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ON A PROBLEM OF HAYMAN
By XIN-HOU Hua

I. Introduction

Let f(z) be meromorphic in the complex plane. We will use the following
standard notations of Nevanlinna theory,

T(?’, f): m(r: f): N(”, f)’ N—(ry f), S(r’ f)) o

(see Hayman [3]).
A meromorphic function a(z) is said to be a small function related to f if

T(r, a)=S(r, ).
Hayman [2] proved the following result:

THEOREM A. If k is a positive integer and f(z) is a transcendental mero-
morphic function in the complex plane, then

T, <@+ N (r )+ )N Fmg)+50, ).

Hayman [3, p. 73] asked whether the coefficients of N(r,1/f) and
N(r, 1/f* —1) are best possible, where N(r, 1/f*>—1) is the counting function
of the roots of f**—1=0 in |z|<r, multiple roots been counted once.

Concerning this problem, Frank and Hennekemper [1] proved the following :

THEOREM B. Let f(z) be a meromorphic function which has only simple
poles k=2, ceC\{0}, f=constant and f* —cz£0. Then

2 N
TG, NEN(r, f) FI+ 59N ( f(,,) )+ S, ).
In this paper, we shall prove tho following result:
THEOREM 1. Suppose that f(z) is transcendental and wmeromorphic in the

complex plane, and that k is a positive integer. If p(z) is a nonzero polynomial
or a nonzero constant, then for any ¢>0, we have
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1 1
7 F®=p

Remark. Here S(r, f) depends on ¢>0, but the associated exceptional set
is independent of .

T, NS(1+ 5+ )N (r D) +N(r, sy )50, .

THEOREM 2. Let f(z) be a nonconstant rational function, and let k be a posi-
tive integer. If c=CN{0} and f* —c=0, then we have
1

)+ (r, e )+0W).

T(r, f).—<=N(r, 7 -

2. Some lemmas

In our first lemma we recall some of the basic relations of Nevanlinna
theory.

LEMMA 1 ([3]). Suppose that f and g are nonzero meromorphic functions in
the plane. Then for any positive integer i, we have

m(r, f/)=S(, 1), M
T(r, f)LG+DT(r, H+Sr, ). @)
In addition
f 2\_ 1 1
N(r2)=N(r F)=Ne D+N(r2)-Ne -N(n 7). @)

LEMMA 2 (Steinmetz [4, Theorem 17]). Let the linear differential operator
L(3)=y@+ag-1(2)y @ P+ - as(2)y

have rational coefficients a,, +++, aq-, and let f be a transcendental meromorphic
function in the plane. Then either f is a rational function of a (local) funda-
mental set y,, -+, ¥q of the differential equation L(y)=0 or inequality

m(r, 75) S, LUDHAEDNG, S0, 1)
holds for every 5>0.
LEMMA 3. Suppose that f(z) is meromorphic in C, and that f*(z) is non-
constant. Then for any small function a(z) related to f (a=£0, ), we have
— 1 1
T(r, HSN@, H+N(r, 7;)+N(r, m)

~N(r, e )+ S ).

r, af(k+1)__a/f<k)
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Proof. From the identity

1 1 2 (k+1) k) ky__
ol o e ) )

and Lemma 1 and T(», a)=S(r, f) it follows that

m(r, —1—>§ m( ___f_"’_’:_a_) +S(r, )

f & af(k+l)._a/f(k)

CR+1) __ 47 £(R) CR+1)__ 7 £(R)
af a'f )—I—N(r,af a'f )

f(k)_a f(k)__a

f#r—g
af FD gl f®

e (L2 1) L)) 0, )

= n(r,

~N(r, )5, £)

+N(r,f(T1_a)—N(r, f®—a)=N(r, a—f—(ml_m)
+5(r, 1)
<N(, f)+N(r,Fk)ITé)—N(r, EF’ETI—W)
+S(r, f*)+Sr, ). “4)
Now from (2) we have
S(r, f*)=S(r, f). G

The conclusion follows from (4), (6) and T'(r, f)=m(r, 1/f)+N(r, 1/f)+0().

LEMMA 4. Let t=2 be an arbitrary integer. Suppose that f(z) is trans-
cendental and meromorphic in the complex plane, and that q(z) is a nonzero poly-
nomial. Then for any 7>0 we have

1

Proof. Let h(z) be a solution of the linear differential equation

tNGr, H=N(r, JHA+DNE, H+Sr, -

L(y)=0, 6)
where
L(y)=qy®—q'y*». @

If h¢-Y=£0, then from (6) and (7) we deduce that

h(l)/h(l-l)zq//q .
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Thus there exists a nonzero constant ¢ such that

h¢P=cq,

which gives
h(z)=¢*z),

where ¢*(z) is a polynomial of degree deg (¢)+¢—1.
If h®-Y=0, then h(z) is a polynomial of degree t—2 or less. Let

h(2)=g¢*z), hi)=2z"' (=1, ,t=-1).

Then {A,(z), -+, h(2)} is a (local) fundamental solution set of L(y)=0. Since
f(z) is transcendental, the solutions h;(z) (=1, ---, t) are small functions related
to f. Thus, by Lemma 2, L(f)%0 and

( L(f)) m(r, L )+Q+pN (@, )+S(, 1) @)
It follows form (8) and the first fundamental theorem [3, p. 5] that

N, LUV=T (r. g 5)—mtr, LU0

=N(r g f))+<2+n>N<r, NS, £). ©)
It is easy to verify that
N(r, L(f)=N(r, ¢f P—q'f¢P
2N(r, /)+tN(r, f)—O0(log 7).

Lemma 3 follows from this and (9).

3. Proof of Theorem 1
Applying Lemma 4 to t=~k-+1, p=(ck?®/k+ck+1) and g=p we have

)+(1_EI%)N(1', H+Se, )

N, N(r,

1
pf(k-i-l)__plf(k)

1 1 ek+1
<511V sram )t g repgi T DS . Q)

On the other hand, Lemma 3 gives

1
N=%5

76, <N, NN (34N (r, Fo=p)

1
N(?’, W)—I—S(r, ).
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Combining this with (10) we derive that
T(r, f)g(1+~}le—+s>{N(r, —Jl;)-i—N(r, J«T}__;E)}

¢ 1
~(1= N a5 .
This is what we need.

Remark 1. By a simple calculation and using Example (i) in [3, p. 6] we
can prove Theorem 2.

Remark 2. Since writing this paper I have learned (through Professor
Yuzan He and correspondence) of progress made by Lo Yang, where Yang
proved a result which is similar to Theorem 1 for constant p. I wish to thank
both for their comments.

Acknowledgement. 1 am grateful to Professor Chitai Chuang for his advice
and [ wish to thank the referee for many valuable suggestions.
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