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ON A PROBLEM OF PILLAI WITH k-GENERALIZED FIBONACCI

NUMBERS AND POWERS OF 2

MAHADI DDAMULIRA, CARLOS A. GÓMEZ AND FLORIAN LUCA

Abstract. For an integer k ≥ 2, let {F
(k)
n }n≥0 be the k–generalized Fibonacci se-

quence which starts with 0, . . . , 0, 1 (k terms) and each term afterwards is the sum of
the k preceding terms. In this paper, we find all integers c having at least two repre-
sentations as a difference between a k–generalized Fibonacci number and a powers of
2 for any fixed k > 4. This paper extends previous work from [9] for the case k = 2
and [6] for the case k = 3.

1. Introduction

A perfect power is a positive integer of the form ax where a > 1 and x ≥ 2 are integers.
Pillai wrote several papers on these numbers. In 1936 and again in 1945 (see [16], [17]),
he conjectured that for any given integer c ≥ 1, the number of positive integer solutions
(a, b, x, y), with x ≥ 2 and y ≥ 2, to the Diophantine equation

(1) ax − by = c,

is finite. This conjecture, which is still open for all c 6= 1, amounts to saying that the
distance between two consecutive terms in the sequence of all perfect powers tends to
infinity. The case c = 1 is Catalan’s conjecture which states that the only solution in
positive integers to (1) for a, b > 0, x, y > 1 is x = 2, a = 3, y = 3, b = 2. This conjecture
was proved by Mihăilescu [5].

Pillai’s problem was continued in 1936 by Herschfeld (see [13], [14]) who showed that if
c is an integer with sufficiently large absolute value, then the equation (1), in the special
case (a, b) = (3, 2), has at most one solution (x, y). For small |c| this is not the case. Pillai
(see [16], [17]) extended Herschfeld’s result to the more general exponential Diophantine
equation (1) with fixed integers a, b, c with gcd(a, b) = 1 and a > b ≥ 1. Specifically, Pillai
showed that there exists a positive integer c0(a, b) such that, for |c| > c0(a, b), equation
(1) has at most one integer solution (x, y).

Recently, Ddamulira, Luca and Rakotomalala [9] considered the Diophantine equation

(2) Fn − 2m = c,

where c is a fixed integer and {Fn}n>0 is the sequence of Fibonacci numbers given by
F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n > 0. This type of equation can be
seen as a variation of Pillai’s equation. Ddamulira et.al. proved that the only integers
c having at least two representations of the form Fn − 2m are contained in the set C =
{0,−1, 1,−3, 5,−11,−30, 85}. Moreover, they computed for each c ∈ C all representations
of the from (2).
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Bravo, Luca and Yazán [6] considered the Diophantine equation

(3) Tn − 2m = c,

where c is a fixed integer and {Tn}n>0 is the sequence of Tribonacci numbers given by
T0 = 0, T1 = 1, T2 = 1 and Tn+3 = Tn+2 +Tn+1 +Tn for all n > 0. In their paper, Bravo
et. al. proved that the only integers c having at least two representations of the form
Tn − 2m are contained in the set C = {0,−1,−3, 5,−8}. In fact, each c ∈ C has exactly
two representations of the from (3).

In the same spirit, Chim, Pink and Ziegler [7] considered the Diophantine equation

(4) Fn − Tm = c,

where c is a fixed integer. They proved that the only integers c having at least two
representations of the form Fn − Tm are contained in the set

C = {0, 1,−1,−2,−3, 4,−5, 6, 8,−10, 11,−11,−22,−23,−41,−60,−271}.

In particular, they computed for each c ∈ C all representations of the from (4), showing
that each c ∈ C has at most four representations.

The purpose of this paper is to generalize the previous results corresponding to (2) and
(3). Let k > 2 be an integer. We consider a generalization of Fibonacci sequence called

the k–generalized Fibonacci sequence {F
(k)
n }n>2−k defined as

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k,(5)

with the initial conditions

F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 and F

(k)
1 = 1.

We call F
(k)
n the nth k–generalized Fibonacci number. Note that when k = 2, it is the

classical Fibonacci number (nth term, which is denoted by Fn here for simplicity) and
when k = 3 it is the Tribonacci number.

The first direct observation is that the first k + 1 nonzero terms in F
(k)
n are powers of

2, namely

F
(k)
1 = 1, F

(k)
2 = 1, F

(k)
3 = 2, F

(k)
4 = 4, . . . , F

(k)
k+1 = 2k−1,

while the next term in the above sequence is F
(k)
k+2 = 2k − 1. Thus, we have that

F (k)
n = 2n−2 holds for all 2 ≤ n ≤ k + 1.(6)

We also observe that the recursion (5) implies the three–term recursion

F (k)
n = 2F

(k)
n−1 − F

(k)
n−k−1 for all n ≥ 3,(7)

which shows that the k–Fibonacci sequence grows at a rate less than 2n−2. In fact, the

inequality F
(k)
n < 2n−2 holds for all n ≥ k + 2 (see [3], Lemma 2).

In this paper, we find all integers c admitting at least two representations of the form

F
(k)
n − 2m for some positive integers k, n and m. This can be interpreted as solving the

equation

F (k)
n − 2m = F (k)

n1
− 2m1 (= c)(8)

with (n,m) 6= (n1,m1). As we already mentioned, the cases k = 2 and k = 3 have been
solved completely by Ddamulira, Luca and Rakotomalala [9] and Bravo, Luca and Yazán
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[6], respectively. So, we focus on the case k > 4.

We prove the following theorem:

Theorem 1. Assume that k ≥ 4. Then equation (8) with n > n1 ≥ 2, m > m1 ≥ 0 has

the following families of solutions (c, n,m, n1,m1).

(i) In the range 2 ≤ n1 < n ≤ k + 1, we have the following solution:

(0, s, s− 2, t, t− 2) for 2 ≤ t < s ≤ k + 1.

(ii) In the ranges 2 ≤ n1 ≤ k + 1 and k + 2 ≤ n ≤ 2k + 2, we have the following

solutions:

(a) when n1 = n− 1:
(

2k−1 − 1, k + 2, k − 1, k + 1, 0
)

(b) when n1 < n− 1:
(

2γ − 2ρ, k + 2a − 2b, k + 2a − 2b − 2, γ + 2, ρ
)

,

with γ = b−3+2a−2b and ρ = a−3+2a−2b, where a > b ≥ 0, (a, b) 6= (1, 0)
and γ + 3 ≤ k + 2.

(iii) In the range k + 2 ≤ n1 < n ≤ 2k + 2, we have the following solutions: if the

integer a is maximal such that 2a ≤ k + 2 satisfies a+ 2a = k + 1 + 2b for some

positive integer b, then

(−2a+2a−3, k + 2a, k + 2a − 2, k + 2b, b+ 2b − 3).

(iv) If n = 2k + 3, and additionally k = 2t − 3 for some integer t ≥ 3, then:

(1− 2t+2t−3, 2t+1 − 3, 2t+1 − 5, 2, t+ 2t − 3).

Equation (8) has no solutions with n > 2k + 3.

2. Preliminary Results

Here, we recall some of the facts and properties of the k−generalized Fibonacci se-
quence which will be used later in this paper. It is known that the characteristic polyno-

mial of the k–generalized Fibonacci numbers F (k) := {F
(k)
n }n≥0, namely

Ψk(x) := xk − xk−1 − · · · − x− 1,

is irreducible over Q[x] and has just one root outside the unit circle. Let α := α(k) denote
that single root, which is located between 2

(

1− 2−k
)

and 2 (see [10]). To simplify
notation, in our application we shall omit the dependence on k of α. We shall use
α(1), . . . , α(k) for all roots of Ψk(x) with the convention that α(1) := α.

