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Abstract

We consider a problem formulated by Marco Buratti concerning Hamiltonian

paths in the complete graph on Zp, p an odd prime.

1 Introduction

Let Kp be the complete graph on p vertices. We will usually take Zp, the cyclic group of
order p, as the set of vertices of Kp. The length of the edge uv, u, v ∈ Kp (or the distance of
u and v) is given by d(u, v) = min(|u−v|, p−|u−v|). Given a path P = (v1, v2, . . . , vm), we
denote the multiset of edge-lengths of P by d(P ): d(P ) = {d(vi, vi+1) : i = 1, 2, . . . , m−1}.

Marco Buratti [1] formulated the following problem:
Let p = 2n + 1 be a prime, let L be any list of 2n elements, each from the set

{1, 2, . . . , n}. Does there exist a Hamiltonian path H in Kp with V (Kp) = Zp such that
the set of edge-lengths of H comprises L? (That is, such that d(H) = L?)

He conjectured that the answer is yes for every list L.
A realization of a list L is a Hamiltonian path (x0, x1, . . . , x2n) on vertices of Zp such

that the (multi)-set of edge-lengths {d(xi, xi+1) : 0, 1, . . . , 2n − 1} equals L. In other
words, Buratti’s conjecture says that every such list L has a realization (or is realizable).

If a list L consists of a1 1’s, a2 2’s, . . . , an n’s, where a1 + a2 + . . . an = 2n, we will use
exponential notation for L and write L = 1a12a2 . . . nan or, alternatively, we will say that L
is of type [a1, a2, . . . , an], or for the sake of brevity, we will write simply L = [a1, a2, . . . , an].

To best of our knowledge, no results on Buratti’s conjecture have been published so
far. However, using a computer, Mariusz Meszka [3] has verified the validity of Buratti’s
conjecture for all primes p ≤ 23.

The problem does not appear to be easy. The purpose of this article is to present some
initial ideas, approaches and results towards the complete solution of Buratti’s conjecture.

One such approach is outlined in Section 2 where certain graphs having lists as vertices,
arranged in lexicographic order, are considered. Some properties of the smallest list
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without a realization, if such exists, are derived. In Section 3 we prove that certain classes
of lists are realizable. In particular, we show that any list where one of the distances occurs
“sufficiently many times” is realizable. We also show that any list consisting of just two
distinct distances is realizable.

The general case of lists with only two distances, that is, when p is any positive integer,
not just a prime, is characterized in Section 4. This characterization is a clear indication
of the complexity of the problem.

2 Graphs on lists

Let p = 2n + 1 be a prime. In what follows we consider lists of 2n elements, each from
{1, 2, . . . , n}.

Let Lp be the set of such lists. Clearly, we have |Lp| =
(

3n−1

n−1

)

. Define the graph Gp as
follows: V (Gp) = Lp. For two lists L, L′ ∈ Lp, L = [a1, a2, . . . , an], L′ = [a1

′, a2
′, . . . , an

′],
{L, L′} ∈ E(Gp) when δ(L, L′) = 1. Here δ(L, L′) = 1

2
Σn

i=1|ai−ai
′| is the distance between

the two lists L, L′ (which coincides with the distance in the graph Gp). In other words,
L and L′ are adjacent in Gp precisely when increasing one of the ais in L by one while
decreasing another by one results in L′.

We may view any realization of L as a permutation x0x1x2 . . . x2n of {0, 1, . . . , 2n}.
Thus there is a totality of (2n + 1)! realizations of various lists L (possibly these are not
all the lists L ∈ Lp).

Given a Hamiltonian path (x0, x1, . . . , x2n), we may delete the edge xixi+1, for i ∈
{0, 1, . . . , 2n − 1}, and replace it with either the edge x0xi+1 or with the edge xix2n

or with the edge x0x2n, obtaining in each case another Hamiltonian path. Any such
replacement will be called an α-transformation. Notice that for i = 0 or i = 2n − 1
the three possibilities reduce to a single one, thus applying α-transformations to any
realization L yields altogether 6n − 4 realizations of (not necessarily distinct) lists.

Furthermore, replacing the Hamiltonian path (x0, x1, . . . , xi, xi+1, . . . , x2n) with the
Hamiltonian path (x0, x1, . . . , xi+1, xi, . . . , x2n) for i ∈ {0, 1, . . . , 2n−1}, that is, perform-
ing an adjacent transposition, will be called a β-transformation.

Define now the graphs Ap and Bp as follows:
The vertices of both, Ap and Bp are all (2n+1)! realizations of lists L = [a1, a2, . . . , a2n].

Two vertices are adjacent in Ap if one can be obtained from the other by an α-transfor-
mation, and are adjacent in Bp if one can be obtained from the other by a β-transformation.

Our first observation follows from a well-known result on generating permutations by
adjacent transpositions (see, e.g., [2]).

Lemma 2.1 The graph Bp is connected.

In fact, Bp is Hamiltonian. Similar statements hold for the graph Ap.

Lemma 2.2 The graph Ap is connected.
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Proof. We need to show that for any two vertices P, P ′ of Ap there is a path in Ap

from P to P ′. Since the graph Bp is connected, there is a path in Bp from P to P ′, say,
P, P1, P2, . . . , Ps, P

′. That is, P and P1 are adjacent in Bp which means that P1 is obtained
from P by a transposition. Let P = (x1, x2, . . . , x2n). If the transposition is (x1, x2) or
(x2n−1, x2n) then P1 may be viewed as obtained from P by an α-transformation, i.e. by
replacing the edge (x2, x3) with (x1, x3) (and similarly, if the transposition is (x2n−1, x2n)).
So assume w.l.o.g that

P = (x1, x2, . . . , xs−1, xs, xs+1, xs+2, . . . , x2n−1, x2n),
P1 = (x1, x2, . . . , xs−1, xs+1, xs, xs+2, . . . , x2n−1, x2n)

where s ∈ {2, 3, . . . , 2n−2} and the transposition is (xs, xs+1). Perform consecutively the
following α-transformations: In P , replace the edge {xs−1xs} with the edge {xs−1x2n} to
obtain the path

