ON A PROBLEM SUGGESTED BY OLGA TAUSSKY-TODD ${ }^{1}$

BY
Morris Newman

Abstract

The problem considered is to characterize those integers m such that $m=\operatorname{det}(C), C$ an integral $n \times n$ circulant. It is shown that if $(m, n)=1$ then such circulants always exist, and if $(m, n)>1$ and p is a prime dividing (m, n) such that $p^{t} \| n$, then $p^{t+1} \mid m$. This implies for example, that n never occurs as the determinant of an integral $n \times n$ circulant, if $n>1$.

The problem considered here was suggested by Olga Taussky-Todd at the meeting of the American Mathematical Society in Hayward, California (April, 1977): namely, to characterize the integers which can occur as the determinant of an integral circulant.

Let P be the $n \times n$ full cycle

$$
\left[\begin{array}{lllll}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & & & \cdots & \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right] .
$$

Let J be the $n \times n$ matrix all of whose entries are 1 , so that

$$
J=I+P+P^{2}+\cdots+P^{n-1}
$$

Let $a_{0}, a_{1}, \ldots, a_{n-1}$ be integers, and let C be the circulant

$$
a_{0} I+a_{1} P+\cdots+a_{n-1} P^{n-1}
$$

Let $f(x)$ be the polynomial $a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$. Then the eigenvalues of C are $f\left(\zeta_{n}^{k}\right), 1 \leq k \leq n, \zeta_{n}=\exp (2 \pi i / n)$. Hence the determinant of C is given by $\operatorname{det}(C)=\prod_{k=1}^{n} f\left(\zeta_{n}^{k}\right)$.

The set of numbers $\{k\}$ coincides with the set $\{n \mu / d\}$. Here k runs over the integers $1,2, \ldots, n, d$ over the divisors of n (written $d \mid n$), and μ over the integers less than or equal to d and relatively prime to d (written $\mu: d$). It follows that

$$
\operatorname{det}(C)=\prod_{d \mid n} \prod_{\mu: d} f\left(\zeta_{n}^{n \mu / d}\right)=\prod_{d \mid n} \prod_{\mu: d} f\left(\zeta_{d}^{\mu}\right)=\prod_{d \mid n} N f\left(\zeta_{d}\right),
$$

[^0]Received March 9, 1978.
where $N f\left(\zeta_{d}\right)$ is the norm of $f\left(\zeta_{d}\right)$ in the cyclotomic field $Q\left(\zeta_{d}\right)$, and hence a rational integer. Thus we have a factorization of the determinant of C into $\sigma_{0}(n)$ rational integers. Some of these, of course, may be ± 1.

We are interested in those m such that an integral $n \times n$ circulant C exists for which

$$
\begin{equation*}
\operatorname{det}(C)=m \tag{1}
\end{equation*}
$$

We may assume that $m>0$, since $\operatorname{det}(-P)=-1$, so that $\operatorname{det}(C)=m$ if and only if $\operatorname{det}(-P C)=-m$. We may also assume that $n>1$.

We first prove:
Theorem 1. Suppose that $(m, n)=1$. Then equation (1) always has solutions.
Proof. Write $m=n q+r, 0 \leq r \leq n-1$. Then also $(n, r)=1$. Put

$$
C=q J+I+P+\cdots+P^{r-1}
$$

Then the eigenvalues of C are

$$
n q+r=m, \quad 1+\zeta_{n}^{k}+\zeta_{n}^{2 k}+\cdots+\zeta_{n}^{(r-1) k}, \quad 1 \leq k \leq n-1 .
$$

It follows that the determinant of C is given by

$$
\operatorname{det}(C)=m \prod_{k=1}^{n-1} \frac{1-\zeta_{n}^{k}}{1-\zeta_{n}^{k}}
$$

Now ζ_{n}^{k} and $\zeta_{n}^{r k}$ simultaneously run over all nth roots of unity other than 1 , since $(r, n)=1$. Thus $\prod_{k=1}^{n-1}\left(1-\zeta_{n}^{r k}\right)=\prod_{k=1}^{n-1}\left(1-\zeta_{n}^{k}\right)=n$, and so $\operatorname{det}(C)=m$. This concludes the proof.

The next result provides a characterization of those numbers m for which (1) may have a solution, in the remaining case when $(m, n)>1$.

Let $q=p^{t}$, p prime, $t \geq 1$. Then the number $1-\zeta_{q}$ is a prime in $Q\left(\zeta_{q}\right)$ of norm p. We shall now prove:

Theorem 2. Suppose that $(m, n)>1$. Let p be a prime which divides (m, n), and let $p^{t} \| n$ (i.e., p^{t} is the exact power of p dividing n). Then if (1) has solutions, $p^{t+1} \mid m$.

