more should we add to the axiomatization of a given C_{n} in order to obtain \mathbf{P}^{1} ?

Let us investigate that point. A quick look at the truth-tables of \mathbf{P}^{1} will make the reader notice that the truth-value t disappears after any connective is applied to an atomic variable. Accordingly, one might imagine that in \mathbf{P}^{1} any complex sentence behaves consistently, no matter the behavior of its component variables. And that's exactly what happens! As we shall see, an alternative axiomatization of \mathbf{P}^{1} is obtained from that of any given C_{n} if we just add to the latter the following new schemata:
$\left(\mathbf{1 5}_{\mathbf{n}}\right)(A \wedge B)^{(n)} \wedge(A \vee B)^{(n)} \wedge(A \rightarrow B)^{(n)}$
$\left(\mathbf{1 6}_{\mathbf{n}}\right)(\neg B)^{(n)}$
What $\left(\mathbf{1 5}_{\mathbf{n}}\right)$ and $\left(\mathbf{1} \mathbf{6}_{\mathbf{n}}\right)$ are saying is exactly that formulae with binary connectives should behave consistently, and negated formulae are supposed to behave consistently as well. Evidently, when we add axiom (15 $\mathbf{n}_{\mathbf{n}}$) to C_{n}, axioms (12 $\mathbf{1 2}_{\mathbf{n}}$, $\left(\mathbf{1 2}_{\mathbf{n}}^{\star}\right)$ and also $\left(\mathbf{1 3}_{\mathbf{n}}\right)$ turn out to be derivable.

Lemma 3.1 For any given n, axioms $\left(\mathbf{1}_{\mathbf{n}}\right)-\left(\mathbf{1 1}_{\mathbf{n}}\right)$ plus $\left(\mathbf{1 5}_{\mathbf{n}}\right)$, ($\mathbf{1 6}_{\mathbf{n}}$) and (MP) axiomatize \mathbf{P}^{1}.

Proof To check soundness, it is easy to see that both $\left(\mathbf{1 5}_{\mathbf{n}}\right)$ and $\left(\mathbf{1 6}_{\mathbf{n}}\right)$ are validated by the truth-tables of \mathbf{P}^{1}. It is also obvious that axioms ($\left.\mathbf{P} \mathbf{1}\right)$ and $(\mathbf{P 2})$ are derivable from $\left(\mathbf{1}_{\mathbf{n}}\right)$ and $\left(\mathbf{2}_{\mathbf{n}}\right)$. Now, the sentences $(\neg B)^{(n)} \rightarrow(\mathbf{P} 3)$ and $(A \rightarrow B)^{(n)} \rightarrow(\mathbf{P} 4)$ may be derived from the axioms of C_{n}, or of $C_{n}^{\neg\urcorner}$ (to prove these facts the reader might prefer to use as efficient shortcuts the above mentioned semantics of these calculi). So, using ($\mathbf{1 5}_{\mathbf{n}}$), ($\mathbf{1 6}_{\mathbf{n}}$) and (MP), (P3) and ($\mathbf{P} 4$) can be proven.

We have now multiple ways of axiomatizing \mathbf{P}^{1}, adding axioms to each given C_{n}. Just for convenience, let's fix an axiomatization for \mathbf{P}^{1}, from now on, as that of C_{1} plus $\left(\mathbf{1 5}_{\mathbf{1}}\right)$ and $\left(\mathbf{1 6}_{\mathbf{1}}\right)$. Now the primitive connectives are all of \wedge, \vee, \rightarrow and \neg. A direct and constructive proof of completeness of the truth-tables of \mathbf{P}^{1} with regard to this new axiomatization may be obtained with the help of the following auxiliary lemmata:

Lemma 3.2 The following schemata are derivable in C_{1} :
3.2.1 $A^{\circ} \rightarrow(A \rightarrow \neg \neg A)$
3.2.2 $A^{\circ} \rightarrow(\neg A \rightarrow(A \rightarrow B))$
3.2.3 $B^{\circ} \rightarrow(A \rightarrow(\neg B \rightarrow \neg(A \rightarrow B)))$
3.2.4 $A^{\circ} \rightarrow(\neg A \rightarrow \neg(A \wedge B))$
3.2.5 $B^{\circ} \rightarrow(\neg B \rightarrow \neg(A \wedge B))$
3.2.6 $\left(A^{\circ} \wedge B^{\circ}\right) \rightarrow(\neg A \rightarrow(\neg B \rightarrow \neg(A \vee B))$

A constructive Kálmar-like lemma may then be sketched, modifying the one proposed in [26] (we advise the reader to wait until the next section to know the reason why we modified the original proofs of Lemma 3.3 and of Theorem 3.5, which follow):