M1 = (x1, x2, . . . , xs−1x2nx2n−1, . . . , xs+2, xs+1, xs).
In M1, replace the edge {xs+1, xs+2} with the edge {xs, xs+2} to obtain the path
M2 = (x1, x2, . . . , xs−1, x2n, x2n−1, . . . , xs+2, xs, xs+1).
In M2, replace the edge {xs−1, x2n} with the edge {xs−1, xs+1} to obtain the path
P1 = (x1, x2, . . . , xs−1, xs+1, xs, xs+2, . . . , x2n−1, x2n).
A similar sequence of α-transformations will transform P1 into P2, P2 into P3, . . . , Ps

into P ′, thus there is a path in Ap from P to P ′. 2

The graph Ap
∗, the reduced graph of Ap [the graph Bp

∗, the reduced graph of Bp,
respectively], has as its vertex set the set Lp and is obtained by “contracting” in Ap [in
Bp, respectively] to a single vertex all realizations of a given list L ∈ Lp while suppressing
all loops and multiple edges. Clearly, the graph Ap

∗ is a subgraph of Gp, and both Ap
∗

and Bp
∗ are connected.

Given a list L = [a1, a2, . . . , an], we may assume w.l.o.g. that a1 ≥ ai for i = 2, 3, . . . , n
since p = 2n + 1 is a prime. (Namely, if ak ≥ ai instead for some k and all i 6= k, replace
each i with x.i where x is such that k.x = 1.) Let Gp

∗ (Ap
∗∗ and Bp

∗∗, respectively) be the
subgraph of Gp (the subgraph of Ap

∗, and of Bp
∗, respectively), induced by all vertices L

of Gp (of Ap
∗, and of Bp

∗, respectively) for which a1 ≥ ai, i = 2, 3, . . . , n. Thus the largest
vertex of Gp

∗ in the lexicographic ordering of its elements is L̄ = [2, 2, . . . , 2].

Lemma 2.3 The following are equivalent:

1. Buratti’s conjecture is true.

2. The graph Ap
∗ is a spanning subgraph of Gp.

3. The graph Bp
∗ is a spanning subgraph of K|Lp| where V (K|Lp|) = Lp.

4. The graph Ap
∗∗ is a spanning subgraph of Gp

∗.

5. The graph Bp
∗∗ is a spanning subgraph of Gp

∗.
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So far we are unable to prove any of 2., 3., 4., or 5. above. However, we are able to
say something about the list L∗, the lexicographically smallest (in Gp or in Gp

∗) list for
which there does not exist any realization.

First we prove some lemmas.

Lemma 2.4 Let L ∈ V (Gp
∗) be a vertex adjacent to L̄ = [2, 2, . . . , 2]. Then L has a

realization.

Proof. Given p = 2n + 1, one realization of L̄ = [2, 2, . . . , 2] is (0, 1, 2n, 2, 2n −
1, 3, 2n − 2, . . . , n + 2, n, n + 1). One possible α-transformation that one may perform
consists in replacing one edge of length j ∈ {1, 2, . . . , n − 1} with the edge {0, n + 1} of
length n, resulting in a realization of the list L = [2, 2, . . . , 2, 1, 2, . . . , 2, 3], that is, aj = 1
for some j ∈ {1, 2, . . . , n − 1}, an = 3, and ai = 2 for all other i 6= j. Let now x be
a primitive root of GF (p), and let s be such that xsn = 1. Then since {±xsj : j =
1, 2, . . . , n−1} = {2, 3, . . . , n}, it follows that the set of lists {[a1, a2, . . . , aj, . . . , an] : a1 =
3, aj = 1, ai = 2 for i = 2, 3, . . . , n − 1, i 6= j}, j = 2, 3, . . . , n − 1 is realizable if the
set of lists {[a1, a2, . . . , aj, . . . , an] : aj = 1, an = 3, ai = 2 for i = 1, 2, . . . , n − 1, i 6= j},
j = 1, 2, . . . , n − 1 is realizable. This completes the proof. 2

On the set Lp, let < be the usual lexicographic order.

Lemma 2.5 Let L∗ = [a1
∗, a2

∗, . . . , an
∗] be the lexicographically smallest list in Lp which

has no realization. Let Lp
′ = {L : {L, L∗} ∈ E(Gp), L < L∗}. Then, for a given L ∈ Lp

′,
L = [b1, b2, . . . , bn], we have:

(i) there are br, bs, r < s such that bs − as
∗ = ar

∗ − br = 1 (and bi = ai
∗ for i 6= r, s);

(ii) in any realization of L, say, (0, x1, . . . , x2n−1, x2n), x2n 6= s, 2n + 1 − s;

(iii) if δ(xi, xi+1) = r and xi+1 − xi = r then xi+1 6= s, 2n + 1 − s, but if xi − xi+1 = r
then xi − x2n+1 6= s, 2n + 1 − s.

Proof. (i) follows from the definition of the graph Gp and of Lp
′. (ii) If in a realization

(0, x1, . . . , x2n) of L ∈ Lp
′, x2n = s or x2n = 2n+1−s then an α-transformation consisting

in deleting the edge {xi, xi+1} with δ(xi, xi+1) = s and replacing it with the edge {0, s}
results in a realization of L∗, a contradiction. (iii) If xi+1−xi = r and xi+1 = s then an α-
transformation replacing the edge {xi, xi+1} with the edge {0, xi+1} results in a realization
of L∗, a contradiction, and similarly for the remaining cases. 2

Theorem 2.6 Let L∗ = [a1
∗, a2

∗, . . . , a2n
∗] be the lexicographically smallest list in Lp

∗

which does not have any realization. Then 3 ≤ a1
∗ ≤ 2n − 5.

Proof. The right inequality follows from Corollary 3.3 (see Section 3 below) and the
left one from Lemma 2.4. 2
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3 Realizable lists

In this section, L = {d1
a1 , . . . , dk

ak} will stand for the multiset (list) with elements
d1, . . . , dk such that the element di occurs in L exactly ai times.