We now consider for an integer k ≥ 2, the function

fk(z) =
z − 1

2 + (k + 1)(z − 2)
for z ∈ C.(9)

With this notation, Dresden and Du presented in [10] the following “Binet–like” formula
for the terms of F (k):

F (k)
n =

k
∑

i=1

fk(α
(i))α(i)n−1

.(10)
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It was proved in [10] that the contribution of the roots which are inside the unit circle to
the formula (10) is very small, namely that the approximation

(11)
∣

∣

∣
F (k)
n − fk(α)α

n−1
∣

∣

∣
<

1

2
holds for all n > 2− k.

When k = 2, one can easily prove by induction that

αn−2 ≤ Fn ≤ αn−1 for all n ≥ 1.(12)

It was proved by Bravo and Luca in [3] that

αn−2 ≤ F (k)
n ≤ αn−1 holds for all n ≥ 1 and k ≥ 2,(13)

which shows that (12) holds for the k–generalized Fibonacci numbers as well. The obser-
vations made from the expressions (10) to (13) enable us to call α the dominant root of
F (k).

In order to prove our main result Theorem 1, we need to use several times a Baker
type lower bound for a nonzero linear form in logarithms of algebraic numbers and such
a bound, which plays an important role in this paper, was given by Matveev [15]. There
are other explicit lower bounds for linear forms in logarithms of algebraic numbers in the
literature, like that by Baker and Wüstholz in [2], for example. We begin by recalling
some basic notions from algebraic number theory.

Let η be an algebraic number of degree d with minimal primitive polynomial over the
integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d
∏

i=1

(x− η(i)),

where the leading coefficient a0 is positive and the η(i)’s are the conjugates of η. Then
the logarithmic height of η is given by

h(η) :=
1

d

(

log a0 +

d
∑

i=1

log
(

max{|η(i)|, 1}
)

)

.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then
h(η) = logmax{|p|, q}. The following are some of the properties of the logarithmic height
function h(·), which will be used in the next sections of this paper without reference:

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ),(14)

h(ηs) = |s|h(η) (s ∈ Z).

With the previous notation, Matveev [15] proved the following theorem, which is our
main tool in this paper.

Theorem 2. Let γ1, . . . , γt be positive real algebraic numbers in a real algebraic number

field K of degree D, b1, . . . , bt be nonzero integers, and let

Λ := γb1
1 · · · γbt

t − 1,

be nonzero. Then

log |Λ| > −1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At,

where

B ≥ max{|b1|, . . . , |bt|},
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and

Ai ≥ max{Dh(γi), | log γi|, 0.16}, for all i = 1, . . . , t.

During the course of our calculations, we get some upper bounds on our variables
which are too large, thus we need to reduce them. To do so, we use some results from
the theory of continued fractions. Specifically, for a nonhomogeneous linear forms in two
integer variables, we use a slight variation of a result due to Dujella and Pethő [11], which
itself is a generalization of a result of Baker and Davenport [1].

For a real number X , we write ||X || := min{|X − n| : n ∈ Z} for the distance from X
to the nearest integer.

Lemma 1. Let M be a positive integer, p/q be a convergent of the continued fraction of

the irrational number τ such that q > 6M , and A,B, µ be some real numbers with A > 0
and B > 1. Let further ǫ = ||µq|| − M ||τq||. If ǫ > 0, then there is no solution to the

inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v and w with

u ≤ M and w ≥
log(Aq/ǫ)

logB
.

Before we conclude this section, we present some useful lemmas that will be used in
the next sections on this paper. The following lemma was proved by Bravo and Luca in
[3].

Lemma 2. For k ≥ 2, let α be the dominant root of F (k), and consider the function

fk(z) defined in (9). Then:

(i) Inequalities

1

2
< fk(α) <

3

4
and |fk(α

(i))| < 1, 2 ≤ i ≤ k

hold. So, the number fk(α) is not an algebraic integer.

(ii) The logarithmic height of fk(α) satisfies h(fk(α)) < 3 log k.

Next, we present a useful lemma which is a result due to Cooper and Howard [8].

Lemma 3. For k ≥ 2 and n ≥ k + 2,

F (k)
n = 2n−2 +

⌊n+k

k+1 ⌋−1
∑

j=1

Cn,j2
n−(k+1)j−2,

where

Cn,j = (−1)j
[(

n− jk

j

)

−

(

n− jk − 2

j − 2

)]

.

In the above, we have denoted by ⌊x⌋ the greatest integer less than or equal to x and
also used the convention that

(

a
b

)

= 0 if either a < b or if one of a or b is negative. In
particular, if we assume that k + 2 ≤ n ≤ 2k + 2, then ⌊(n + k)/(k + 1)⌋ = 2, and the
formula becomes

F (k)
n = 2n−2 − (n− k) · 2n−k−3.(15)

The following estimate was proved by Gómez and Luca [12]. They used the above
result Lemma 3 to prove it.
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Lemma 4. If n < 2k, then the following estimates hold:

F (k)
n = 2n−2

(

1 +
k − n

2k+1
+

f(k, n)

22k+2
+ ζ(k, n)

)

,(16)

where f(k, n) = 1
2 (z − 1)(z + 2); z = 2k − n and ζ = ζ(k, n) is a real number such that

|ζ| <
4n3

23k+3
.

3. Parametric families of solutions

Assume that (n,m) 6= (n1,m1) are such that

F (k)
n − 2m = F (k)

n1
− 2m1 .

If m = m1, then F
(k)
n = F

(k)
n1 and since min{n, n1} ≥ 2, we get that n = n1. Thus,

(n,m) = (n1,m1), contradicting our assumption. Hence, m 6= m1, and we may assume
without loss of generality that m > m1 ≥ 0. Since

F (k)
n − F (k)

n1
= 2m − 2m1 ,(17)

and the right–hand side of (17) is positive, we get that the left–hand side of (17) is also

positive and so n > n1. Thus, since F
(k)
1 = F

(k)
2 = 1, we may assume that n > n1 ≥ 2.

We analyze the possible situations.

Case 1. Assume that 2 ≤ n1 < n ≤ k + 1. Then, by (6), we have

F (k)
n1

= 2n1−2 and F (k)
n = 2n−2

so, by substituting in (17), we get

2m − 2m1 = 2n−2 − 2n1−2.

The number on the left–hand side of the above equation is 2m−1 + · · · + 2m1 and the
number on the right–hand side is 2n−3+ · · ·+2n1−2. So, by the uniqueness of the binary
representation we have m = n − 2 and m1 = n1 − 2, giving c = 0. All powers of 2

in the k–generalized Fibonacci sequence are known to be just the numbers F
(k)
s with

1 ≤ s ≤ k + 1 (see [3]). This gives (i) from the statement of Theorem 1.

From now on, we assume that c 6= 0.

Case 2. Assume that 2 ≤ n1 ≤ k+1 and k+2 ≤ n ≤ 2k+2. Then, by (6) and (15), we
have

F (k)
n1

= 2n1−2 and F (k)
n = 2n−2 − (n− k) · 2n−k−3.

So, by substituting in (17) as before, we get

2n−2 − 2n1−2 − (n− k) · 2n−k−3 = 2m − 2m1 .(18)

In the left–hand side of the above equation, we have

2n−2 − 2n1−2 − (n− k) · 2n−k−3 ≥ 2n−3 − (n− k) · 2n−k−3 > 2n−4.