Lemma 3.3 Let G be a formula whose set of atomic variables is $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. Given a valuation v in \mathbf{P}^{1}, let's define for each variable p_{i}, for $1 \leq i \leq n$, the following associated formulae:
(i) $p_{i}^{+}=p_{i}^{\circ}$ and $p_{i}^{-}=p_{i}$, if $v\left(p_{i}\right)=T$;
(ii) $p_{i}^{+}=p_{i}$ and $p_{i}^{-}=\neg p_{i}^{\circ}$, if $v\left(p_{i}\right)=t$;
(iii) $p_{i}^{+}=p_{i}^{\circ}$ and $p_{i}^{-}=\neg p_{i}$, if $v\left(p_{i}\right)=F$.

Let's denote by Δ_{v} the set $\left\{p_{1}^{+}, p_{1}^{-}, p_{2}^{+}, p_{2}^{-}, \ldots, p_{n}^{+}, p_{n}^{-}\right\}$, and define also:
(iv) $G_{v}=G$, if $v(G)=T$;
(v) $G_{v}=\neg G^{\circ}$, if $v(G)=t$;
(vi) $G_{v}=\neg G$, if $v(G)=F$.

So we state that the following holds: $\Delta_{v} \vdash G_{v}$.
Proof The proof is an induction on the complexity of G. The base step, when G is itself an atomic variable, is straightforward, from the definitions (i)-(vi). If G is complex we must go through a very long chain of cases, subcases and subsubcases, checking one by one, using the new axiomatization of \mathbf{P}^{1} and the induction hypothesis, (IH). Here, at key points, Lemma 3.2 comes in handy. The longest case is that of G having the form $A \vee B$, for some A and B less complex than G :

1. Suppose $v(A) \neq F$, and so $v(G)=T$.
1.1. Suppose A to be p_{i}, an atomic variable. If $v(A)=T$, we have, from (i), $p_{i}^{-}=p_{i}$, and if $v(A)=t$ we have, from (ii), $p_{i}^{+}=p_{i}$. Besides that we have, from (iv), $G_{v}=G=p_{i} \vee B$. But from axiom ($\mathbf{6}_{\mathbf{1}}$) we know that $p_{i} \rightarrow\left(p_{i} \vee B\right)$ is a provable formula in \mathbf{P}^{1}, for any arbitrary B. So we conclude that $\Delta_{v} \vdash G_{v}$.
1.1. Suppose A to be non-atomic. So $v(A)$ must be T. From (iv) we have $A_{v}=A$, and by (IH) we conclude that $\Delta_{v} \vdash A$. But from (iv) we also have $G_{v}=G=A \vee B$, and so we proceed as in case 1.1. above.
2. Suppose $v(B) \neq F$, and so $v(G)=T$. Proceed as in case 1., this time using axiom $\left(\mathbf{7}_{1}\right)$.
3. Suppose both $v(A)=F$ and $v(B)=F$, and so $v(G)=F$.
3.1. Suppose A to be p_{i} and B to be p_{j}, both atomic variables. From (iii) we have that $p_{i}^{+}=p_{i}^{\circ}$ and $p_{i}^{-}=\neg p_{i}, p_{j}^{+}=p_{j}^{\circ}$ and $p_{j}^{-}=\neg p_{j}$. Now, from Lemma 3.2.6 we know that the formula $\left(p_{i}^{+} \wedge p_{j}^{+}\right) \rightarrow\left(p_{i}^{-} \rightarrow\right.$ $\left.\left(p_{j}^{-} \rightarrow \neg\left(p_{i} \vee p_{j}\right)\right)\right)$ is valid, so $\Delta_{v} \vdash G_{v}$.
3.2. Suppose A to be p_{i} and B to be non-atomic. From (iii) we have that $p_{i}^{+}=p_{i}^{\circ}$ and $p_{i}^{-}=\neg p_{i}$, and from ($\mathbf{v i}$) we have $B_{v}=\neg B$, and $G_{v}=\neg G=\neg\left(p_{i} \vee B\right)$. By ($\mathbf{I H}$), $\Delta_{v} \vdash \neg B$. But as B was supposed to be non-atomic, then B° holds good. From Lemma 3.2.6, $\Delta_{v} \vdash G_{v}$.
3.3. Suppose A to be non-atomic and B to be p_{j}. Proceed as in case 3.2., mutatis mutandis.
3.3. Suppose both A and B non-atomic. From (vi) we have $A_{v}=\neg A$, $B_{v}=\neg B$, and $G_{v}=\neg G=\neg(A \vee B)$. By (IH), $\Delta_{v} \vdash \neg A$ and $\Delta_{v} \vdash \neg B$, and as A and B are non-atomic, A° and B° hold good. So, from Lemma 3.2.6, $\Delta_{v} \vdash G_{v}$.