A list (multiset) L will be called linearly realizable if there exists a path P on the set
of vertices [1, |L| + 1], P = (v1, . . . , v|L|+1) such that

L = {|vi+1 − vi| : i = 1, . . . , |L|}.
To emphasize the distinction between linearly realizable and realizable lists, we will

sometimes call the (previously defined) realizable lists cyclically realizable.
Clearly, if P is a linear realization of a list L = {d1

a1 , . . . , dk
ak} with max{d1, . . . , dk} ≤

|L|
2

, then P is a cyclic realization of L as well.
Main results of this section are the following four statements.

Theorem 3.1 Let p = 2n + 1, L = {d0
a0 , d1

a1 , . . . , dk
ak}, n ≥ d1 > d2 > .... > dk, and

ai ≤ 2, for i = 1, . . . , k. If a0 ≥ d1 − k + t − r, where t = max{di; i > 0, ai = 2} and
r = |{di; i > 0, ai = 2}|, then L is (cyclically) realizable.

Theorem 3.2 Let p = 2n + 1, and let L = {da, tb}, where d ≤ n, t ≤ n, and a + b = 2n.
Then L is (cyclically) realizable.

Corollary 3.3 Let L = {1a1 , 2a2 , . . . , nan}, and suppose there is j ∈ {1, 2, . . . , n} such
that

∑

1≤i≤n,i 6=j

ai ≤ 4

Then L has a realization.

Theorem 3.4 Let L = {d1
a1 , . . . , dk

ak}. Then there exists an s0 so that for all s ≥ s0

the multiset L′ = L ∪ {1s} is both, linearly and cyclically realizable.

Remark. For the sake of generality we will assume in the proof of Theorem 3.4 that
di 6= 1, i = 1, . . . , k. However, it is easy to see that the proof will hold also in the case
when di = 1 for some i, 1 ≤ i ≤ k. Theorem 3.4 could be reformulated as follows.

Theorem 3.5 Let L = {d1
a1 , d2

a2 , . . . , dk
ak}. Then there exists an s0 such that for all

s ≥ s0, the list L′ = {d1
s, d2

a2 , . . . , dk
ak} is cyclically realizable whenever 1 + s +

∑k

i=2
ai

is relatively prime to d1.

For the sake of brevity, a path from a vertex u to a vertex v will be called a u − v
path.

Definition A set of vertex disjoint paths Pi i = 1, . . . , s, where Pi is a (v+ i)− (w+ i)
path will be called a set of consecutive paths from [v + 1, v + s] to [w + 1, w + s].

Lemma 3.6 Let C be a set of s consecutive paths from [v + 1, v + s] to [w + 1, w + s].
Then there is a path P so that V (P ) =

⋃

T∈C V (T ), E(P ) ⊃
⋃

T∈C E(T ), d(P ) = {1s−1}∪
⋃

T∈C d(T ) so that, for s odd,
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(i) P is a (v + 1) − (w + s) path;

(ii) P is a (w + 1) − (w + s) path and {v + 1, v + 2} is an edge of P .

Proof. To obtain the desired path add to the edges of paths T ′ the following edges
of length 1:

(i) {v + 2, v + 3}, {v + 4, v + 5}, . . . , {v + s− 1, v + s} and {w + 1, w + 2}, {w + 3, w +
4}, . . . , {w + s − 2, w + s − 1};

(ii) {v + 1, v + 2}, {v + 3, v + 4}, . . . , {v + s− 1, v + s} and {w + 2, w + 3}, {w + 4, w +
5}, . . . , {w + s − 2, w + s − 1}. 2

In Fig. 1 and Fig. 2 the previous lemmas are illustrated for s even and s odd,
respectively.

Figure 1

Figure 2

Lemma 3.7 Let L = {da1

1 , . . . , dak

k }, where 1 < d1 < d2 < · · · < dk, and di|ai, for
i = 1, . . . , k. Then for L′ = L ∪ {1dk−1} there exists: (i) for d1, . . . , dk being odd, an
1 − (|L′| + 1) path P which is a linear realization of L′; (ii) for d1, . . . , dk being even, a
(|L′| − dk + 2)− (|L′|+ 1) path P which is a linear realization of L′, and {1, 2} is an edge
of P .

Proof. A path P with the required properties will be constructed successively. By
the (da, v) path we will understand the path T = (v, v + d, v +2d, . . . , v + ad). Obviously,
d(T ) = {da}. Further, set ti = ai

di
. We start with d1 consecutive paths P1, ..., Pd1

, where

Pi is the (d1
t1 , i) path from [1, d1] to [a1 + 1, a1 + d1]. Clearly,

⋃d1

i=1
d(Pi) = {d1

a1} and
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⋃d1

i=1
V (Pi) = [1, a1 +d1]. Now consider d2 consecutive paths P1

′, . . . , Pd2

′, where Pi
′ is the

(dt2
2 , a1 + i) path. It is easy to check that Pi

′s are consecutive paths from [a1 +1, a1 +d2] to

[a1+a2+1, a1+a2+d2] with
d2
⋃

i=1

d(Pi
′) = {d2

a2}, and
d2
⋃

i=1

V (Pi
′) = [a1+1, a1+a2+d2]. Note

that, for i = 1, . . . , d1, the initial vertex of Pi
′ coincides with the terminal vertex of Pi. So

at this stage we have two collections C1, C2 of consecutive paths. The collection C1 contains
d1 paths from [1, d1] to [a1+a2+1, a1+a2+d1], while C2 is a set of d2−d1 consecutive paths
from [a1 + d1 + 1, a1 + d2] to [a1 + a2 + d1 + 1, a1 + a2 + d2]. Formally, C1 = {P1 ∪P1

′, P2 ∪
P2

′, ..., Pd1
∪Pd1

′}, and C2 = {Pd1+1
′, Pd1+2

′, . . . , Pd2

′}. Thus, in aggregate we have d2 vertex

disjoint paths Ti in C1∪C2 with
⋃d2

i=1
d(Ti) = {d1

a1 , d2
a2}, and

d2
⋃

i=1

V (Ti) = [1, a1+a2+d2].