Indeed the last inequality is equivalent to 2n−4 > (n−k) ·2n−k−3, or 2k−1 > n−k. Since
n ≤ 2k + 2, it suffices that 2k−1 > k + 2, which indeed holds for all k ≥ 4. Furthermore,
unless n1 = n− 1, we have

2n−2 − 2n1−2 − (n− k) · 2n−k−3 ≥ 2n−2 − 2n−4 − (n− k) · 2n−k−3 > 2n−3,
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from the preceding argument. Thus, we have either n1 = n− 1 and then

2n−3 ≥ 2n−2 − 2n1−2 − (n− k) · 2n−k−3 > 2n−4,

which leads to

2n−3 ≥ 2m − 2m1 > 2n−4,

showing that m = n− 3, or n1 < n− 1, in which case

2n−2 > 2n−2 − 2n1−2 − (n− k) · 2n−k−3 > 2n−3,

showing that m = n− 2.
We study the two cases. When n1 = n − 1, then since n1 ≤ k + 1, it follows that

n ≤ k + 2. Since in fact n ≥ k + 2, we get n = k + 2. Then m = n− 3 = k − 1, so from
(18)

2k−1 − 2m1 = 2m − 2m1 = 2k − 2k−1 − 2 · 2−1 = 2k−1 − 1,

showing that m1 = 0. So, we have found the parametric family

(n,m, n1,m1) = (k + 2, k − 1, k + 1, 0)

for which c = 2k−1 − 1 according to (8). This corresponds to situation (ii–a) in the
statement of Theorem 1.

A different possibility is n1 < n− 1, in which case m = n− 2. Now (18) leads to

2n−2 − 2n1−2 − (n− k) · 2n−k−3 = 2n−2 − 2m1

so

(n− k) · 2n−k−3 = 2m1 − 2n1−2.

Simplifying the powers of 2, we get

n− k = 2m1−(n−k)+3 − 2n1−(n−k)+1.

Thus, n−k ∈ [2, k+2] is a difference of two powers of 2. Take any number in [2, k+2] which
is a difference of two powers of 2. Let it be 2a − 2b. Note that a > b and (a, b) 6= (1, 0).
Set

n− k = 2a − 2b.

This gives n = k + 2a − 2b ∈ [k + 2, 2k + 2]. Next we have n1 − (n − k) + 1 = b.
Then n1 = b + (n − k) − 1. But n1 ≤ k + 1. This gives (b − 1) + (n − k) ≤ k + 1, so
(b− 1) + 2a − 2b ≤ k + 1. But we started with 2a − 2b ∈ [2, k + 2]. So, in fact we get

b+ 2a − 2b ≤ k + 2

and 2a− 2b ≥ 2. If n− k = 2, then (a, b) = (2, 1), otherwise n− k ≥ 3 and b ≥ 0. Finally,
m1 + 3− (n− k) = a. Thus,

m1 = (a− 3) + (n− k) = (a− 1) + ((n− k)− 2)

and this is nonnegative from the preceding discussion. So, the family is

(n,m, n1,m1) = (k + 2a − 2b, k + 2a − 2b − 2, b− 1 + 2a − 2b, a− 3 + 2a − 2b),

where (a, b) are such that a > b ≥ 0, (a, b) 6= (1, 0), and b+2a− 2b ≤ k+2. Furthermore,

by (8), we have c = 2b−3+2a−2b − 2a−3+2a−2b . This corresponds to situation (ii–b) in the
statement of Theorem 1.
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Case 3. Assume that k + 2 ≤ n1 < n ≤ 2k + 2. Then, by (15), we have that

F (k)
n1

= 2n1−2 − (n1 − k)2n1−k−3 and F (k)
n = 2n−2 − (n− k)2n−k−3.

Then by a similar substitution as before, equation (17) translates into

2n−2 − 2n1−2 −
(

(n− k) · 2n−k−3 − (n1 − k) · 2n1−k−3
)

= 2m − 2m1 .(19)

Since n1 ≤ n− 1, the left–hand side is at least

2n−2 − 2n1−2 − ((n− k) · 2n−k−3 − (n1 − k) · 2n1−k−3)

≥ 2n−2 − 2n−3 − ((n− k) · 2n−k−3 − (n− k − 1) · 2n−k−4)

= 2n−3 − (n− k + 1) · 2n−k−4 > 2n−4,

where the last inequality is equivalent to

2n−4 > (n− k + 1) · 2n−k−4,

or

2k > n− k + 1.

Since n− k ≤ k + 2, it suffices that 2k > k+ 2+ 1 = k+ 3, which holds for k ≥ 4. Thus,
if n1 = n− 1, then

2n−3 > 2n−2 − 2n−3 −
(

(n− k) · 2n−k−3 − (n− k − 1) · 2n−k−4
)

> 2n−4,

so
2n−3 > 2m − 2m1 > 2n−4,

giving m = n− 3. In this case, we get from (19),

2n−2 − 2n−3 − (n− k + 1) · 2n−k−4 = 2n−3 − 2m1 ,

so
(n− k + 1) · 2n−k−4 = 2m1 ,

giving

n− k + 1 = 2m1+4−(n−k).

Thus, n − k + 1 = 2t is a power of two in the interval [3, k + 3] (so t ≥ 2). Further,
n = 2t+k−1, n1 = n−1 = 2t+k−2, m = n−3 = 2t+k−4 andm1 = n−k−4+t = 2t+t−5.
Since t ≥ 2, we get that m1 > 0. Hence,

(n,m, n1,m1) = (k + 2t − 1, k + 2t − 4, k + 2t − 2, t+ 2t − 5)

which corresponds to the parametric family (iii), with c = 2k+2t−4 + 22
t−4 − 2t+2t−4, in

the statement of the Theorem 1.

Next we consider the situation n1 < n− 1. We show that there are no solutions in this
case. Then,

2n−2 > 2n−2 − 2n1−2 − ((n− k) · 2n−k−3 − (n1 − k) · 2n1−k−3)

≥ 2n−2 − 2n−4 −
(

(n− k) · 2n−k−3 − (n− k − 2) · 2n−k−5
)

> 2n−3.

The last inequality is equivalent to

2n−4 > (n− k) · 2n−k−3 − (n− k − 2) · 2n−k−5,

which is implied by

2n−4 > (n− k) · 2n−k−3,
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or

2k−1 > n− k.

Since n− k ≤ k + 2, it suffices that 2k−1 > k + 2 and this holds for all k ≥ 4. Thus, for
n1 < n− 1, we have

2n−2 > F (k)
n − F (k)

n1
> 2n−3,

so

2n−2 > 2m − 2m1 > 2n−3,

showing that m = n− 2. In this case, we have by (19), that

2n−2 − 2n1−2 − (n− k) · 2n−k−3 + (n1 − k) · 2n1−k−3 = 2n−2 − 2m1 ,

giving

(n− k) · 2n−k−3 − (n1 − k) · 2n1−k−3 = 2m1 − 2n1−2.

The left–hand side is positive therefore so is the right–hand side. Thus,

(20) 2n1−k−3(2n−n1(n− k)− (n1 − k)) = 2n1−2(2m1−n1+2 − 1).

To proceed, we write

n− k = 2αu and n1 − k = 2α1u1,

where α, α1 are nonnegative and u, u1 are odd. Since n − k, n1 − k ∈ [2, k + 2], it
follows 2α ≤ k + 2 and 2α1 ≤ k + 2. Hence, max{α, α1} ≤ log(k + 2)/ log 2. Equation
(20) becomes

(21) 2n1−k−3(2α+n−n1u− 2α1u1) = 2n1−2(2m1−n1+2 − 1).