Theorem 3.4 (Completeness)
Every tautology of \mathbf{P}^{1} is a theorem of this calculus.
Proof Let G be a tautology whose atomic components are $p_{1}, p_{2}, \ldots, p_{n}$. So, using Lemma 3.3, and the fact that $\neg G^{\circ} \rightarrow G$ is derivable, given the axioms $\left(\mathbf{1 0}_{\mathbf{1}}\right)$ and $\left(\mathbf{4}_{\mathbf{1}}\right)$, we conclude that $\Delta_{v} \vdash G$, for any valuation v. Let's denote by Δ_{v}^{1} the set $\Delta_{v}-\left\{p_{1}^{+}, p_{1}^{-}\right\}$. We now choose three distinct valuations, v_{1}, v_{2} and v_{3}, differing exactly in p_{1}, i.e., such that $\Delta_{v_{1}}^{1}=\Delta_{v_{2}}^{1}=\Delta_{v_{3}}^{1}=\Delta_{v}^{1}$, while: (A) $v_{1}\left(p_{1}\right)=T$; (B) $v_{2}\left(p_{1}\right)=t$; (A) $v_{3}\left(p_{1}\right)=F$.

From case (A) we have that $p_{1}^{+}=p_{1}^{\circ}$ and $p_{1}^{-}=p_{1}$, so:

$$
\begin{equation*}
\Delta_{v}^{1}, p_{1}^{\circ}, p_{1} \vdash G \tag{1}
\end{equation*}
$$

But from case (C) we have that $p_{1}^{+}=p_{1}^{\circ}$ and $p_{1}^{-}=\neg p_{1}$, so:

$$
\begin{equation*}
\Delta_{v}^{1}, p_{1}^{\circ}, \neg p_{1} \vdash G \tag{2}
\end{equation*}
$$

From (1) and (2), by axioms $\left(\mathbf{8}_{\mathbf{1}}\right)$ and $\left(\mathbf{9}_{\mathbf{1}}\right)$ - the proof by cases- we have:

$$
\begin{equation*}
\Delta_{v}^{1}, p_{1}^{\circ} \vdash G \tag{3}
\end{equation*}
$$

Now from case (B) we have that $p_{1}^{+}=p_{1}$ and $p_{1}^{-}=\neg p_{1}^{\circ}$, so:

$$
\begin{equation*}
\Delta_{v}^{1}, \neg p_{1}^{\circ}, p_{1} \vdash G \tag{4}
\end{equation*}
$$

We note that, from axioms $\left(\mathbf{1 0}_{\mathbf{1}}\right)$ and ($\left.\mathbf{4}_{\mathbf{1}}\right)$, the formula $\neg p_{1}^{\circ} \rightarrow p_{1}$ is derivable, then from (4) we have:

$$
\begin{equation*}
\Delta_{v}^{1}, \neg p_{1}^{\circ} \vdash G \tag{5}
\end{equation*}
$$

Using proof by cases once more, now on (3) and (5), we conclude:

$$
\begin{equation*}
\Delta_{v}^{1} \vdash G \tag{6}
\end{equation*}
$$

These steps helped us 'eliminating' the variable p_{1}. We can now recursively define the set Δ_{v}^{i} as the set $\Delta_{v}^{i-1}-\left\{p_{i}^{+}, p_{i}^{-}\right\}$, for $1<i \leq n$, and then repeat the above steps $n-1$ times. In the end of this process we obtain the empty set Δ_{v}^{n+1}, and the proof is completed.

We now prove maximality, once more modifying the proof proposed by Sette (again, the next section will explain the reason for the modification):

Theorem 3.5 \mathbf{P}^{1} is a maximal fragment of classical logic.
Proof Let $g\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ be a valid formula of the classical propositional calculus that is not a theorem of \mathbf{P}^{1} and is written over the variables $p_{1}, p_{2}, \ldots, p_{n}$. We may suppose, without loss of generality, that for any given v we have that $v\left(g\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right)=F$ iff $v\left(p_{i}\right)=t$ for all $p_{i}, 1 \leq i \leq n$. Indeed, if a given formula $h\left(p_{1}, p_{2}, \ldots, p_{n}, p_{n+1}\right)$ assumes the value F when $v\left(p_{i}\right)=t$ for all $1 \leq i \leq n$ and $v\left(p_{n+1}\right) \neq t$, then we may fix the value of the variable p_{n+1} substituting it for $p_{1} \rightarrow p_{1}$ in case $v\left(p_{n+1}\right)=T$ or for $\neg\left(p_{1} \rightarrow p_{1}\right)$ in case $v\left(p_{n+1}\right)=F$, obtaining this way a formula of the form $g\left(p_{1}, p_{2}, \ldots, p_{n}\right)$.

