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Abstract Using invariance by fixed-endpoints homotopies and a generalized notion of
symplectic Cayley transform, we prove a product formula for the Conley–Zehnder index of
continuous paths with arbitrary endpoints in the symplectic group. We discuss two appli-
cations of the formula, to the metaplectic group and to periodic solutions of Hamiltonian
systems.
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1 Introduction

The theory of periodic Hamiltonian orbits plays a fundamental role in many active parts of
both pure and applied mathematics. An object of choice for the qualitative and quantitative
study of these orbits is the Conley–Zehnder index, introduced in [4], and whose theory has
been further studied by many authors, see, e.g., [1,16,23] and the references therein. Let
us explain briefly what this index is about. Let H ∈ C∞(R2n × R,R) be a time-dependent
Hamiltonian, and denote by (F H

t ) the flow it determines; assume that z0 ∈ R2n is such that
F H

1 (z) = z, the mapping t �−→ F H
t (z) is a 1-periodic orbit through z0 ∈ R2n . Assume now

that the Jacobian matrix �(z) = DF1(z) of F H
1 satisfies the non-degeneracy condition
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det (�(z)− Id) �= 0; (1)

Set now z(t) = F H
t (z) and consider the linearized Hamiltonian system along z; its time-

evolution is governed by the ordinary differential equation u̇ = J D2 H(z, t)u whose flow
consists of the symplectic matrices �t = DF H

t (z). The path � : t �−→ �t , t ∈ ]0, 1]
lies in the symplectic group Sp(IR2n, ω); it starts from the identity and ends at �(z). If the
non-degeneracy condition (1) holds one associates to � an integer iCZ(�), the Conley–
Zehnder index of the path�, and whose vocation is to give an algebraic count of the number
of points t j in the interval ]0, 1[ for which �(z)− Id is not invertible. One should however
be aware of the fact that condition (1) is very restrictive; in particular it is never satisfied in
the simple case where H is time-independent! The aim of this article is to give a general
definition of the Conley–Zehnder index and to prove a formula for the index of the product of
two symplectic paths, obtaining as a consequence a formula for the Conley–Zehnder index of
an iterated periodic orbit. We observe that Cushman and Duistermaat [5] and Duistermaat [6]
also have addressed the question of the index of the iteration of periodic orbits; the methods
these authors use are however very different from ours. An extensive literature on the Ma-
slov index and its iteration properties has been produced by Long and his collaborators (see
for instance [19]), who obtained remarkable results on the multiplicity of periodic orbits of
Hamiltonian systems. Relations between the Masov index and the spectral flow are studied
in [3,4,24].

In order to obtain the product formula in the general case of arbitrary endpoints, in this
article we introduce the notion of generalized symplectic Cayley transform of a symplecto-
morphism. For each symplectomorphism ψ whose spectrum does not contain 1, we define a
real-analytic diffeomorphism Cψ between (an open subset of) the symplectic group and (an
open subset of) the space of symmetric operators on a real finite dimensional Hilbert space.
The classical symplectic Cayley transform is obtained whenψ = −Id. The generalized Cay-
ley transform is used to compute the correction term in the product formula (formula (10))
of symplectic paths.

This article is structured as follows: We begin by giving a working definition of the usual
Conley–Zehnder index; we take the opportunity to recall a few basic definitions and results
about some well-known objects from symplectic geometry such as the Hörmander, Wall–
Kashiwara, Maslov, and Leray indices; a good reference is the seminal paper [1] (see also
[17,21]). The last part of this Section is devoted to the introduction and study of the main
properties of a notion of symplectic Cayley transform which will be instrumental to our study
of the product formula.

In Sect. 3 we state and prove the product formula for the Conley–Zehnder index in a
very general setting in terms of the Hörmander index; in the special case where both paths
are non-degenerate this formula can be restated very simply using the symplectic Cayley
transform previously defined. The basic argument employed in that the proof of the product
formula uses a homotopy properties of paths in topological groups

In Sect. 4 we pursue our study of the product formula and discuss the problem of the
calculation of the index, an orbit which is iterated an arbitrary number of times; we obtain a
number of precise estimates. These results aim at applications in the theory of periodic Ham-
iltonian orbits and at applications to spectral flow formulae and Morse theory (see [4,24,25]).