We distinguish various cases.

Case 3.1 α+ n− n1 = α1. In this case, by (21), we have

(22) 2n1−k−3+α1 (u− u1) = 2n1−2(2m1−n1+2 − 1).

Note that we cannot have u = u1 (otherwise we get n = n1, a contradiction). Since the
exponent of 2 in the right in (22) is exactly n1−2 and in the left is at least n1−k−3+α1,
we get that n1 − 2 ≥ n1 − k − 3 + α1, so k + 1 ≥ α1, and

u− u1 = 2k+1−α1(2m1−n1+2 − 1).

We deduce that the following inequality holds:

2k+1−α1 | u− u1, so k + 1− α1 ≤
log(u− u1)

log 2
≤

log(k + 1)

log 2
.

Thus,

k + 1 = (k + 1− α1) + α1 ≤
log(k + 1)

log 2
+

log(k + 2)

log 2
,

which yields

2k+1 ≤ (k + 2)(k + 1),

so k ≤ 3. So, this case cannot lead to infinitely many solutions.

Case 3.2 α+ n− n1 < α1. In this case, by (21), we now have

2n−k−3+α(u − 2α1−α−n+n1u1) = 2n1−2(2m1−n1+2 − 1).

Identifying factors which are powers of 2 in both sides, we have

n1 = n+ α− k − 1.
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Since

n− n1 < α1 − α ≤ α1 ≤
log(k + 2)

log 2
,

we have

k + 1 = (n− n1) + α ≤
log(k + 2)

log 2
+

log(k + 2)

log 2
,

giving

2k+1 ≤ (k + 2)2,

so k ≤ 4.
Thus, as in the previous case, this situation cannot lead us to infinitely many solutions

either.

Case 3.3 α1 < α+ n− n1. In this case, (21) becomes

2n1−k−3+α1 (2α−α1+n−n1u− u1) = 2n1−2(2m1−n1+2 − 1).

Identifying powers of 2 in both sides above, we get

k + 1 = α1.

Hence,

k + 1 ≤
log(k + 2)

log 2
,

giving 2k+1 ≤ k + 2, so k ≤ 1, a contradiction.
The last parametric family from the statement of Theorem 1 will be identified in the

next section.

4. Solutions with n ≥ 2k + 3

From now on, we searched for solutions other than the ones given in Theorem 1 (i), (ii),
and (iii), with the aim is to show that perhaps they are none except for some sporadic ones
with k < k0 with some small k0. Then the problem will be solved by finding individually
for every k ∈ [4, k0], the values of c such that (8) has some solution (n,m, n1,m1) with
n > n1, m > m1 and determining for each c all such representations. It turns out that
this program does not quite work out since along the way we find parametric family (iv)
with n = 2k+3, but afterwards all does work out and we are able to show that indeed if
n > 2k + 3, then k ≤ 790.

So, let’s get to work. We go back to (8) and assume that n ≥ 2k + 3. Suppose first
that m ≥ n− 1. We recall equality (17):

2m − 2m1 = F (k)
n − F (k)

n1
.

The left–hand side is positive and

2m − 2m1 ≥ 2m−1 ≥ 2n−2 > F (k)
n > F (k)

n − F (k)
n1

,

where we used the fact that F
(k)
n < 2n−2 for n ≥ k + 2. Thus, m ≤ n − 2. Note that

n ≥ 2k + 3, so n− 2k ≥ 3.
We put y := n/2k, and assume that

(23) n3 < 2k−5, so y < 1/4.
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Thus, by Lemma 4, we have

F (k)
n = 2n−2(1 − ζ), where |ζ| <

1

2

(

y + y2 + y3
)

.

Similarly,

(24) F (k)
n1

= 2n1−2(1− ζ1), where also |ζ1| <
1

2
(y + y2 + y3).

We get from (17)

(25)
∣

∣(2m − 2m1)− (2n−2 − 2n1−2)
∣

∣ < (2n−2 + 2n1−2)
(y + y2 + y3)

2
< 2n−2y.

If m ≤ n− 4, then the left–hand side in (25) is at least

(2n−2 − 2n1−2)− 2n−4 ≥ 2n−3 − 2n−4 ≥ 2n−4,

showing that

2n−4 ≤ 2n−2y,

giving y ≥ 1/4, a contradiction to (23). Further, assuming that m = n−3 but n1 < n−1,
the left–hand side in formula (25) is at least

(2n−2 − 2n1−2)− 2m ≥ 2n−2 − 2n−4 − 2n−3 = 2n−4,

and we get to the same contradiction to (23), namely that y ≥ 1/4. Thus, we conclude
that either (m,n1) = (n− 3, n− 1), or m = n− 2. The first case gives from (17)

(26) F (k)
n − F

(k)
n−1 = 2n−3 − 2m1 .

Using Lemma 4, we get

(27) F (k)
n = 2n−2

(

1−
n− k

2k+1
+ η

)

and F
(k)
n−1 = 2n−3

(

1−
n− k − 1

2k+1
+ η1

)

,

where

max{|η|, |η1|} ≤
1

2
(y2 + y3) < y2.

Putting these into (26), we get
∣

∣−2n−k−3(n− k) + 2n−k−4(n− k − 1) + 2m1

∣

∣ < 2n−2|η|+ 2n−3|η1| < 2n−1y2.

In the left–hand side, we have the amount

|2m1 − 2n−k−4(n− k + 1)|.

If m1 ≤ n− k− 4, then this amount exceeds 2n−k−4(n− k) > 2n−k−4. If m1 > n− k− 4,
then the above number can be rewritten as

2n−k−4|n− k + 1− 2m1−(n−k−4)|.

If n− k + 1 6= 2m1−(n−k−4), then the above amount is ≥ 2n−k−4. We thus get in all the
above instances

2n−k−4 ≤ |2m1 − 2n−k−4(n− k + 1)| < 2n−1y2 <
2n−1n2

22k
,

giving

n2 > 2k−3 so n > 2(k−3)/2,
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a contradiction to (23). If n− k + 1 = 2m1−(n−k−4), we consider one more term in (27):

F (k)
n = 2n−2 − 2n−k−3(n− k) + 2n−2k−5(n− 2k + 1)(n− 2k − 2) + 2n−2δ,

F (k)
n1

= 2n−3 − 2n−k−4(n− k − 1) + 2n−2k−6(n− 2k)(n− 2k − 3) + 2n−3δ1

where

2n−2|δ| < 2n−3y3 < 2n−3k−3n3 and 2n−3|δ1| < 2n−4y3 < 2n−3k−4n3.

Thus, by (23),

max{2n−2|δ|, 2n−3|δ1|} < 2n−2k−8.(28)

Putting these into (26), we get

2n−2k−6 |2(n− 2k + 1)(n− 2k − 2)− (n− 2k)(n− 2k − 3)| < 2n−2|δ|+2n−3|δ1| < 2n−2k−7.

Taking w := n− 2k, we have that

w2 + w − 4 = |2(w + 1)(w − 2)− w(w − 3)| < 1/2,

which is a contradiction for all k ≥ 4, given that n ≥ 2k + 3. So, the situation (m,n1) =
(n− 3, n− 1) is not possible.

Hence, we continue with the case m = n− 2. Going back to (8), we have

(29) F (k)
n − 2n−2 = F (k)

n1
− 2m1 .

The number on the left–hand side in (29) is negative. We will show that m1 ≥ n1 − 2.
Indeed, suppose that m1 ≤ n1 − 3. Since for us y < 1/4, we get |ζ1| < 1/2 (see 24).