Now consider the formula D_{n}, defined by setting $D_{n} \stackrel{\text { def }}{=} p_{1}^{\circ} \vee p_{2}^{\circ} \vee \ldots \vee p_{n}^{\circ}$. Then, for any valuation v, it is easy to see from the truth-tables of \mathbf{P}^{1} that $v\left(D_{n}\right)=T$ iff $v\left(p_{i}\right) \neq t$ for some $p_{i}, 1 \leq i \leq n$. Otherwise, $v\left(D_{n}\right)=F$. We claim that the sentence $g\left(p_{1}, p_{2}, \ldots, p_{n}\right) \rightarrow D_{n}$ is a tautology of \mathbf{P}^{1}. Indeed, for any given v there are two possible situations:
(i) $v\left(D_{n}\right)=T$;
(ii) $v\left(D_{n}\right)=F$, what occurs only if $v\left(p_{i}\right)=t$ for all $p_{i}, 1 \leq i \leq n$. But in this case we know that $v\left(g\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right)=F$.

In both situations, however, we may conclude that $v\left(g\left(p_{1}, p_{2}, \ldots, p_{n}\right) \rightarrow D_{n}\right)=$ T, for any arbitrary v. By the completeness of \mathbf{P}^{1}, the sentence inside parentheses is provable. Consequently, in \mathbf{P}^{1} plus $g\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, by (MP), the sentence D_{n} is provable. In particular, fixing an arbitrary atomic variable p, the iterated disjunction $\vee_{\vee} p^{\circ}$ is provable, and so p° is a valid schema. From axiom ($\mathbf{1 1}_{\mathbf{1}}$) and (MP), reductio ad absurdum turns out to hold without restrictions, and the classical calculus thus obtains.

4 Yet another solution: P^{2}

In all logics presented above, the binary connectives, \wedge, \vee and \rightarrow all had a classical behavior, but the negation had some of its usual properties not recognized, so that it was allowed to behave paraconsistently. Notwithstanding, the classical interrelation between negation and the binary connectives attained variable degrees of accomplishment. So, for instance, J_{3} was the only logic where all De Morgan laws could be checked to hold, while no forms of contraposition, such as $(A \rightarrow B) \rightarrow(\neg B \rightarrow \neg A)$, are valid in none of the above paraconsistent calculi. In the case of the hierarchies in section 2.1, the relation between the consistency of the variables and the consistency of the complex formula built over them is regulated by the axioms of propagation of consistency. In an extreme case, that of \mathbf{P}^{1}, the consistency of complex formulae is automatically guaranteed, either if these formulae contained binary connectives or if it contained negations.

In one way or other, the non-classical behavior here has been associated with negation. Negation was allowed to have a somewhat 'wild' behavior, and our paraconsistent systems were designed to cope with that. So it may seem surprising that in \mathbf{P}^{1} an atomic proposition starts to behave consistently only because it has received a negation sign -or maybe in spite of that. From then on, by a sort of miracle, all formulae built over this negated variable shall be evaluated classically. No doubt this feature has seemed unsatisfactory to many logicians working with \mathbf{P}^{1}. What if we wanted to bring paraconsistent behavior into some complex propositions, while still looking for a solution to the problem of da Costa? Perhaps at least a purely negated formula, that is, one whose only connective is negation, should never be considered consistent by default. Can we build a logic that realizes such an intent?