Finally, in Sect. 5 we apply our results to the Weyl representation of metaplectic operators;
this question is of fundamental importance in the study of the semiclassical quantization of
non-integrable Hamiltonian systems (Gutzwiller’s theory, see [15,20,22]); in particular we
improve previous results [12].
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2 Preliminaries on Maslov, Conley–Zehnder, Kashiwara, Leray and Hörmander’s
indexes

Let V be a finite dimensional real vector space. By Bsym(V ) we mean the space of all
symmetric bilinear forms B : V × V → IR on V ; we will always identify a bilinear form
B: V × V → IR with the linear operator V � v �→ B(v, ·) ∈ V ∗, that will be denoted by
the same symbol B. For B ∈ Bsym(V ), we denote by n−(B), n+(B), respectively, the index
and the coindex of B. The signature of B is the difference sign(B) = n−(B) − n+(B). A
bilinear form B will be called nondegenerate if the linear map V � v �→ B(v, ·) ∈ V ∗ is an
isomorphism.

A symplectic form on V is a nondegenerate antisymmetric bilinear form ω : V × V → IR;
the standard example of a symplectic space is V = IRn ⊕ IRn∗ endowed with the canonical
symplectic form:

ω0 ((v, α), (w, β)) = β(v)− α(w), v,w ∈ IRn, α, β ∈ IRn∗
. (2)

The symplectic group Sp(V, ω) is the closed subgroup of GL(V ) consisting of those linear
maps on V that preserve ω.

Given a symplectic space (V, ω), with dim(V ) = 2n, a Lagrangian subspace of V is an
n-dimensional subspace L ⊂ V on which ω vanishes. The set of all Lagrangian subspaces of
V , denoted by� = �(V, ω), has the structure of a compact, real-analytic submanifold of the
Grassmannian of all n-dimensional subspaces of V . The dimension of � equals 1

2 n(n + 1),
and a real-analytic atlas on � is given as follows.

For all L ∈ � and k ∈ {0, . . . , n}, let �0(L) denote the set of all Lagrangian subspaces
that are transverse to L , which is a dense open subset of �. Given a pair L0, L1 ∈ � of
complementary Lagrangians, i.e., L0 ∩ L1 = {0}, then one defines a map:

ϕL0,L1 : �0(L1) −→ Bsym(L0)

as follows. Any Lagrangian L ∈ �0(L1) is the graph of a unique linear map T : L0 → L1;
then, ϕL0,L1 is defined to be the restriction of the bilinear map ω(T ·, ·) to L0 × L0. It is easy
to see that, due to the fact that L is Lagrangian, such bilinear map is symmetric.

Given L1 ∈ � and L0, L ∈ �0(L1), the bilinear forms ϕL0,L1(L) ∈ Bsym(L0) and
ϕL ,L1(L0) ∈ Bsym(L) are related by the identity:

η∗ϕL ,L1(L0) = −ϕL0,L1(L),

where η : L0 → L is the isomorphism given by the restriction to L0 of the projection
π L : L ⊕ L1 ∼= V → L . In particular:

sign
(
ϕL ,L1(L0)

) = −sign
(
ϕL0,L1(L)

)
. (3)

We need another identity relating the charts on�; assume that L0, L1, L , L ′ are Lagrangian
subspaces of V , with L0, L , L ′ transversal to L1. Then:

ϕL ,L1(L
′) = η∗

0

(
ϕL0,L1(L

′)− ϕL0,L1(L)
)
,

where η0 : L → L0 is the isomorphism given by the restriction to L of the projection
L0 ⊕ L1 ∼= V → L0. Hence:

sign
(
ϕL ,L1(L

′)
) = sign

(
ϕL0,L1(L

′)− ϕL0,L1(L)
)
. (4)

