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ON A PROBLEM SUGGESTED BY OLGA TAUSSKY-TODD

BY
MORRIS NEWMAN

Abstract

The problem considered is to characterize those integers m such that
m det (C), C an integral n x n circulant. It is shown that if (m, n) 1 then
such circulants always exist, and if (m, n) > 1 and p is a prime dividing (m, n)
such that p’lln, then pt+ im" This implies for example, that n never occurs as the
determinant of an integral n x n circulant, if n > 1.
The problem considered here was suggested by Olga Taussky-Todd at the

meeting of the American Mathematical Society in Hayward, California (April,
1977)" namely, to characterize the integers which can occur as the determinant
of an integral circulant.

Let P be the n x n full cycle

0 1 0 0
0 1 0

00 1
00 ...0

Let J be the n x n matrix all of whose entries are 1, so that

j=I+p+p2+...+p,,-x.
Let ao, al, a,_ be integers, and let C be the circulant

etl-ao I + alP + ""+ a,,_

Let f(x) be the polynomial a0 + a x +... + a_ x- 1. Then the eigenvalues
of C aref((), 1 < k < n, ( exp (27ti/n). Hence the determinant of C is given
by det (C)= 1--I,= f(().
The set of numbers {k} coincides with the set {n/d}. Here k runs over the

integers 1, 2, n, d over the divisors of n (written din), and/ over the integers
less than or equal to d and relatively prime to d (written #:d). It follows that

det (C)= I-I l-l f(’’/n) [I I-I f()= 1--I Nf(n),
din :d din u:d din
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where Nf(a)is the norm off((a)in the cyclotomic field Q((a), and hence a
rational integer. Thus we have a factorization of the determinant ofC into go(n)
rational integers. Some of these, of course, may be + 1.
We are interested in those m such that an integral n x n circulant C exists for

which

(1) det (C)= m.

We may assume that m > O, since det (-P) 1, so that det (C) m if and
only if det (-PC)= -m. We may also assume that n > 1.
We first prove"

THEOREM 1. Suppose that (m, n) 1. Then equation (1) always has solutions.

Proof. Write m nq + r, 0 < r < n 1. Then also (n, r) 1. Put

C=qJ+I+P+...+P"-1.

Then the eigenvalues of C are

nq+r=m, l+(k+(2k+’"+("-l)k, l<k<n-1.

It follows that the determinant of C is given by

det (C)= m -.
k=l I--.

Now . and ’. simultaneously run over all nth roots of unity other than I, since
(r, n) I. Thus l-I]2_ (i ?)= [-I,2_ (I .) n, and so dct (C)= m. This
concludes the proof.

The next result provides a characterization of those numbers m for which (1)
may have a solution, in the remaining case when (m, n) > 1.

Let q if, p prime, > 1. Then the number 1 (is a prime in Q(() ofnorm
p. We shall now prove"

THEOREM 2. Suppose that (m, n) > 1. Let p be a prime which divides (m, n),
and let p’lln (i.e., pt is the exact power of p dividing n). Then/f(1) has solutions,
if+ im"

Proof. Write n qk, q p’, (k, p)= 1, and suppose that (1) has solutions.
We have

(2) m det (C)= 1-I Nf()= I-I l-I Nf(,s),
din lk s=O

since the divisors of n coincide with the numbers p’6, 0 < s < t, 61k.
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Nf((psa )= Nf((ps(a). AlsoSince
1 mod 1 (q. It follows that

Nf(,,) l-I f(({)u)
l PS6

H f((p6)ux+psu2) H f(su2) mod 1
#l:Ps, #2:6 /l:ps,

mod 1(3)
In the above, # 61 + pSH2, where #1 .runs over a reduced set of residues
modulo p, and # 2 over a reduced set of residues modulo 6. This is possible, of
course, because (6, p)= 1.
Now both sides of (3) are rational integers, and N(1 ) p. It follows that

Nf(p) Nf(o)4m’) mod p.(4)
Now suppose that for every 61k, Nf() 0 mod p. Then (2) and (4) would
imply that m 0 rood p, a contradiction. Hence for some divisor of k,
Nf(() =- 0 mod p. But then (4) implies that Nf((p,) =- 0 mod p for all s with
0 _< s _< t, which in turn implies that m 0 mod pt+ 1, by (2). This completes
the proof.

As a corollary, we obtain the answer to one of the problems suggested by
Olga Taussky-Todd"

THEOREM 3.
determinant n.

Suppose that n > 1. Then there is no integral n x n circulant of

This result raises the following question" although n does not occur as the
determinant of an integral n x n circulant, will some power of n occur as such a
determinant ? The answer to this is supplied by the theorem that follows.

THEOREM 4.
is any inteoer.

There is an inteoral n x n circulant ofdeterminant qn2, where q

Proof Put C=I-P+qJ. Then the eigenvalues of C are qn, 1--(k,
(1 < k < n 1). Since 1--I,5_ (1 (.k)= n, det (C)= qn2 and the result follows.

It is easy to show by examples that the conditions on m and n imposed by
Theorem 2 are.only necessary, but not sufficient, to guarantee the existence of
an integral n x n circulant of determinant m when (m, n)> 1. The general
question remains open. However, we have determined necessary and sufficient
conditions in the case when n is prime. We have"

THEOREM 5. Suppose that n is prime and that (m, n) > 1. Then in order for
m det (C) to have solutions, it is necessary and sufficient that n21m.
Proof The necessity is a consequence of Theorem 2, and the sufficiency of

Theorem 4.