Proof. Write $n=q k, q=p^{t},(k, p)=1$, and suppose that (1) has solutions. We have

$$
\begin{equation*}
m=\operatorname{det}(C)=\prod_{d \mid n} N f\left(\zeta_{d}\right)=\prod_{\delta \mid k} \prod_{s=0}^{t} N f\left(\zeta_{p s \delta}\right), \tag{2}
\end{equation*}
$$

since the divisors of n coincide with the numbers $p^{s} \delta, 0 \leq s \leq t, \delta \mid k$.

Since $\left(\delta+p^{s}, p^{s} \delta\right)=1, N f\left(\zeta_{p s \delta}\right)=N f\left(\zeta_{p s \delta}^{\delta+p s}\right)=N f\left(\zeta_{p s} \zeta_{\delta}\right)$. Also $\zeta_{p s}=\zeta_{q}^{p^{t-s}} \equiv$ $1 \bmod 1-\zeta_{q}$. It follows that

$$
\begin{align*}
N f\left(\zeta_{p s \delta}\right)= & \prod_{\mu: p^{s \delta}} f\left(\left(\zeta_{p s} \zeta_{\delta}\right)^{\mu}\right) \\
= & \prod_{\mu_{1}: p^{s}, \mu_{2}: \delta} f\left(\left(\zeta_{p s} \zeta_{\delta}\right)^{\left.\delta \mu_{1}+p^{s \mu_{2}}\right) \equiv} \prod_{\mu_{1}: p^{s}, \mu_{2}: \delta} f\left(\zeta_{\delta}^{p^{s} 2}\right) \bmod 1-\zeta_{q},\right. \\
& \quad N f\left(\zeta_{p s \delta}\right) \equiv N f\left(\zeta_{\delta}\right)^{\phi\left(p^{s}\right)} \bmod 1-\zeta_{q} \tag{3}
\end{align*}
$$

In the above, $\mu=\delta \mu_{1}+p^{s} \mu_{2}$, where μ_{1} runs over a reduced set of residues modulo p^{s}, and μ_{2} over a reduced set of residues modulo δ. This is possible, of course, because $\left(\delta, p^{s}\right)=1$.

Now both sides of (3) are rational integers, and $N\left(1-\zeta_{q}\right)=p$. It follows that

$$
\begin{equation*}
N f\left(\zeta_{p \delta \delta}\right) \equiv N f\left(\zeta_{\delta}\right)^{\phi\left(p^{s}\right)} \quad \bmod p \tag{4}
\end{equation*}
$$

Now suppose that for every $\delta \mid k, N f\left(\zeta_{\delta}\right) \not \equiv 0 \bmod p$. Then (2) and (4) would imply that $m \not \equiv 0 \bmod p$, a contradiction. Hence for some divisor δ of k, $N f\left(\zeta_{\delta}\right) \equiv 0 \bmod p$. But then (4) implies that $N f\left(\zeta_{p s \delta}\right) \equiv 0 \bmod p$ for all s with $0 \leq s \leq t$, which in turn implies that $m \equiv 0 \bmod p^{t+1}$, by (2). This completes the proof.

As a corollary, we obtain the answer to one of the problems suggested by Olga Taussky-Todd:

Theorem 3. Suppose that $n>1$. Then there is no integral $n \times n$ circulant of determinant n.

This result raises the following question: although n does not occur as the determinant of an integral $n \times n$ circulant, will some power of n occur as such a determinant? The answer to this is supplied by the theorem that follows.

Theorem 4. There is an integral $n \times n$ circulant of determinant $q n^{2}$, where q is any integer.

Proof. Put $C=I-P+q J$. Then the eigenvalues of C are $q n, 1-\zeta_{n}^{k}$ $(1 \leq k \leq n-1)$. Since $\prod_{k=1}^{n-1}\left(1-\zeta_{n}^{k}\right)=n, \operatorname{det}(C)=q n^{2}$ and the result follows.

It is easy to show by examples that the conditions on m and n imposed by Theorem 2 are only necessary, but not sufficient, to guarantee the existence of an integral $n \times n$ circulant of determinant m when $(m, n)>1$. The general question remains open. However, we have determined necessary and sufficient conditions in the case when n is prime. We have:

Theorem 5. Suppose that n is prime and that $(m, n)>1$. Then in order for $m=\operatorname{det}(C)$ to have solutions, it is necessary and sufficient that $n^{2} \mid m$.

Proof. The necessity is a consequence of Theorem 2, and the sufficiency of Theorem 4.

[^0]: ${ }^{1}$ This work was supported by a National Science Foundation grant, the Institute for Interdisciplinary Applications of Algebra and Combinatorics, and the Department of Mathematics of the University of California, Santa Barbara.