Further, again by (24), we note that F
(k)
n1

> 2n1−3 ≥ 2m1 , so the right–hand side in (29)
is positive, a contradiction. Thus, m1 ≥ n1 − 2. The case m1 = n1 − 2 leads to

(30) F (k)
n − 2n−2 = F (k)

n1
− 2n1−2.

Since c 6= 0, it follows that n1 ≥ k + 2. However, we have the following lemma.

Lemma 5. The sequence {2n−2 − F
(k)
n }n≥k+2 is increasing for n ≥ k + 3.

Proof. We want

2n−1 − F
(k)
n+1 > 2n−2 − F (k)

n ,

which is equivalent to

2n−2 > F
(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k+1.

There are k − 1 terms in the right–hand side. Each of them satisfies F
(k)
n−1−j ≤ 2n−3−j

for j = 0, 1, . . . , k − 2 because Fa ≤ 2a−2 holds for all a ≥ 2. Thus, it suffices that

2n−2 > 2n−3 + 2n−4 + · · ·+ 2n−k−1,

which is obvious. �

Thus, (30) is impossible. Hence, m1 ≥ n1 − 1. Using the first identity in (27), we have
that the left–hand side in (29) is

(31) − 2n−k−3(n− k) + 2n−2η,

where |η| < (y2 + y3)/2 < y2. Note that since

y2 =
n2

22k
<

1

2k+3
(by 23),
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it follows that

(32) 2n−2|η| < 2n−k−5.

Thus, the left–hand side of (29) is in the interval

(−2n−k−3(n− k + 1/2),−2n−k−3(n− k − 1/2)).

Now the right–hand side of (29) is in the interval (−2m1 ,−2m1−1], where for the right–

hand extreme of the interval we used the fact that F
(k)
n1

≤ 2n1−2 ≤ 2m1−1. Comparing
them we get

−2n−k−3(n− k + 1/2) < −2m1−1 and − 2n−k−3(n− k − 1/2) > −2m1,

which gives

2m1−1 < 2n−k−3(n− k + 1/2) and 2n−k−3(n− k − 1/2) < 2m1 .

In particular, m1 ≥ n− k − 3, so

2m1−(n−k−3)−1 ≤ n− k ≤ 2m1−(n−k−3).

We thus get, from (29) and (31), that

(33) − 2n−k−3(n− k − 2m1−(n−k−3)) = F (k)
n1

− 2n−2η.

We distinguish two cases.

Case 1. Assume that n1 < n− k − 1.

Then F
(k)
n1 < 2n1−2 ≤ 2n−k−4. Using also (32), we get

2n−k−3
∣

∣

∣
(n− k)− 2m1−(n−k−3)

∣

∣

∣
< max{F (k)

n1
, 2n−2|η|} < 2n−k−4,

so n− k − 2m1−(n−k−3) is an integer which is at most 1/2 in absolute value. Hence, it is
zero. Thus, n− k = 2m1−(n−k−3). We now go one more step and say that

F (k)
n = 2n−2 − 2n−k−3(n− k) + 2n−2k−5(n− 2k + 1)(n− 2k − 2) + 2n−2δ,

F (k)
n1

= 2n1−2(1 − η1),

where, by (28),

2n−2|δ| < 2n−2k−8.

Further, by (24),

2n1−2|η1| < 2n1−3y2 < 2n−3k−4n2 < 2n−2k−8.

Equation (29) now implies that

−2n−k−3(n− k) + 2n−2k−5(n− 2k + 1)(n− 2k − 2) + 2n−2δ = 2n1−2 − 2n1−2η1 − 2m1 ,

so, given that n− k = 2m1−(n−k−3),

(34) 2n−2k−5(n− 2k + 1)(n− 2k − 2)− 2n1−2 = −2n−2δ − 2n1−2η1.

Assume that n1 ≤ n− 2k − 4. Then

2n−2k−5 ≤ 2n−2k−5(n− 2k + 1)(n− 2k − 2) ≤ 2n1−2 + 2n−2|δ|+ 2n1−2|η1|

< 3× 2n−2k−7 < 2n−2k−5,

which is a contradiction. Thus, we must have n1 ≥ n− 2k − 3, so

2n−2k−5
∣

∣

∣
(n− 2k + 1)(n− 2k − 2)− 2n1−2−(n−2k−5)

∣

∣

∣
≤ 2n−2|δ|+ 2n1−2|η1|

< 2n−2k−7.
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The left–hand side above is an integer divisible by 2n−2k−5. Since it is smaller than
2n−2k−7, it must be the zero integer. Thus, with w = n− 2k, we have

(w + 1)(w − 2) = 2n1−2−(n−2k−5).

In the left–hand side above, one of the factors w − 2 and w + 1 is odd. Since they are
both positive and powers of 2, it follows that the smaller one is 1. Hence, w = 3, so

w + 1 = 22 = 2n1−2−(n−2k−5),

giving n1 − 2 = n− 2k− 3 = 0. Thus, n = 2k+ 3, n1 = 2 and m = n− 2 = 2k+ 1. From
equality (29), we conclude that

22k+1 − 2k(k + 3) = 22k+1 − 2m1

giving k+3 = 2t, for some integer t ≥ 3 and m1 = k+ t. Hence, we obtain the parametric
family

(n,m, n1,m1) = (2t+1 − 3, 2t+1 − 5, 2, t+ 2t − 3)

with c = 1−2t+2t−3, which corresponds to situation (iv) in the statement of the Theorem
1.

Case 2. n1 ≥ n− k − 1.

The equation that we then get from (24) and (33) is

2n−k−3
(

(n− k)− 2m1−(n−k−3) + 2n1−2−(n−k−3)
)

= 2n1−2η1 + 2n−2η.

Given that m1 < m and that we are in the case m = n− 2, we have

2n1−2|η1| ≤ 2m1−1|η1| ≤ 2n−k−3(n− k)y < 2n−2k−3n2 < 2n−k−7.

We thus have

2n−k−3|(n− k)− 2m1−(n−k−3) + 2n1−2−(n−k−3)| < 2n1−2|η1|+ 2n−2|η| < 2n−k−5,

showing the left–hand side is zero. Thus, a = m1 − (n− k − 3), b = n1 − 2− (n− k − 3)
and

n− k = 2a − 2b.

So, n = k + 2a − 2b. As in previous iterations, we go one step further and write

F (k)
n = 2n−2 − 2n−k−3(n− k) + 2n−2k−5(n− 2k + 1)(n− 2k − 2) + 2n−2δ,

F (k)
n1

= 2n1−2 − 2n1−k−3(n1 − k) + 2n1−2η1.

Inserting these into equation (29), we get

−2n−k−3(n− k) + 2n−2k−5(n− 2k − 2)(n− 2k + 1) + 2n−2δ

= 2n1−2 − 2n1−k−3(n1 − k)− 2m1 + 2n1−2η1,

or

2n−2k−5(n− 2k − 2)(n− 2k + 1) + 2n1−k−3(n1 − k) = −2n−2δ + 2n1−2η1.

We have n1 = n−k−1+b, so n1−k−3 = n−2k−4+b so n1−k−3−(n−2k−5) = b+1
and n1 − k = n− 2k − 1 + b. Thus,

2n−2k−5
(

(n− 2k + 1)(n− 2k − 2) + 2b+1(n− 2k − 1 + b)
)

= −2n−2δ + 2n1−2η1.