In the same way as above we add now d3 consecutive paths Pi
′′, i = 1, . . . , d3, where Pi

′′ is
a (d3

t3 , i + a1 + a2) path. Thus, P ′′
i s are consecutive paths from [a1 + a2 + 1, a1 + a2 + d3]

to [a1 + a2 + a3 + 1, a1 + a2 + a3 + d3] with
d3
⋃

i=1

d(Pi
′′) = {d3

a3}, and
⋃d3

i=1
V (Pi

′′) =

[a1 +a2 +1, a1 +a2 +a3 +d3]. For i = 1, . . . , d1, the initial vertex of Pi
′′ coincides with the

terminal vertex of a path in the collection C1, and for i = d1 +1, . . . , d2, with the terminal
vertex of a path in the collection C2. At this stage we have three collections C1

′, C2
′, and

C3
′ of consecutive paths Ti in aggregate. The paths in C1

′ and C2
′ have been obtained by

an extension from paths in C1 and C2, respectively. So they have the same initial vertex
as before, their terminal vertices are now in [a1 + a2 + a3 + 1, a1 + a2 + a3 + d1], and in
[a1 +a2 +a3 +d1 +1, a1 +a2 +a3 +d2], respectively. Further, there are d3−d2 consecutive
paths in C3

′ from [a1 +a2 +d2 +1, a1 +a2 +d3] to [a1 +a2 +a3 +d2 +1, a1 +a2 +a3 +d3]. It

is easy to see that
d3
⋃

i=1

d(Ti) = {d1
a1 , d2

a2 , d3
a3}, and

d3
⋃

i=1

V (Ti) = [1, a1 +a2 +a3 +d3]. Thus,

C1
′ = {P1 ∪P1

′ ∪P1
′′, P2 ∪P2

′ ∪P2
′′, . . . , Pd1

∪Pd1

′ ∪Pd1

′′}, C2
′ = {Pd1+1

′ ∪Pd1+1
′′, Pd1+2

′ ∪
Pd1+2

′′, . . . , Pd2

′ ∪ Pd2

′′}, and C3
′ = {Pd2+1

′′, Pd2+2
′′, . . . , Pd3

′′}.
By repeatedly applying the above procedure, we will construct dk vertex-disjoint paths

Ti, i = 1, . . . , dk so that
dk
⋃

i=1

d(Ti) = L, and
dk
⋃

i=1

V (Ti) = [1, a1 + a2 + ... + ak + dk] =

[1, |L| + dk] = [1, |L′| + 1] that can be partitioned into k collections of consecutive paths
C1

∗, C2
∗, . . . , Ck

∗. There are d1, d2−d1, . . . , dk−dk−1 consecutive paths in these collections,
respectively. For each i, the paths in Ci

∗ are consecutive paths from [a1 + · · · + ai−1 +
di−1 + 1, a1 + · · · + ai−1 + di] to [a1 + ... + ak + di−1 + 1, a1 + ... + ak + di]; here we have
set for convenience d0 = a0 = 0. We can describe the given collections of paths formally
as follows: Set α0 = 0 and αi =

∑k

j=1
αj for i = 1, .2, ..., k − 1. For each pair (i, j) with

1 ≤ i ≤ k and 1 ≤ j ≤ di, let Pij be the (di
ti) − (αi−1 + j) path. Then we have

C1
∗ = {

k
⋃

i=1

Pi1,
k
⋃

i=1

Pi2, ...,
k
⋃

i=1

Pi,d1
};

C2
∗ = {

k
⋃

i=2

Pi,d1+1,
k
⋃

i=2

Pi,d1+2, ...,
k
⋃

i=2

Pi,d2
};

. . .
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Ch
∗ = {

k
⋃

i=h

Pi,dh−1+1,
k
⋃

i=h

Pi,dh−1+2, ...,
k
⋃

i=h

Pi,dh
};

. . .
Ck

∗ = {Pk,dk−1+1, Pk,dk−1+2, ..., Pk,dk
}.

Suppose that d1, ..., dk are even. Applying Lemma 3.6 (ii) to collections C1
∗, . . . , Ck

∗

we obtain k paths S1, . . . , Sk so that the initial vertex of S1 is the vertex a1 + · · ·+ak +1,
the initial vertex of Si, i = 2, . . . , k is the vertex consecutive to the terminal vertex of
Si−1, and the terminal vertex of Sk is the vertex a1 + · · · + ak + dk = |L′| + 1. Adding
k − 1 suitable edges of length 1 results in the sought path P .

Let now d1, ..., dk be odd. Applying Lemma 3.6(i) to the collection of paths in C1
∗,

and Lemma 3.6(ii) to the collections C2
∗, . . . , Ck

∗ we obtain k paths S1, . . . , Sk so that
the initial vertex of S1 is the vertex 1, the initial vertex of Si, i = 2, . . . , k, is the vertex
consecutive to the terminal vertex of Si−1, and the terminal vertex of Sk is the vertex
a1 + · · ·+ak +dk = |L′|+1. Adding k− 1 edges of length 1 results in a sought path P . 2

The construction used in the above proof can be utilized to extend the result of Lemma
3.7 to a more general case.

Lemma 3.8 Let L = {1d−1, da}, a = qd + r, 0 ≤ r < d, where a ≥ d, and for d odd, r
is even. Then there is a path P with terminal vertex |L| + 1 which is a linear realization
of L.

Proof. Let a = qd + r, 0 ≤ r < d. Construct d paths Pi, i = 1, . . . , d, so that,
for i = 1, . . . , r, the path Pi is the (dq+1, i) path, and for i = r + 1, ..., d the path Pi

is the (dq, i) path. For r = 0 it suffices to apply Lemma 3.7 with k = 1. Otherwise,
C ′ = {Pi; i = 1, . . . , r} is a set of consecutive paths from [1, r] to [a + d− r + 1, a + d], and
C ′′ = {Pi; i = r + 1, . . . , d} is a set of consecutive paths from [r + 1, d] to [a + 1, a + d− r].