Look at what happens when we add axiom $\left(\mathbf{1 4}_{\mathbf{n}}\right): A \rightarrow \neg \neg A$ to C_{n}. It is easy to show that in this case consistency starts to propagate backwards through negation, that is, the schema $(\neg A)^{(n)} \rightarrow A^{(n)}$ is provable: Now a negated formula is consistent only if it was already consistent before negation was applied to it. Therefore, a purely negated formula would only be consistent if the variable in its kernel were somehow classical. That's exactly how the truth-tables of the $\operatorname{logic} \mathbf{P}^{2}$ work, and we now suggest to axiomatize them with the help of axioms $\left(\mathbf{1}_{\mathbf{n}}\right)-\left(\mathbf{1 1}_{\mathbf{n}}\right)$ plus $\left(\mathbf{1 4}_{\mathbf{n}}\right),\left(\mathbf{1 5}_{\mathbf{n}}\right)$ and the rule $(\mathbf{M P})$ (of course, once more, axioms $\left(\mathbf{1 2}_{\mathbf{n}}\right),\left(\mathbf{1 2}_{\mathbf{n}}^{\star}\right)$ and $\left(\mathbf{1 3}_{\mathbf{n}}\right)$ are easily derivable). For convenience, from now on, we will fix $n=1$
in this axiomatization. The logic \mathbf{P}^{2} was thoroughly studied on its own right in [22], having first been axiomatized by Mortensen in [24], under the name C0.2. Unfortunately, the author of [24] insisted that the three-valued truth-tables of \mathbf{P}^{2} should have only one designated value. As a consequence, the proposed logic then fails to be paraconsistent and the non-constructive completeness proof presented by Mortensen for \mathbf{P}^{2} still holds good, while modus ponens fails, together with the corresponding soundness proof.

The connectives $\wedge, \vee, \rightarrow$ and \neg are all taken as primitive, but once more we might define \sim, \wedge and \vee in terms of \rightarrow and \neg, exactly as in the case of \mathbf{P}^{1} (recall section 3). Moreover, the very negation of $\mathbf{P}^{\mathbf{1}}$ can also be defined in $\mathbf{P}^{\mathbf{2}}$, by considering $A \rightarrow \neg A$, while the negation of $\mathbf{P}^{\mathbf{2}}$ is clearly not definable in $\mathbf{P}^{\mathbf{1}}$. We now prove:

Lemma 4.1 The Lemma 3.3 holds for \mathbf{P}^{2}.

Proof Here is the reason why we have modified the statement of Lemma 3.3, regarding \mathbf{P}^{1}, as proposed by Sette: Now the same result, with minimal modifications, apply also to \mathbf{P}^{2}. The proof is much similar, but we have to review the case of G being a negated formula, and the cases where the mere supposition of a sentence A being non-atomic has led us to conclude that A° is a theorem -this holds good for \mathbf{P}^{1}, but is no longer true in the case of \mathbf{P}^{2}, at least not in the case where A is a purely negated formula. Let's compare the longest case to the same case as treated by Lemma 3.3, namely, the case of G having the form $A \vee B$:

1. Suppose $v(A) \neq F$, and so $v(G)=T$.
1.1. Suppose A to be p_{i}, an atomic variable. Proceed as in Lemma 3.3.
1.2. Suppose A to be non-atomic. Now $v(A)$ could be T, and so we proceed as in Lemma 3.3, but $v(A)$ could also be t, in the case of A having the form $\neg_{n} p_{i}$, where p_{i} is an atomic variable and \neg_{n} represents the negation, \neg, iterated n times. Evidently, $v\left(\neg_{n} p_{i}\right)=t$ iff $v\left(p_{i}\right)=t$, and from (ii) and (iv) we have $p_{i}^{-}=\neg p_{i}^{\circ}$, and $G_{v}=G=A \vee B=\neg_{n} p_{i} \vee B$. Now, if n is even, i.e., if it has the form $2 m$, then we derive $p_{i} \rightarrow \neg_{n} p_{i}$, by m applications of the new axiom ($\mathbf{1 4}_{\mathbf{1}}$) and rule (MP). If n is odd, having the form $2 m+1$, then $\neg p_{i} \rightarrow \neg_{n} p_{i}$ can be derived, by m applications of $\left(\mathbf{1 4}_{\mathbf{1}}\right)$ (if $m=0$, this is also true, for $D \rightarrow D$ is a valid schema). In both cases we derive then $p_{i}^{-} \rightarrow A$, by axioms ($\mathbf{1 0}_{\mathbf{1}}$), ($\mathbf{4}_{\mathbf{1}}$) and ($\mathbf{5}_{\mathbf{1}}$), so $\Delta_{v} \vdash A$, and so, from axiom ($\mathbf{6}_{\mathbf{1}}$), $\Delta_{v} \vdash G_{v}$ follows.
2. Suppose $v(B) \neq F$, and so $v(G)=T$. Proceed as in case 1., mutatis mutandis.
3. Suppose both $v(A)=F$ and $v(B)=F$, and so $v(G)=F$.
3.1. Suppose A to be p_{i} and B to be p_{j}, both atomic variables. Proceed as in Lemma 3.3.
3.2. Suppose A to be p_{i}, and B to be non-atomic. From (iii) we have that $p_{i}^{+}=p_{i}^{\circ}$ and $p_{i}^{-}=\neg p_{i}$, and from ($\mathbf{v i}$) we have $B_{v}=\neg B$, and $G_{v}=\neg G=\neg\left(p_{i} \vee B\right)$. By (IH), $\Delta_{v} \vdash B_{v}$. If B is not a purely negated formula, B° holds good, and we proceed as in Lemma 3.3. If B is $\neg_{n} p_{j}$, for some variable p_{j}, then $B_{v}=\neg_{n+1} p_{j}$. As $v(A)=v\left(\neg_{n} p_{j}\right)=$ F, we conclude that $v\left(p_{j}\right) \neq t$.
If n has the form $2 m$, then $v\left(p_{j}\right)=F$, and from (iii) we have that $p_{j}^{+}=p_{j}^{\circ}$ and $p_{j}^{-}=\neg p_{j}$. Now we remember that $D^{\circ} \rightarrow(\neg D)^{\circ}$ is a provable schema even in C_{1}, and if one applies it n times, together with (MP), one obtains $p_{j}^{+} \rightarrow B^{\circ}$. Moreover, as in case 1.2., m applications of $\left(\mathbf{1 4}_{\mathbf{1}}\right)$ will give us $p_{j}^{-} \rightarrow B_{v}$. But, from Lemma 3.2.6, we have that $\left(p_{i}^{+} \wedge B^{\circ}\right) \rightarrow\left(p_{i}^{-} \rightarrow\left(B_{v} \rightarrow G_{v}\right)\right)$. So, $\Delta_{v} \vdash G_{v}$.
If n has the form $2 m-1$, then $v\left(p_{j}\right)=T$, and from (i) we have that $p_{j}^{+}=p_{j}^{\circ}$ and $p_{j}^{-}=p_{j}$. Once more we derive $p_{j}^{+} \rightarrow B^{\circ}$, and m applications of $\left(\mathbf{1 4}_{\mathbf{1}}\right)$ give us $p_{j}^{-} \rightarrow B_{v}$. As above, we use Lemma 3.2.6 to obtain $\Delta_{v} \vdash G_{v}$.
3.3. Suppose A to be non-atomic and B to be p_{j}. Proceed as in case 3.2., mutatis mutandis.
3.4. Suppose both A and B non-atomic. The result in this case comes as a mixture of the arguments in cases 3.2 and 3.3.