We already know that 2n−2|δ| < 2n−2k−8. Now n1 − 2 = n− k − 3 + b, so

2n1−2 = 2n−k−32b.
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Note that n− k = 2a − 2b ≥ 2a−1 ≥ 2b, so 2b < n. Thus,

2n1−2|η1| ≤ 2n−k−3ny2 ≤ 2n−k−3n3/22k < 2n−2k−8,

since n3 < 2k−5. Hence, we get

2n−2k−5|(n− 2k + 1)(n− 2k − 2) + 2b+1(n− 2k − 1 + b)| < 2n−2k−7,

showing that the number in absolute value is zero, which is a contradiction because
n − 2k ≥ 3 and b ≥ 0. In conclusion, there are no solutions with n > 2k + 3 provided
that (23) holds. In the next section, we estimate a value of k0 for which inequality (23)
is fulfilled for all k > k0.

5. Establishing an inequality in terms of n and k and estimating k0

Since n > n1 ≥ 2, we have that F
(k)
n1

≤ F
(k)
n−1 and therefore

F (k)
n = F

(k)
n−1 + · · ·+ F

(k)
n−k ≥ F

(k)
n−1 + · · ·+ F

(k)
n−k−1 ≥ F (k)

n1
+ · · ·+ F

(k)
n−k−1.

So, from the above, (13) and (17), we have

αn−4 ≤ F
(k)
n−2 ≤ F (k)

n − F (k)
n1

= 2m − 2m1 < 2m, and(35)

αn−1 ≥ F (k)
n > F (k)

n − F (k)
n1

= 2m − 2m1 ≥ 2m−1,

leading to

1 +

(

log 2

logα

)

(m− 1) < n <

(

log 2

logα

)

m+ 4.(36)

We note that the above inequality (36) in particular implies that m < n < 1.2m+ 4.
Moreover, note that we can assume n ≥ k + 2, since otherwise, this would give us only
the solution for c = 0, which is family (i) of Theorem 1.

We assume for technical reasons that n > 1600. By (11) and (17), we get
∣

∣fk(α)α
n−1 − 2m

∣

∣ =
∣

∣

∣
(fk(α)α

n−1 − F (k)
n ) + (F (k)

n1
− 2m1)

∣

∣

∣

=
∣

∣

∣
(fk(α)α

n−1 − F (k)
n ) + (F (k)

n1
− fk(α)α

n1−1) + (fk(α)α
n1−1 − 2m1)

∣

∣

∣

<
1

2
+

1

2
+ αn1−1 + 2m1

< αn1 + 2m1

< 2max{αn1 , 2m1}.

In the above, we have also used the fact that |fk(α)| < 1. Dividing through by 2m we get

∣

∣fk(α)α
n−12−m − 1

∣

∣ < 2max

{

αn1

2m
, 2m1−m

}

< max{αn1−n+6, 2m1−m+1},(37)

where for the right–most inequality in (37) we used (35) and the fact that α2 > 2.
For the left-hand side of (37) above, we apply Theorem 2 with the data

t := 3, γ1 := fk(α), γ2 := α, γ3 := 2, b1 := 1, b2 := n− 1, b3 := −m.

We begin by noticing that the three numbers γ1, γ2, γ3 are positive real numbers and
belong to the field K := Q(α), so we can take D := [K : Q] = k. Put

Λ := fk(α)α
n−12−m − 1.
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To see why Λ 6= 0, note that otherwise, we would then have that fk(α) = 2mα−(n−1) and
so fk(α) would be an algebraic integer, which contradicts Lemma 2 (i).

Since h(γ2) = (logα)/k < (log 2)/k and h(γ3) = log 2, it follows that we can take
A2 := log 2 and A3 := k log 2. Further, in view of Lemma 2 (ii), we have that h(γ1) <
3 log k, so we can take A1 := 3k log k. Finally, since max{1, n− 1,m} = n − 1, we take
B := n.

Then, the left–hand side of (37) is bounded below, by Theorem 2, as

log |Λ| > −1.4× 306 × 34.5 × k4(1 + log k)(1 + logn)(3 log k)(log 2)(log 2).

Comparing with (37), we get

min{(n− n1 − 6) logα, (m−m1 − 1) log 2} < 4.2× 1011k4 log2 k(1 + logn),

which gives

min{(n− n1) logα, (m−m1) log 2} < 4.25× 1011k4 log2 k(1 + logn).

Now the argument is split into two cases.

Case 1. min{(n− n1) logα, (m−m1) log 2} = (n− n1) logα.

In this case, we rewrite (17) as
∣

∣fk(α)α
n−1 − fk(α)α

n1−1 − 2m
∣

∣ =
∣

∣

∣
(fk(α)α

n−1 − F (k)
n ) + (F (k)

n1
− fk(α)α

n1−1)− 2m1

∣

∣

∣

<
1

2
+

1

2
+ 2m1 ≤ 2m1+1.

Dividing through by 2m gives
∣

∣fk(α)(α
n−n1 − 1)αn1−12−m − 1

∣

∣ < 2m1−m+1.(38)

Now we put

Λ1 := fk(α)(α
n−n1 − 1)αn1−12−m − 1.

We apply again Theorem 2 with the following data

t := 3, γ1 := fk(α)(α
n−n1 − 1), γ2 := α, γ3 := 2, b1 := 1, b2 := n1 − 1, b3 := −m.

As before, we begin by noticing that the three numbers γ1, γ2, γ3 belong to the field
K := Q(α), so we can take D := [K : Q] = k. To see why Λ1 6= 0, note that otherwise, we
would get the relation fk(α)(α

n−n1 − 1) = 2mα1−n1 . Conjugating this last equation with
any automorphism σ of the Galois group of Ψk(x) over Q such that σ(α) = α(i) for some
i ≥ 2, and then taking absolute values, we arrive at the equality |fk(α

(i))((α(i))n−n1 −
1)| = |2m(α(i))1−n1 |. But this cannot hold because, |fk(α

(i))||(α(i))n−n1 − 1| < 2 since
|fk(α

(i))| < 1 by Lemma 2 (i), and |(α(i))n−n1 | < 1, since n > n1, while |2m(α(i))1−n1 | ≥
2.

Since

h(γ1) ≤ h(fk(α)) + h(αn−n1 − 1) < 3 log k + (n− n1)
logα

k
+ log 2,

it follows that

kh(γ1) < 6k log k + (n− n1) logα < 6k log k + 2.95× 1011k4 log2 k(1 + logn).

So, we can take A1 := 3× 1011k4 log2 k(1+ logn). Further, as before, we take A2 := log 2
and A3 := k log 2. Finally, by recalling that m < n, we can take B := n.
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We then get that

log |Λ1| > −1.4× 306 × 34.5 × k3(1+ log k)(1 + logn)(3× 1011k4 log2 k(1+ logn))(log 2)2,

which yields
log |Λ1| > −4.13× 1022k7 log3 k(1 + logn)2.

Comparing this with (38), we get that

(m−m1) log 2 < 4.2× 1022k7 log3 k(1 + logn)2.

Case 2. min{(n− n1) logα, (m−m1) log 2} = (m−m1) log 2.

In this case, we write (17) as
∣

∣fk(α)α
n−1 − 2m + 2m1

∣

∣ =
∣

∣

∣
(fk(α)α

n−1 − F (k)
n ) + (F (k)

n1
− fk(α)α

n1−1) + fk(α)α
n1−1

∣

∣

∣

<
1

2
+

1

2
+ αn1−1 < αn1 ,

so that
∣

∣fk(α)(2
m−m1 − 1)−1αn−12−m1 − 1

∣

∣ <
αn1

2m − 2m1
≤

2αn1

2m
< αn1−n+6.(39)

The above inequality (39) suggests once again studying a lower bound for the absolute
value of

Λ2 := fk(α)(2
m−m1 − 1)−1αn−12−m1 − 1.