Now we are going to consider three cases. For both d and a even, C ′ and C ′′ have
an even number of paths. Applying Lemma 3.6(ii) to both C ′ and C ′′ we obtain an
(a+ d− r +1)− (a+ d) path P ′ which contains the edge {1, 2} and a (a+1)− (a+ d− r)
path P ′′. Clearly the path P with E(P ) = E(P ′)∪E(P ′′)∪ {a + d− r, a + d− r + 1} has
the required properties. For a odd, to construct the path P it suffices to construct the
path P for a− 1 and then to extend it with the edge {a, a + d}. For d odd and r even C ′

contains an even number of paths while C ′′ contains an odd number of paths. Applying
Lemma 3.6(ii) to C ′ and Lemma 3.6(i) to C ′′ we obtain a (a+d− r +1)− (a+d)) path P ′

and (r + 1)− (a + d− r) path P ′′. Thus the initial vertex of P ′ is a vertex consecutive to
the terminal vertex of P ′′ and the terminal vertex of P ′ is the last vertex a + d. Adding
the edge (u, v) of length 1 results in a desired path. 2

Lemma 3.9 Let L = {d1
a1 , . . . , dk

ak}, where ai, di are even, 1 < d1 < d2 < · · · < dk, and
di ≤ ai, for i = 1, . . . , k. Set L′ = L∪ {1dk−1}. Then there exists a (|L′| − dk)− (|L′|+ 1)
path P which is a linear realization of L′, and {1, 2} is an edge of P .

Proof. For i = 1, ..., k let ai = qidi + ri, where 0 ≤ ri < di. First we construct d1

paths Pi, i = 1, . . . , d1, each of them a (d1
x, i) path where x = q1 + 1 for i = 1, . . . , r1,

and x = q1 otherwise. As in the proof of Lemma 3.7, the paths Pi form either one, for
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r1 = 0, or two sets of consecutive paths of even cardinality, for r1 > 0. Now we construct
d2 paths Pi

′, so that P ′
i is a (d2

x, a1 + i) path, where x = q2 + 1 for i = 1, . . . , r2, and
x = q2 otherwise. Clearly, for i = 1, . . . , d1, the initial vertex of the path Pi

′ coincides with
the terminal vertex of a path Pj for some j ∈ [1, d1]. At this moment we have d2 vertex

disjoint paths Ti so that
⋃d2

i=1
V (Ti) = [1, a1 + a2 + d2], and

⋃d2

i=1
d(Ti) = {d1

a1 , d2
a2}.

Further,with respect to r1 and r2, the paths Ti form either 2, or 3, or 4 sets of consecutive
paths, so that each set contains an even number of paths. We consider d3 paths Pi

′′, each
of them a (d3

x, a1 + a2 + i) path where x = q3 + 1 for i = 1, . . . , r3, and x = q3 otherwise.
The initial vertex of the first d2 paths Pi

′′ coincides with the terminal vertex of a path Ti.
So at this moment we have d3 paths Ti

′ that form, with respect to the values of r1, r2, and
r3 between 3 and 6 sets of consecutive paths, each having an even number of elements.
By repeatedly applying the above procedure we will obtain a set of dk paths Si so that
⋃dk

i=1
V (Si) = [1, a1 + · · · + ak + dk], and

⋃dk

i=1
d(Ti) = {d1

a1 , d2
a2 , . . . , dk

ak}. These dk

paths can be partitioned into m, k ≤ m ≤ 2k, sets Ci of consecutive paths, each having
an even number of paths. The union of the terminal vertices of paths in Cis is the interval
[a1 + ... + ak, a1 + ... + ak + dk]. Applying Lemma 3.6(ii) to each set Ci of paths results
in obtaining paths Ti, i = 1, ..., m, so that the terminal vertex of Ti is followed by the
initial vertex of the path Ti+1, for i = 1, ..., m − 1, and the terminal vertex of Tm is the
last vertex |L′| + 1. Adding the needed edges of length 1 leads to the required path T .
As the total number of paths in the sets Cis is dk, we used in aggregate dk − 1 edges of
length 1 to construct the path T . 2

Lemma 3.10 Let L = {1d−1, da}, where a ≤ d. (i) For a odd, there is a (|L|)− (|L|+ 1)
path P which is a linear realization of L, and {1, 2} is an edge of P ; (ii) for a even, there
is an (|L| − d + 2) − (|L| + 1) path P which is a linear realization of L, and {1, 2} is an
edge of P . That is, the terminal vertex of P is the last vertex of V (P ).

Proof. Let a be odd. Take a edges {i, i + d}, i = 1, ..., a of length d. By adding a− 2
edges {1, 2}, {3, 4}, {5, 6}, . . . , {a−2, a−1}, {d+2, d+3}, {d+4, d+5}, . . . , {d+a−3, d+
a− 2} and the edges of the path S = (a, a + 1, a + 2, ..., d− 1, d, d + 1) we get the desired
path P . Now, let a be even. Remove from the path P constructed for L = {1d−1, da+1}
the edge {a + 1, a + d + 1}. The resulting path has the required properties. 2

Lemma 3.11 For i = 1, 2, let Li be a multiset and each Pi be a (|Li|) − (|Li| + 1) path,
which is a linear realization of Li, and let {1, 2} be an edge of Pi. Set L = L1 ∪L2 −{11}.
Then there is a (|L|) − (|L| + 1) path P which is a linear realization of L, and {1, 2} is
an edge of P .