Theorem 4.2 (Completeness)
Every tautology of \mathbf{P}^{2} is a theorem of this calculus.
Proof The proof follows step by step the completeness proof of \mathbf{P}^{1} (Theorem 3.4), now making use of Lemma 4.1 above.

Theorem $4.3 \mathbf{P}^{2}$ is a maximal fragment of classical logic.
Proof Here the modification we introduced in the strategy chosen by Sette for proving the maximality of \mathbf{P}^{1} is crucial. In our case, the proof of Theorem 4.3 turns out to be exactly the same as the proof of Theorem $\mathbf{3 . 5}$-and that constituted, in fact, our main reason to present an alternative proof of maximality for \mathbf{P}^{1}.

One just has to notice that, according to the truth-tables of \mathbf{P}^{2}, it still holds that $v\left(D_{n}\right)=T$ iff $v\left(p_{i}\right) \neq t$, for some $p_{i}, 1 \leq i \leq n$, and otherwise $v\left(D_{n}\right)=F$. Moreover, it is equally clear that the addition of a schema such as p° to the axioms of \mathbf{P}^{2}, once more, causes the classical calculus to obtain.

5 Comments

We have claimed that \mathbf{P}^{1} and \mathbf{P}^{2} are solutions to the problem of da Costa. But clause NdC3 required that first-order extensions of these logics should be
presented. That is the easiest part, though. To define adequate universal and existential quantifiers for these three-valued logics one could use, for instance, the idea of distribution quantifiers, investigated in [4]. Without entering into details, we claim in the present case that these quantifiers can be axiomatized by the addition to any of these calculi of the following schemata:
(17) $\forall x A(x) \rightarrow A(t)$
(18) $A(t) \rightarrow \exists x A(x)$
(19) $(\forall x A(x))^{\circ} \wedge(\exists x A(x))^{\circ}$
plus the rules (R1): $A \rightarrow B(x) \vdash A \rightarrow \forall x B(x)$, and (R2): $A(x) \rightarrow B \vdash$ $\exists x A(x) \rightarrow B$. In (17) and (18), as usual, the term t is required to be free for x in $A(x)$.