We again apply Matveev’s theorem with the following data

t := 3, γ1 := fk(α)(2
m−m1 − 1)−1, γ2 := α, γ3 := 2, b1 := 1, b2 := n− 1, b3 := −m1.

We can again take B := n and K := Q(α), so that D := k. We also note that, if Λ2 = 0,
then fk(α) = α−(n−n1)2m1(2m−m1 −1) implying that fk(α) is an algebraic integer, which
is not the case. Thus, Λ2 6= 0.

Now, we note that

h(γ1) ≤ h(fk(α)) + h(2m−m1 − 1) < 3 log k + (m−m1 + k)
log 2

k
.

Thus, kh(γ1) < 4k log k + (m − m1) log 2 < 3 × 1011k4 log2 k(1 + logn), and so we can

take A1 := 3× 1011k4 log2 k(1 + logn). As before, we take A2 := log 2 and A3 := k log 2.
It then follows from Matveev’s theorem, after some calculations, that

log |Λ2| > −4.13× 1022k7 log3 k(1 + logn)2.

From this and (39), we obtain that

(n− n1) logα < 4.2× 1022k7 log3 k(1 + logn)2.

Thus in both Case 1 and Case 2, we have

min{(n− n1) logα, (m−m1) log 2} < 4.3× 1011k4 log2 k(1 + logn),(40)

max{(n− n1) logα, (m−m1) log 2} < 4.2× 1022k7 log3 k(1 + logn)2.

We now finally rewrite equation (17) as
∣

∣fk(α)α
n−1 − fk(α)α

n1−1 − 2m + 2m1

∣

∣ =
∣

∣

∣
(fk(α)α

n−1 − F (k)
n ) + (F (k)

n1
− fk(α)α

n1−1)
∣

∣

∣
< 1.

We divide through both sides by 2m − 2m1 getting
∣

∣

∣

∣

fk(α)(α
n−n1 − 1)

2m−m1 − 1
αn1−12−m1 − 1

∣

∣

∣

∣

<
1

2m − 2m1
≤

2

2m
< 25−0.8n,(41)
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since n < 1.2m+ 4. To find a lower–bound on the left–hand side of (41) above, we again
apply Theorem 2 with the data

t := 3, γ1 :=
fk(α)(α

n−n1 − 1)

2m−m1 − 1
, γ2 := α, γ3 := 2, b1 := 1, b2 := n1 − 1, b3 := −m1.

We also take B := n and we take K := Q(α) with D := k. From the properties of the
logarithmic height function, we have that

kh(γ1) ≤ k
(

h(fk(α)) + h(αn−n1 − 1) + h(2m−m1 − 1)
)

< 3k log k + (n− n1) logα+ k(m−m1) log 2 + 2k log 2

< 5.3× 1022k8 log3 k(1 + logn)2,

where in the above chain of inequalities we used the bounds (40). So we can take A1 :=

5.3×1022k8 log3 k(1+logn)2, and certainly as before we takeA2 := log 2 and A3 := k log 2.
We need to show that if we put

Λ3 :=
fk(α)(α

n−n1 − 1)

2m−m1 − 1
αn1−12−m1 − 1,

then Λ3 6= 0. To see why Λ3 6= 0, note that otherwise, we would get the relation

fk(α)(α
n−n1 − 1) = 2m1α1−n1(2m−m1 − 1).

Again, as for the case of Λ1, conjugating the above relation with an automorphism σ of
the Galois group of Ψk(x) over Q such that σ(α) = α(i) for some i ≥ 2, and then taking
absolute values, we get that |fk(α

(i))((α(i))n−n1 −1)| = |2m1(α(i))1−n1(2m−m1 −1)|. This
cannot hold true because in the left–hand side we have |fk(α

(i))||(α(i))n−n1 − 1| < 2,
while in the right–hand side we have |2m1 ||(α(i))1−n1 ||2m−m1 − 1| ≥ 2. Thus, Λ3 6= 0.
Then Theorem 2 gives

log |Λ3| > −1.4× 306× 34.5k11(1+ log k)(1+ logn)
(

5.3× 1022 log3 k(1 + logn)2
)

(log 2)2,

which together with (41) gives

(0.8n− 5) log 2 < 7.3× 1033k11 log4 k(1 + logn)3.

The above inequality leads to

n < 5.1× 1034k11 log4 k log3 n,

which can be equivalently written as
n

(log n)3
< 5.1× 1034k11 log4 k.(42)

If A ≥ 1030, the inequality
x

(log x)3
< A yields x < 16A log3 A.

Thus, taking A := 5.1× 1034k11 log4 k, inequality (42) yields

n < 2.8× 1041k11 log7 k.(43)

We then record what we have proved so far as a lemma.

Lemma 6. If (n,m, n1,m1, k) is a solution in positive integers to equation (8) with

(n,m) 6= (n1,m1), n > n1 ≥ 2, m > m1 ≥ 0 and k ≥ 4, we then have that n <

2.8× 1041k11 log7 k.
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6. Reduction of the bounds on n

6.1. The cutoff k. We have from the above that Baker’s method gives

n < 2.8× 1041k11 log7 k.

Imposing that the above amount is at most 2(k−5)/3, which would imply inequality (23),
we get

2.83 × 10123k33(log k)21 < 2k,

leading to k > 790.
We now reduce the bounds and to do so we make use of Lemma 1 several times.

6.2. The Case of small k. We next treat the cases when k ∈ [4, 790]. We note that
for these values of the parameter k, Lemma 6 gives us absolute upper bounds for n.
However, these upper bounds are so large that we wish to reduce them to a range where
the solutions can be identified by using a computer. To do this, we return to (37) and
put

Γ := (n− 1) logα−m log 2 + log (fk(α)) .(44)

For technical reasons we assume that min{n − n1,m −m1} ≥ 20. In the case that this
condition fails, we consider one of the following inequalities instead:

(i) if n− n1 < 20 but m−m1 ≥ 20, we consider (38);
(ii) if n− n1 ≥ 20 but m−m1 < 20, we consider (39);
(iii) if n− n1 < 20 and m−m1 < 20, we consider (41).

Let us start by considering (37). Note that Γ 6= 0; thus we distinguish the following cases.
If Γ > 0, then eΓ − 1 > 0, so from (37) we obtain

0 < Γ < eΓ − 1 < max{αn1−n+6, 2m1−m+1}.

Suppose now that Γ < 0. Since Λ = |eΓ − 1| < 1/2, we get that e|Γ| < 2. Thus,

0 < |Γ| ≤ e|Γ| − 1 = e|Γ||eΓ − 1| < 2max{αn1−n+6, 2m1−m+1}.

In any case, we have that the inequality

0 < |Γ| < 2max{αn1−n+6, 2m1−m+1}(45)

always holds. Replacing Γ in the above inequality by its formula and dividing through
by log 2, we conclude that

0 <

∣

∣

∣

∣

(n− 1)

(

logα

log 2

)

−m+
log(fk(α))

log 2

∣

∣

∣

∣

< max{200 · α−(n−n1), 8 · 2−(m−m1)}.

We apply Lemma 1 with the data

k ∈ [4, 790], τk :=
logα

log 2
, µk :=

log(fk(α))

log 2
, (Ak, Bk) := (200, α) or (8, 2).