Proof. To obtain the desired path remove the edge {1, 2} from P2 and shift the other
edges of P2 to the right by |L1|. Note that the original vertices 1, 2 of P2 will be identified
with the endvertices of P1. 2

Lemma 3.12 Let L = {d1
a1 , . . . , dk

ak}, where di > 1, ai are odd, and ai ≤ di for i =
1, . . . , k. Then there is a (|L′|) − (|L′| + 1)path P that is a linear realization of L′ = L∪
{1s}, s ≥ d1 + d2 + · · · + dk − 2k + 1, and {1, 2} is an edge of P .

the electronic journal of combinatorics 16 (2009), #R20 9



Proof. We obtain the desired path by repeatedly using Lemma 3.11 and Lemma
3.10(i). 2

Lemma 3.13 Let L = {1s, d1
a1 , . . . , dk

ak}, where s = d1 − k, d1 > d2 > · · · > dk > 1,
and a1 = · · · = ak = 1. Then there is a path P which is a linear realization of L so that
1 is the initial vertex of P .

Proof. Let us define, iteratively, k paths P1, ..., Pk according to the following rules.
For convenience we set dk+1 = 0. Set P0 = (1), i.e., P0 is a path of length 0. Suppose
that Pi−1, i − 1 ≥ 0, has been already constructed. Then Pi is obtained from Pi−1 by
extending Pi−1 first by an edge of length di followed by di − di+1 − 1 edges of length 1.
More precisely, let v be the terminal vertex of Pi−1. Then, for i odd, we extend Pi−1 by
the edge v, v + di, followed by di − di+1 − 1 edges {v + di − j, v + di − j − 1} of length 1,
for j = 0, 1, . . . , di − di+1 − 2; for i even, by the edge {v, v − di}, followed by di − di+1 − 1
edges {v − di + j, v + di + j + 1} of length 1, for j = 0, 1, . . . , di − di+1 − 2. Then the
required path P is P = Pk 2

Proof of Theorem 3.1 First of all, since p = 2n + 1 is a prime, we may assume
w.l.o.g. that d0 = 1. By Lemma 3.13, there is a path P1 that is a linear realization of
L1 = {1d1−k, d1

1, . . . , dk
1}, so that |L1|+1 is the initial vertex of P1. By the same lemma,

there is a path P2 that is a linear realization of L2 = {1s, d1
b1 , ..., dk

bk}, where s = t − r,
bi = ai − 1, and the vertex 1 is the initial vertex of P2. Clearly, the total number of edges
of length 1 in P1 and P2 is m = d1 − k + t − r ≥ 2d1 − k. To obtain a path P that is a
linear realization of L it suffices to take the path P1 followed by a path of length a0 − m
consisting of edges of length 1 which is in turn followed by path P2. As V (P ) = [1, 2n+1]
and the longest edge of P has length at most n, the path P is a (cyclic) realization of L
as well. 2

Fig. 3 illustrates the proof of the previous theorem for L = {18, 71, 42, 31, 22} as well
as the proof of Lemma 3.13 for L1 = {13, 71, 41, 31, 21} and L2 = {12, 41, 21}.

Figure 3

Proof of Theorem 3.2 W.l.o.g. we assume that b ≥ a. As p is a prime number, we
may further assume that t = 1. Let a = pd + r, 0 ≤ r < d. First we consider the case
where a ≤ d or a > d and in case d is odd then r is even. Then, by Lemma 3.10 or by
Lemma 3.8 there is a path P that is a linear realization of L′ = {1d−1, da} so that the
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endvertex of P is the last vertex of [1, |L′| + 1]. Adding t − d + 1 edges of length 1 from
the terminal vertex of P results in a desired path.

So we are left with the case a > d, d odd and r odd. Construct d paths as in the proof
of Lemma 3.8. Then C ′ = {Pi; i = 1, . . . , r} is a set of consecutive paths from [1, r] to
[a + d − r + 1, a + d], and C ′′ = {Pi; i = r + 1, . . . , d} is a set of consecutive paths from
[r + 1, d] to [a + 1, a + d − r]. Applying Lemma 3.6(i), we get a 1 − (a + d) path P ′. By
adding the edges {a+d, a+d+1}, {a+d+1, a+d+2}, . . . , {q− 2, q− 1}, {q− 1, q}, and
{1, q} we obtain a cycle C containing the path P ′. Further, by Lemma 3.6(ii), there is a
path P ′′ with a − d + r as its terminal vertex. To obtain the desired path P we remove
from C the edge {a+d−r+1, a+d−r+2} and finally add the edge {a+d−r, a+d−r+1}.
2

Remark. Note that in the above proof, as well as in the proof of Lemma 3.8, we used
only the fact that (t, p) = 1 but we have not used the fact that (d, p) = 1 nor that p is a
prime.

Proof of Corollary 3.3 Since p = 2n + 1 is a prime, we may assume w.l.o.g. that
j = 1. The statement then says that if L is a partition of 2n containing at most s ≤ 4
non-ones then L has a realization. This is obvious if s = 0 or s = 1; if s = 2 then
the statement follows either from Theorem 3.1, if there is i > 1 so that ai = 2, or from
Lemma 3.13 if there are 1 < i < k so that ai = ak = 1. For s = 3, the statement follows
either from Lemma 3.13, if there are 1 < i < k < t so that ai = ak = at = 1, or from
Theorem 3.1, if there are 1 < i, k so that a1 + ak = 3 or from Lemma 3.8, if there is
i > 1, ai = 3. When s = 4, then the only case in which the statement does not follow
from either Theorem 3.1, or Lemma 3.8, or Lemma 3.13, is when there are two indices
i, k ∈ {2, 3, . . . , n} such that ai = 3 and ak = 1. We consider this case next.

If i = 2 (and k ∈ {3, 4, . . . , n}), i.e., there are three 2’s in L, then e.g. the following
hamiltonian path is a realization of L:

(0, k, k + 1, k + 2, . . . , 2n − 1, 2n, 1, 2, 4, 3, 5, 6, 7, . . . , k − 2, k − 1).
If i = 3 and k ∈ {4, 5, . . . , n} then e.g. the hamiltonian path

(0, 3, k + 3, k + 2, . . . , 5, 4, 1, 2, 2n, 2n− 1, . . . , k + 5, k + 4),
while if i = 3 and k = 2 then e.g. the hamiltonian path

(0, 3, 5, 6, . . . , 2n − 1, 2n, 2, 1, 4).
is a realization of L.