Given Lagrangians L0, L1 ⊂ V with L0 ∩ L1 = {0}, then there exists a symplectic
isomorphism (symplectomorphism) φ : V → IRn ⊕ IRn∗ (i.e., the pull-back φ∗ω0 coincides
with ω) such that φ(L0) = {0} ⊕ IRn∗ and φ(L1) = IRn ⊕ {0}.
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2.1 Maslov index, Wall–Kashiwara’s index and Leray index

Denote by π(�) the fundamental groupoid of �, i.e., the set of fixed-endpoints homotopy
classes [γ ] of continuous paths γ in�, endowed with the partial operation of concatenation

. For all L0 ∈ �, there exists a unique 1

2 Z-valued groupoid homomorphism µL0 on π(�)
such that:

µL0 ([γ ]) = 1
2 sign

(
ϕL0,L1(γ (1))

) − 1
2 sign

(
ϕL0,L1(γ (0))

)
(5)

for all continuous curve γ : [0, 1] → �0(L1) and for all L1 ∈ �0(L0).

Definition 2.1 The map µL0 : π(�) → 1
2 Z is called the L0-Maslov index.

The Maslov index has the following property (symplectic invariance): if φ : (V, ω) →
(V ′, ω′) is a symplectomorphism and γ : [a, b] → �(V, ω) is continuous, then:

µL0(γ ) = µφ(L0) (φ ◦ γ ).
Moreover, replacing the symplectic form ω by −ω produces a change in the sign of µL0 .

Let (L0, L1, L2) be a triple of elements of �; the Wall–Kashiwara index (see [1,26]) of
that triple is the signature τ(L0, L1, L2) of the quadratic form

L0 ⊕ L1 ⊕ L2 � (z0, z1, z2) �−→ ω(z0, z1)+ ω(z1, z2)+ ω(z2, z0) ∈ IR.

It is a Sp(V, ω)-invariant totally antisymmetric 2-cocycle on �. Let π : �∞ −→ � be the
universal covering of�; the Leray index on�∞ is the unique Z-valued 1-cochain µ on�∞
which is locally constant on {(L∞, L ′∞) : π(L∞) ∩ π(L ′∞) = 0} and such that ∂µ = π∗τ
(∂ the Čech coboundary operator). It is a symplectic invariant, in the sense that:

µ(�∞L∞,�∞L ′∞) = µ(L∞, L ′∞)

for all�∞ ∈ Sp∞(V, ω) (the universal covering group of Sp(V, ω)). The Leray and Maslov
indices are related in the following way: identifying L∞ ∈ �∞ with the fixed-endpoints
homotopy classes of continuous paths γ joining L0 to L , we have (see [11])

µL0 ([γ ]) = 1
2

[
µ(γ (1)∞, L0,∞)− µ(γ (0)∞, L0,∞)

]
(6)

where L0,∞ is the homotopy class of any loop through L0, γ (0)∞ the homotopy class of
any path γ0 joining L0 to γ (0), and γ (1)∞ that of the concatenation γ0 
 γ . In view of the
cochain relation ∂µ = π∗τ this formula can be rewritten

µL0 ([γ ]) = 1
2

[
µ (γ (1)∞, γ (0)∞)+ τ (L0, γ (0), γ (1))

]
. (7)

(See Cappell et al. [1] for a comparative study of Leray and related indexes).

2.2 Hörmander’s index

Given four Lagrangians L0, L1, L ′
0, L ′

1 ∈ � and any continuous curve γ : [a, b] → � such
that γ (a) = L ′

0 and γ (b) = L ′
1, then the value of the quantity µL1(γ ) − µL0(γ ) does not

depend on the choice of γ .

Definition 2.2 Given L0, L1, L ′
0, L ′

1 ∈ �, the Hörmander index q(L0, L1; L ′
0, L ′

1) is the
half-integer number µL1(γ )− µL0(γ ), where γ : [a, b] → � is any continuous curve with
γ (a) = L ′

0 and γ (b) = L ′
1.