We also put Mk := ⌊2.8 × 1041k11 log7 k⌋, which is upper bound on n by Lemma 6.
From the fact that α is a unit in OK, the ring of integers of K, ensures that τk is an
irrational number. Furthermore, τk is transcendantal by Gelfond–Schneider Theorem. A
computer search in Mathematica showed that the maximum value of ⌊log(200q/ε)/ logα⌋
is < 1571 and the maximum value of ⌊log(8q/ε)/ log 2⌋ is < 1566. Therefore, either

n− n1 <
log(200q/ε)

logα
< 1571, or m−m1 <

log(8q/ε)

log 2
< 1566.
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Thus, we have that either n− n1 ≤ 1571, or m−m1 ≤ 1566.
First, let us assume that n − n1 ≤ 1571. In this case we consider the inequality (38)

and assume that m−m1 ≥ 20. We put

Γ1 = (n1 − 1) logα−m log 2 + log(fk(α)(α
n−n1 − 1)).

By the same arguments used for proving (45), from (38) we get

0 < |Γ1| <
4

2m−m1
,

and so

0 <

∣

∣

∣

∣

∣

(n1 − 1)

(

logα

log 2

)

−m+
log(fk(α)(α

n−n1 − 1))

log 2

∣

∣

∣

∣

∣

< 8 · 2−(m−m1).(46)

As before, we keep the same τk, Mk, (Ak, Bk) := (8, 2) and put

µk,l =
log(fk(α)(α

l − 1))

log 2
, k ∈ [4, 790] and l ∈ [1, 1566].

We now apply Lemma 1 to inequality (46) for the values of k ∈ [4, 790] and l ∈ [1, 1571]. A
computer search withMathematica revealed that the maximum value of ⌊log(Aq/ε)/ logB⌋
over the values of k ∈ [4, 790] and l ∈ [1, 1571] is < 1570. Hence, m−m1 ≤ 1570.

Now let us assume that m−m1 ≤ 1566. In this case, we consider the inequality (39)
and assume that n− n1 ≥ 20. We put

Γ2 = (n− 1) logα−m1 log 2 + log(fk(α)(2
m−m1 − 1)).

Then, by the same arguments as before, we get

0 < |Γ2| <
2α6

αn−n1
.

Replacing Γ2 in the above inequality by its formula and dividing through by log 2, we
finally get that

0 <

∣

∣

∣

∣

(n− 1)

(

logα

log 2

)

−m1 +
log(fk(α)(2

m−m1 − 1))

log 2

∣

∣

∣

∣

< 114 · α−(n−n1).

We apply Lemma 1 with the same τk, Mk, (Ak, Bk) := (114, α) and put

µk,l =
log(fk(α)(2

l − 1))

log 2
, k ∈ [4, 790] and l ∈ [1, 1566].

As before, a computer search with Mathematica revealed that the maximum value of

⌊log(Aq/ε)/ logB⌋, for k ∈ [4, 790] and l ∈ [1, 1566]

is < 1574. Hence, n− n1 ≤ 1574.
To conclude the above computations, we first got that either n−n1 ≤ 1571 orm−m1 ≤

1566. If n− n1 ≤ 1571, then m−m1 ≤ 1570, and if m−m1 ≤ 1566, then n−n1 ≤ 1574.
Thus, in conclusion, we always have that

n− n1 ≤ 1574 and m−m1 ≤ 1570.

Finally, we go to (41) and put

Γ3 = (n1 − 1) logα−m1 log 2 + log

(

fk(α)(α
n−n1 − 1)

2m−m1 − 1

)

.
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Since n > 1600, from (41) we conclude that

0 < |Γ3| <
26

20.8n
.

Hence,

0 <

∣

∣

∣

∣

(n1 − 1)

(

logα

log 2

)

−m1 +
log(fk(α)(α

l − 1)/(2j − 1))

log 2

∣

∣

∣

∣

< (26/ log 2) · 2−n,

where (l, j) := (n−n1, m−m1). We apply Lemma 1 with the same τk, Mk, (Ak, Bk) :=
(26/ log 2, 2) and

µk,l,j =
log(fk(α)(α

l − 1)/(2j − 1))

log 2
for k ∈ [4, 790], l ∈ [1, 1574] and j ∈ [1, 1570].

With the help of Mathematica we find that the maximum value of

⌊log(114q/ε)/ log 2⌋, for k ∈ [4, 790], l ∈ [1, 1574] and j ∈ [1, 1570]

is < 1574. Thus, n < 1574, which contradicts the assumption that n > 1600 in Section 5.
We finish the resolution of the Diophantine equation (8), for this case, with the follow-

ing procedure. Consider the following equivalent equation to (8)

F (k)
n − F (k)

n1
= 2m − 2m1 .

For k ∈ [4, 790] and n ∈ [k + 2, 1600], let the set

Fn,k :=
{

F (k)
n − F (k)

n1
(mod 1020) : n1 ∈ [2, n− 1]

}

,

and

Dn,k :=
{

2m − 2m1 (mod 1020) : m ∈ [⌊c(n− 4)⌉, ⌊c(n− 1) + 1⌉], m1 ∈ [0,m− 1]
}

with c = logα/ log 2. Note that we have used (36) to define the range of m in Dn,k. As in
all computations of this paper, with the help of Mathematica, we looked for all (n, k) the
intersections Fn,k ∩Dn,k. After an extensive search, we obtain that Fn,k ∩Dn,k contains
only the solutions corresponding to the families (i)–(iv) in the statement of Theorem 1
for the current range of the variables.

This completes the proof in the case of small k.

6.3. The Case of large k. In this case we assume that k > 790, we have already shown
that the Diophantine equation (8) has only the solutions listed in Theorem 1.

acknowledgements

We thank the referee for pointing out some errors in a previous version of this manu-
script. M. D. was supported by the FWF grant F5510-N26, which is part of the special
research program (SFB), “Quasi Monte Carlo Metods: Theory and Applications”. M. D.
would also like to thank his supervisor Prof. Dr. Robert Tichy for the encouragement
and the useful comments and remarks that greatly improved in the quality of this paper.
C. A. G. was supported in part by Project 71079 (Universidad del Valle). F. L. was
supported by grant CPRR160325161141 and an A-rated scientist award both from the
NRF of South Africa and by grant no. 17-02804S of the Czech Granting Agency.



22 MAHADI DDAMULIRA, CARLOS A. GÓMEZ AND FLORIAN LUCA
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[5] P. Mihăilescu Primary cyclotomic units and a proof of Catalans conjecture Journal für die reine
und angewandte Mathematik (Crelles Journal), 2004.572 (2006): 167-195. Retrieved 24 Jul. 2017, from
doi:10.1515/crll.2004.048

[6] J. J. Bravo, F. Luca, and K. Yazán. On a problem of Pillai with Tribonacci numbers and powers of
2. Bull. Korean Math. Soc. 54, No. 3, pp. 1069–1080 (2017). doi:10.4134/BKMS.b160486.

[7] K. C. Chim, I. Pink and V. Ziegler. On a variant of Pillai’s problem. Int. J. Number Theory, 13,
No.7, pp. 1711–1727 (2017), doi:10.1142/S1793042117500981.

[8] C. Cooper and F. T. Howard, Some identities for r−Fibonacci numbers. Fibonacci Quart. 49, No.3
, pp. 231–243 (2011).

[9] M. Ddamulira, F. Luca and M. Rakotomalala. On a problem of Pillai with Fibonacci numbers and

powers of 2. Proc. Math. Sci., 127, No.3, pp. 411–421 (2017), doi:10.1007/s12044-017-0338-3.
[10] G. P. Dresden and Zhaohui Du, A simplified Binet formula for k−generalized Fibonacci numbers,
J. Integer Sequences 17 (2014), Article 14.4.7.
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