In [27], Sette and Carnielli introduced the logic \mathbf{I}^{1}, dual to \mathbf{P}^{1}, with paracomplete character. \mathbf{I}^{1} was shown to be a maximal paracomplete fragment of classical logic. Now, one may obtain a logic \mathbf{I}^{2} from \mathbf{I}^{1} in the very same way as \mathbf{P}^{2} has been obtained from \mathbf{P}^{1}, namely, by substituting the truth-table of negation from \mathbf{I}^{1} for the truth-table of negation from \mathbf{P}^{2}, presented above, in section 2.1 (remembering that in \mathbf{I}^{1} and \mathbf{I}^{2} only the value T is a designated one). Once more, \mathbf{I}^{2} may easily be axiomatized and proven to be maximal with respect to classical logic (check [21]).

Carnielli and Lima-Marques, in [7], have shown how \mathbf{P}^{1} and \mathbf{I}^{1} could be interpreted in terms of a society semantics, a semantics in which the interaction of a society of agents, each one reasoning with classical logic itself, works so as to characterize a non-classical behavior. The idea of society semantics seems very close to the original conception of Jaśkowski's (pre-)discussive logic (see [17, 6]), where inconsistencies are permitted to appear, for instance, in the circumstance of a discussion between people -if they only expressed themselves using somewhat vague terms. In [23] the reader will find a general and constructive way of converting the semantics of all the above mentioned many-valued logics, including \mathbf{P}^{2} and \mathbf{I}^{2}, into bivalent non-truth-functional semantics, society semantics, possible-translations semantics and modal-like semantics. Axiomatizations by sequent systems and tableaux are also provided. We believe thus that the solutions to the problem of da Costa presented above can indeed be given completely 'intuitive' justifications, closely approximating, along these lines, the problem of da Costa to the original requisites from the problem of Jaśkowski.

A generalization of the hereby presented investigations on the problem of da Costa is offered by the author in [21], where conjunction, disjunction, implication and negation are allowed to vary so as to allow for the construction of a family of 8,192 maximal paraconsistent three-valued logics, among which one can find $\mathbf{P}^{1}, \mathbf{P}^{2}, J_{3}$, and other known paraconsistent logics, such as LFI2, from [10], constituting a series of solutions or semi-solutions (in the sense of section 2.2) to the problem of da Costa. The constructive Kálmar-like lemma used above turns out to be quite complicated to write down in the general case, and so some preference is given in [21] to non-constructive completeness proofs. The idea ex-
plored in those proofs, nevertheless, as well as in the related general maximality proofs, which follow the general pattern of the maximality proofs that can be found in the present paper, is the idea of taking advantage of the abstract notion of 'consistency', internalized in the object language, following the investigations reported in $[9,6]$. A dual family of 1,024 maximal paracomplete three-valued logics, including the above mentioned $\mathbf{I}^{\mathbf{1}}$ and $\mathbf{I}^{\mathbf{2}}$, but also logics such as $\mathbf{L P F}$, from [18], is also presented in [21], and is equally subject to the above comments.