123



Ann Glob Anal Geom (2008) 34:167–183 171

It follows from (7), the property ∂µ = π∗τ , and the fact that µ(L∞, L ′∞) is independent
of the choice of base point in � that we have

−q (L0, L1; γ (0), γ (1)) = µL0([γ ])− µL1([γ ])
= 1

2

[
τ(L0, γ (0), γ (1))− τ(L1, γ (0), γ (1))

]
.

2.3 The Conley–Zehnder index

Given a symplectic space (V, ω), consider the direct sum V 2 = V ⊕ V , endowed with the
symplectic form ω2 = ω ⊕ (−ω), defined by:

ω2 ((v1, v2), (w1, w2)) = ω(v1, v2)− ω(w1, w2), v1, v2, w1, w2 ∈ V .

Given a linear operator T : V → V , we will denote by Gr(T ) ⊂ V 2 its graph. Let � ⊂ V 2

denote the diagonal; if� ∈ Sp(V, ω), then Gr(�) = (Id⊕�)[�] ∈ �(V 2, ω2); in particular
� = Gr(Id) and �o = {(v,−v) : v ∈ V } = Gr(−Id) are Lagrangian subspaces of V 2. If
�1,�2 ∈ Sp(V, ω), then �1 ⊕�2 : V 2 → V 2 belongs to Sp(V 2, ω2).

Definition 2.3 Given a continuous curve � in Sp(V, ω), the Conley–Zehnder index iCZ(�)

of � is the �-Maslov index of the curve t �→ Gr (�(t)) ∈ �(V 2, ω2):

iCZ(�) := µ� (t �→ Gr(�(t))).

The above is one of the possible definitions of the notion of Conley–Zehnder index (see
[4,23,25]). The Conley–Zehnder index is additive by concatenation and invariant by fixed
endpoint homotopies.

Consider the map A : V 2 → V 2 given by A(v1, v2) = (v2, v1); A is an anti-
symplectomorphism of (V 2, ω2), i.e., A∗ω2 = −ω2. Clearly, A = A−1 and A[�] = �;
more generally, if S : V → V is a bijection, then A[Gr(S)] = Gr(S−1). It follows that, given
a continuous path � : [a, b] → Sp(V, ω), one has:

iCZ(�
−1) = µ�

(
t �→ Gr(�−1)

) = µ� (t �→ A [Gr(�(t))])

= −µA[�] (t �→ Gr(�(t))) = −µ� (t �→ Gr(�(t))) = −iCZ(�).

Moreover, given four Lagrangians L0, L1, L ′
0, L ′

1 ∈ �:

q(A[L0],A[L1]; A[L ′
0],A[L ′

1]) = −q(L0, L1; L ′
0, L ′

1).

Lemma 2.4 Let � : [a, b] → Sp(V, ω) be a continuous curve, and let ψ∗ ∈ Sp(V, ω) be
fixed. Denote byψ∗·� and by�·ψ∗ the continuous curves in Sp(V, ω) given by t �→ ψ∗·�(t)
and t �→ �(t) · ψ∗, respectively. Then:

iCZ(ψ∗ ·�) = iCZ(� · ψ∗) = iCZ(�)+ q
(
�,Gr(ψ−1∗ ); Gr (�(a)),Gr (�(b))

)
.

Proof A direct computation, as follows:

iCZ(ψ∗ ·�) = µ� (t �→ Gr(ψ∗�(t))) = µ� (t �→ (Id ⊕ ψ∗)(Id ⊕�(t)))[�])
symplectic invariance= µ

(Id⊕ψ−1∗ )[�] (t �→ (Id ⊕�(t)))[�])
= µ� (t �→ (Id ⊕�(t)))[�])+ q

(
�, (Id ⊕ ψ−1∗ )[�]; Gr (�(a)),Gr (�(b))

)

= iCZ(�)+ q
(
�,Gr(ψ−1∗ ); Gr (�(a)),Gr (�(b))

)
.
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Similarly,

iCZ(� · ψ∗) = −iCZ(ψ
−1∗ ·�−1)

= − [
iCZ(�

−1)+ q
(
�,Gr(ψ∗); Gr

(
�(a)−1),Gr

(
�(b)−1))]

= iCZ(�)+ q
(A[�],A[Gr(ψ∗)]; A [

Gr
(
�(a)−1)],A [

Gr
(
�(b)−1)])

= iCZ(�)+ q
(
�,Gr(ψ−1∗ ); Gr (�(a)),Gr (�(b))

)
.