When i ≥ 4 and k ≥ i + 4, then e.g. the hamiltonian path
(k+3, k+4, . . . , 2n−1, 2n, 0, i, i−1, . . . , 4, 3, i+3, i+4, . . . , k+1, k+2, 2, 1, i+1, i+2),

when i ≥ 4 and 3 ≤ k ≤ i + 3, then e.g. the hamiltonian path
(i+2, 1+1, 1, 2, 2n−k+3, 2n−k+4, . . . , 2n, 0, 5, 4, 3, i+3, i+4, . . . , 2n−k+1, 2n−k+2),

and finally, when i ≥ 4 and k = 2, then e.g. the hamiltonian path
(i + 2, i + 1, 1, 0, i, i− 1, . . . , 4, 2, 3, i + 3, i + 4, . . . , 2n − 1, 2n)

is a realization of L.
This completes the proof of the Corollary. 2

We will deal now with the case when L contains at least two distances greater than 1.
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Proof of Theorem 3.4 By using lemmas proved above, a sought path P can be
constructed in several ways. Each of them will require a different number of edges of
length 1. The optimal way depends on the individual values of di, and ai. The construction
described here is only one of the possible ways to obtain P . First we partition L into
four parts L1, L2, L3, L4. Let da ∈ L. For d even, if a ≥ d and a even, then da ∈ L2; for
a ≥ d, a odd, we put da−1 ∈ L2 and d1 ∈ L4; for a < d and a odd, da ∈ L1, for a < d, a
even, we put da−1 ∈ L1 and d1 ∈ L4. Now we consider d odd. For a < d we have: if a
is odd, then da ∈ L1, for a even, we put da−1 ∈ L1 and d1 ∈ L4. Finally, let a ≥ d, and
a = qd + r, where 0 ≤ r < d. For r = 0 it is da ∈ L3, for r odd we have dqd ∈ L3 and
dr ∈ L1, for r > 0, r even, it is dqd ∈ L3 and dr−1 ∈ L1, and d1 ∈ L4. In this way every
da ∈ L1 has a < d and a odd; every da ∈ L2 has both d and a even and a ≥ d; every
da ∈ L3 has d a divisor of a; every da ∈ L1 has a = 1.

By Lemma 3.12 there is a (|L′|) − (|L′| + 1) path P1 which is a linear realization of
L1

′ = L1 ∪ {1s1}, the value of s1 given in the lemma. Further, by Lemma 3.9, there is a
path P2 that is a linear realization of L2

′ = L2 ∪{1s2}, the value of s2 given in the lemma,
so that {1, 2} is an edge of P2, and |L2

′|+ 1 is a terminal vertex of P2. Applying Lemma
3.11 we obtain a (|L′

1| + |L2
′|) − (|L′

1| + |L2
′| + 1) path T which is a linear realization

of L1
′ ∪ L2

′ − {1}. Let P3 be a 1 − (|L3
′| + 1) path which is a linear realization of

L3
′ = L3 ∪ {1s3}, cf. Lemma 3.7, where the value of s3 is given as well.
Let P3

′ be the path obtainable by shifting P3 to the right by |L1
′| + |L2

′|. Thus the
endvertex of T coincides with the initial vertex of P3

′. Then resulting path T ′ := T ∪P3
′ is

a (|L1
′|+|L2

′|)−(|L1
′|+|L2

′|+1) that is a linear realization of L1
′∪L2

′∪L3
′−{1}. Finally,

let L4 = {t1
1, . . . , tm

1}, t1 > · · · > tm, and let P4 be a linear realization of L4
′ ∪ {1s4},

where s4 = t1 − m so that 1 is the initial vertex of P4, cf. Lemma 3.13.
Let s ≥ s0 := s1 + s2 + s3 + s4 − 1 and let P4

′ be the path obtainable by shifting P4

to the right by |L1
′| + |L2

′| + |L3
′| + s − s0. To obtain a path that is a linear realization

of L ∪ {1s} it suffices to insert s − s0 edges of length 1 between the terminal vertex of T ′

and the initial vertex of P4
′.

Identifying the terminal vertex of T ′ with the initial vertex of P4 results in a path
P that is a linear realization of L1

′ ∪ L2
′ ∪ L3

′ ∪ L4
′ − {1} = L ∪ {1s0}, where s0 =

s1 + s2 + s3 + s4 − 1. To obtain a path that is a linear realization of L ∪ {1s} for s ≥ s0

it suffices to insert s − s0 edges of length 1 in between the terminal vertex of T ′ and the
initial vertex of P4

′.
As mentioned above, a linear realization of L is a cyclic realization of L if and only if

d = max{di, i = 1, . . . , k} ≤ |L|
2

. If the condition is not satisfied, we only need to make
s0 sufficiently large.

Remark. To get an explicit bound on s0 in terms of d′s and a′s, one only needs to
refer to lemmas used in the proof of the previous theorem.

4 Two lengths in the general case

In this section, the number of vertices is no longer assumed to be prime (nor an odd
number, for that matter). In such a general setting, it appears that the problem is even
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more difficult than the original Buratti’s conjecture.
The following theorem is an extension of Theorem 3.2.

Theorem 4.1 Let q, d, t be natural numbers, and let L = {da, tb} be a multiset where
a + b = q − 1, d, t ≤ q

2
. Then L is (cyclically) realizable if and only if (q, d, t) = 1 and

(t, q) − 1 ≤ a ≤ q − (d, q) (which is equivalent to (d, q) − 1 ≤ b ≤ q − (t, q)).

Proof. We start with the necessity part of the statement. Let P = (x0 x1 ... xq−1)
be a hamiltonian path which is a realization of L. Suppose at first that (q, d, t) = r > 1.
Then, for each vertex xi of P , we would have xi = x0 (mod r), which is a contradiction.
Therefore (d, t, q) = 1.