Bibliography

[1] A. I. Arruda [1975]. Remarques sur les systèmes C_{n}. Comptes Rendus de l'Académie de Sciences de Paris (A-B), 280:1253-1256.
[2] A. I. Arruda [1980]. A survey of paraconsistent logic. In A. I. Arruda, R. Chuaqui, and N. C. A. da Costa, editors, Mathematical Logic in Latin America: Proceedings of the IV Latin American Symposium on Mathematical Logic, pages 1-41. North-Holland.
[3] A. Avron [1986]. On an implication connective of RM. Notre Dame Journal of Formal Logic, 27:201-209.
[4] W. A. Carnielli [1987]. Systematization of finite many-valued logics through the method of tableaux. The Journal of Symbolic Logic, 52(2):473-493.
[5] W. A. Carnielli [2000]. Possible-translations semantics for paraconsistent logics. In D. Batens, C. Mortensen, G. Priest, and J. P. Van Bendegem, editors, Frontiers of Paraconsistent Logic, Proceedings of the I World Congress on Paraconsistency, held in Ghent, BE, July 29-August 3, 1997, pages 149163. Research Studies Press, Baldock.
[6] W. A. Carnielli, M. E. Coniglio, and J. Marcos [2005]. Logics of Formal Inconsistency. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 14. Kluwer Academic Publishers, 2nd edition. In print.
[7] W. A. Carnielli and M. Lima-Marques [1999]. Society semantics and multiple-valued logics. In W. Carnielli and I. M. L. D'Ottaviano, editors, Advances in Contemporary Logic and Computer Science: Proceedings of the XI Brazilian Logic Conference on Mathematical Logic, Salvador, BR, May 6-10, 1996, volume 235 of Contemporary Mathematics, pages 33-52. American Mathematical Society.
[8] W. A. Carnielli and J. Marcos [1999]. Limits for paraconsistent calculi. Notre Dame Journal of Formal Logic, 40(3):375-390. http://projecteuclid.org/Dienst/UI/1.0/Display/euclid.ndjfl/1022615617.
[9] W. A. Carnielli and J. Marcos [2002]. A taxonomy of C-systems. In W. A. Carnielli, M. E. Coniglio, and I. M. L. D'Ottaviano, editors, Paraconsistency: The Logical Way to the Inconsistent, Proceedings of the II World Congress on Paraconsistency, held in Juquehy, BR, May 8-12, 2000, volume 228 of Lecture Notes in Pure and Applied Mathematics, pages 1-94. Marcel Dekker. Preprint available at:
http://www.cle.unicamp.br/e-prints/abstract_5.htm.
[10] W. A. Carnielli, J. Marcos, and S. de Amo [2000]. Formal inconsistency and evolutionary databases. Logic and Logical Philosophy, 8(2):115-152. Preprint available at: http://www.cle.unicamp.br/e-prints/abstract_6.htm.
[11] J. Ciuciura [1999]. History and development of the discursive logic. Logica Trianguli, 3:3-31.
[12] N. C. A. da Costa [1974]. On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 11:497-510.
[13] N. C. A. da Costa and E. Alves [1977]. A semantical analysis of the calculi C_{n}. Notre Dame Journal of Formal Logic, 18(4):621-630.
[14] I. M. L. D'Ottaviano and N. C. A. da Costa [1970]. Sur un problème de Jaśkowski. Comptes Rendus Hebdomadaires des Séances de l'Academie des Sciences, Séries A-B, 270(21):1349-1353.
[15] I. M. L. D'Ottaviano [1985]. The completeness and compactness of a threevalued first-order logic. In Proceedings of the V Latin American Symposium on Mathematical Logic, held in Bogotá, CO, 1981, pages 77-94. Revista Colombiana de Matemáticas, $1 / 2$.
[16] I. M. L. D'Ottaviano [1990]. On the development of paraconsistent logic and da Costa's work. The Journal of Non-Classical Logic, 7(1/2):89-152.
[17] S. Jaśkowski [1999]. A propositional calculus for inconsistent deductive systems (in Polish). Studia Societatis Scientiarum Torunensis, Sectio A, 5:5777, 1948. Translated into English in Studia Logica, 24:143-157, 1967, and in Logic and Logical Philosophy, 7:35-56.
[18] C. B. Jones [1984]. A logic covering undefinedness in program proofs. Acta Informatica, 21:251-269.
[19] J. Kotas and N. C. A. da Costa [1978]. On the problem of Jaśkowski and the logics of Łukasiewicz. In A. I. Arruda, N. C. A. da Costa, and R. Chuaqui, editors, Mathematical Logic: Proceedings of the I Brazilian Conference, Campinas, br, 1977, Lecture Notes in Pure and Applied Mathematics 39, pages 127-139. Dekker.
[20] A. Loparić and E. H. Alves [1980]. The semantics of the systems C_{n} of da Costa. In A. I. Arruda, N. C. A. da Costa, and A. M. Sette, editors, Proceedings of the III Brazilian Conference on Mathematical Logic, Recife, 1979, pages 161-172, São Paulo. Sociedade Brasileira de Lógica.
[21] J. Marcos. 8K solutions and semi-solutions to a problem of da Costa. Forthcoming.
[22] J. Marcos [1999]. Possible-Translations Semantics (in Portuguese). Master's thesis, State University of Campinas, BR.
http://www.cle.unicamp.br/students/J.Marcos/index.htm.
[23] J. Marcos and J.-Y. Béziau. Many values, many representations. Forthcoming.
[24] C. Mortensen [1989]. Paraconsistency and C_{n}. In G. Priest, R. Sylvan, and J. Norman, editors, Paraconsistent Logic: Essays on the inconsistent, pages 289-305. Philosophia Verlag.
[25] K. Schütte [1960]. Beweistheorie. Springer-Verlag, Berlin.
[26] A. M. Sette [1973]. On the propositional calculus \mathbf{P}^{1}. Mathematica Japonicae, 18:173-180.
[27] A. M. Sette and W. A. Carnielli [1995]. Maximal weakly-intuitionistic logics. Studia Logica, 55(4):181-203.

João Marcos
CLC, IST, Lisbon, Portugal, and
GTAL/CLE, UNICAMP, Campinas, Brazil, and
DIMAp, UFRN, Natal/RN, Brazil
web-site: http://geocities.com/jm_logica/