��
2.4 The symplectic Cayley transform

Let us consider the two transverse Lagrangians �,�o ∈ �(V 2, ω2). Assume that � ∈
Sp(V, ω) does not have the eigenvalue 1, i.e., that Id −� is invertible or, equivalently, that
Gr(�) is transverse to �.

An immediate computation shows that ϕ�o,� (Gr(�)) is identified with the symmetric
bilinear form 2ω

(
(Id +�)(Id −�)−1·, ·) on the vector space V . In particular, if J is a com-

plex structure on V and 〈·, ·〉 is a positive definite inner product on V with 〈J ·, ·〉 = ω, then
the linear operator J (Id +�)(Id −�)−1 : V → V is symmetric relatively to 〈·, ·〉. In what
follows, we will assume that the vector space V is endowed with a positive definite inner
product 〈·, ·〉 and with a complex structure J as above. We will denote by Lsa(V ) the space
of symmetric linear operators on V and we will implicitly identify the spaces Bsym(V ) and
Lsa(V ) by the obvious identification.

Definition 2.5 Given objects V , ω, J and 〈·, ·〉 as above, and given � ∈ Sp(V, ω) with
(Id−�) invertible, then the symplectic Cayley transform M� of� is the symmetric operator
1
2 J (Id +�)(Id −�)−1.

One checks immediately the equality: M�−1 = −M�.
The notion of symplectic Cayley transform was originally introduced by Mehlig and

Wilkinson (see [20]) and further studied in [12] and in [13]. We observe that the sign con-
vention used in this paper differs from the original one.

In order to deal with symplectomorphisms whose spectrum contains 1, we need to
introduce a generalization of the notion of Cayley transform.

For a fixed ψ ∈ Sp(V, ω), we denote by Spψ(V, ω) the dense open subset of Sp(V, ω)
consisting of those� ∈ Sp(V, ω) such that�−ψ is invertible. Whenψ = Id, it is customary
to write SpId(V, ω) = Sp0(V, ω).

Lemma 2.6 Let ψ ∈ Sp0(V, ω) be fixed. For all � ∈ Spψ(V, ω), the linear operator

Cψ(�) = J (ψ − Id)(�− ψ)−1(�− Id) : V −→ V (8)

is symmetric. Moreover, Ker
(Cψ(�)

) = Ker(�− Id).

Proof The assumption ψ ∈ Sp0(V, ω) says that Gr(ψ) ∈ �(V 2, ω2) is transverse to�; the
assumption that � ∈ Spψ(V, ω) says that Gr(�) ∈ �(V 2, ω2) is transverse to Gr(ψ). A
direct calculation shows that the symmetric bilinear form

ϕ�,Gr(ψ) (Gr(�)) ∈ Bsym(�)

can be identified (via the isomorphism V � v �→ (v, v) ∈ �) with the bilinear form
ω

(
(Id − ψ)(�− ψ)−1(Id −�)·, ·) = 〈Cψ(�)·, ·〉 on V . From this observation, the conclu-

sion follows. The last statement in the thesis is obvious. ��
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Definition 2.7 Let ψ ∈ Sp0(V, ω) be fixed. The map Cψ : Spψ(V, ω) → Lsa(V ) defined in
Lemma 2.6 is called the ψ-Cayley transform.

3 The product formula

Let us start with a simple result on signature of the difference of symmetric bilinear forms
(a similar result is proven in [23]):

Lemma 3.1 Let V be a finite dimensional real vector space and let U, Z ∈ Bsym(V ) be
nondegenerate symmetric bilinear forms on V such that U − Z is also nondegenerate. Then,
U−1 − Z−1 is nondegenerate and:

sign(Z)− sign(U ) = sign(Z−1 − U−1)− sign(U − Z).