If (d, q) = 1 then the upper bound on a (and the lower bound on b) is trivial. Assume
now that (d, q) = r > 1 and a > q − (d, q) = q − r. Then b ≤ r − 2, that is, there are in
P at most r − 2 edges of length t.

If the edges of length t are removed from P , then P splits into at most r − 1 paths.
As the total number of edges is q− 1, at least one of these parts, say the part T , contains
at least q−1

r−1
< q

r
edges. However, all these edges are of length d and therefore T has to

contain a cycle, a contradiction. So we have proved that a ≤ q − (d, q), which in turn
implies, as a + b = q − 1, that (d, q) − 1 ≤ b. This completes the proof of the necessity
part.

The following obvious claim will provide the key ingredient to show that the condition
is sufficient as well. As this claim is a part of graph theory folklore we omit its proof.

Claim. Let G = Pm × Pk, that is, let G be the Cartesian product of the paths with
m and k vertices, respectively, and let the set {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ k} be the
vertex set of G. Then there is a hamiltonian path in G with v vertical edges for every v,
m − 1 ≤ v ≤ k.m − k.

Now we are ready to prove the sufficiency part. Assume first that (d, t) = m > 1.
Then, with regard to the automorphism φ : Zq → Zq, where φ(m) = 1, it suffices to prove
that L′ = {( d

m

a
, t

m
)b} is cyclically realizable. Therefore, from now on, we assume that

(d, t) = 1. Let (d, q) = (t, q) = 1 as well, and let, w.l.o.g., a ≥ b. With respect to the
automorphism φ : Zq → Zq, where φ(d) = 1, we need to prove that L′ = (1a, φ(t)b) is
cyclically realizable. However, this case is covered by Theorem 3.2.

So we are left with the case (d, q)+ (t, q) > 2. W.l.o.g. we may assume (d, q) = r > 1.
Let R be the r× q

r
rectangular grid with vertices {(i, j) : 1 ≤ i ≤ r, 1 ≤ j ≤ q

r
}. Assign to

each vertex of the grid the label l(i, j) = (i−1)t+(j−1)d (mod q). Clearly, {l(i, j)} = Zq

as we have (d, t) = 1. It is easy to see that the labels l(i, j) of each row are elements of
an orbit of the automorphism φ of Zq, φ(d) = 1.

Now consider the graph G = Pr × P q

r
, the Cartesian product of two paths on the grid

R. Clearly, for each horizontal edge {u, v} we have min|l(u) − l(v)|, q − |l(u)− l(v)| = d,
and for each vertical edge {u, v} we have min|l(u)− l(v)|, q− |l(u)− l(v)| = t. Therefore,
to prove that the multiset M = {da, tb} is cyclically realizable it is sufficient to find a
hamiltonian path in G which contains exactly b vertical edges (and thus necessarily a
horizontal edges). By the above Claim G contains a hamiltonian path with b vertical
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edges, that is, edges of length t, for each

b ∈ [r − 1, q −
q

r
] (1).

So all that is left to be shown is that there is a hamiltonian path in G with b ∈
[q − q

r
+ 1, q − (t, q)]. Note, that (d, t) = 1 implies b ∈ [q − q

r
≤ q − (d, q)]. Consider

two cases. First, let (t, q) = 1. Then we must have b ≥ a, as otherwise we would have
a + b > 2(q − q

r
+ 1) > q − 1, a contradiction.

The proof in this case follows from the remark after Theorem 3.2.
Finally, let (t, q) = s > 1. Then by the above Claim there is a hamiltonian path with

a edges of length d for each a ∈ [s − 1, q − q

s
]. As a + b = q − 1, this in turn implies that

there is a hamiltonian path in G with b edges of length t for each

b ∈ [q − 1 − (q −
q

s
), q − 1 − (s − 1)] = [

q

s
− 1, q − s] (2).

Comparing (1) and (2) completes the proof of the sufficiency part since q

s
≤ q − q

r
, i.e.

1

s
+ 1

r
≤ 1 holds for all s, r > 1. 2

5 Final remarks

Buratti’s conjecture claims that if p = 2n+1 is a prime then every list L = {d1
a1 , d2

a2 , . . . ,
dk

ak}, where
∑k

i=1
ai = 2n, is realizable. We believe that the property of p being a prime

is not necessary for the validity of Buratti’s conjecture, and that it can be replaced by a
weaker condition (p, di) = 1 for i = 1, . . . , k. However, the weaker condition is still rather
restrictive. One would like to know, given a general number q, which lists of cardinality
q−1 are realizable. The treatment of the general case of two lengths in Section 4 and some
additional experimental evidence suggests the following extension of Buratti’s conjecture:

Conjecture. Let L = {d1
a1 , d2

a2 , . . . , dk
ak}, |M | = q − 1. Then L is realizable if and

only for each subset J ⊆ [1, k],
∑

j∈J aj ≥ r − 1 where r is the greatest common divisor
of the numbers in the set {q} ∪ {ai : 1 ≤ i ≤ k, i /∈ J}. That is, for each subset J of the
index set [1, k], the sum of ajs must be at least as large as the g.c.d.(AJ) − 1 where AJ

contains q and all ais that are not in J .
The necessity of the above conditions can be shown in the same way as the necessity

of conditions in Theorem 4.1.
Note also that in the Conjecture, if J = [1, k] then the above condition will read

∑k

i=1
ai ≥ q − 1.

It is not difficult to see that for k = 2 the above conditions reduce to the conditions
of Theorem 1.

The Conjecture has been verified for all n ≤ 18 [3]. As for the original Buratti’s
conjecture, which has been verified for all primes p ≤ 23, numerical evidence gathered by
Meszka [3] for all realizations of all lists in the case of primes p ≤ 13 suggests that, roughly,
the larger the number of non-zero frequencies of distances and the more uniform their
distribution, the larger the number of corresponding realizations. The minimum number
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of realizations is attained for the list containing only one distance, while apparently the
list with the largest number of realizations is the list where each possible distance occurs
exactly twice.
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