Proof Define the nondegenerate symmetric bilinear form B ∈ Bsym(V 2) by

B((a1, b1), (a2, b2)) = Z(a1, a2)− U (b1, b2).

Identifying V with � by v �→ (v, v), one computes easily B|� = Z − U , which is
nondegenerate. Denote by �⊥B the B-orthogonal complement of �; identifying V with
�⊥B by V � V → (v,U−1 Zv) ∈ �⊥B , it is easily seen that B|�⊥B = Z(Z−1 − U−1)Z .
The conclusion follows. ��
Proposition 3.2 Let (V, ω) be a symplectic vector space, and let L , L ′, L0, L1 ∈ �(V, ω)
be four Lagrangians, with L , L ′, L1 transverse to L0. Then:

q(L0, L; L0, L ′) = 1
2 sign

(
ϕL1,L0(L)− ϕL1,L0(L

′)
)
.

Proof Up to a symplectic isomorphism, we can assume V = IRn ⊕IRn∗, withω the canonical
symplectic form ω0 (see (2)), L0 = {0} ⊕ IRn∗ and L1 = IRn ⊕ {0}; transversality of L and
L ′ with L0 says that we can write L = Gr(T ), L ′ = Gr(T ′), where T, T ′ : IRn → IRn∗ are
self-adjoint linear maps. By definition, the Hörmander’s index q(L0, L; L0, L ′) is given by:

q(L0, L; L0, L ′) = µL(γ )− µL0(γ ),

where γ : [a, b] → � is an arbitrary continuous curve with γ (a) = L0 and γ (b) = L ′.
In order to compute the two Maslov indexes in the formula above, let us choose a Lagrang-

ian L̃1 which is transverse simultaneously to the three Lagrangians L0, L , and L ′. We can
choose, for instance, L̃1 = Gr(S), where S : IRn → IRn∗ is a self-adjoint linear operator; in
this way, L̃1 is transverse to L0. Transversality of L̃1 to L and L ′ is equivalent to T − S and
T ′ − S being invertible. Since L0, L ′ ∈ �0(L̃1), and�0(L̃1) is arc-connected, then one can
choose a curve γ with the required properties whose image is contained in �0(L̃1). Using
(5), we then get:

q(L0, L; L0, L ′)
= 1

2

[
sign

(
ϕL ,L̃1

(L ′)
) − sign

(
ϕL ,L̃1

(L0)
) − sign

(
ϕL0,L̃1

(L ′)
) + sign

(
ϕL0,L̃1

(L0)
)]
.

A direct calculation gives:

• ϕL1,L0(L) ∼= T : IRn → IRn∗;
• ϕL1,L0(L

′) ∼= T ′ : IRn → IRn∗;
• ϕL0,L̃1

(L0) = 0;
• ϕL0,L̃1

(L ′) ∼= (T ′ − S)−1 : IRn∗ → IRn ;
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• ϕL ,L̃1
(L0) is identified� with the symmetric bilinear form on IRn given by the self-adjoint

linear operator S − T : IRn → IRn∗;
• ϕL ,L̃1

(L ′) is identified with the symmetric bilinear form on IRn given by:

(S − T )+ (T − S)(S − T ′)−1(S − T ) : IRn → IRn∗
.

Using Lemma 3.1 and keeping in mind that sign
(
(S − T )+ (T − S)(S − T ′)−1(S − T )

) =
sign

(
(S − T )−1 − (S − T ′)−1

)
, from the equalities above one obtains:

q(L0, L; L0, L ′) = 1
2 sign(T − T ′),

which concludes the proof. ��
Lemma 3.3 Given continuous paths �i : [0, 1] → Sp(V, ω), i = 1, 2, then the pointwise
product �(t) = �1(t) · �2(t) is fixed-endpoints homotopic to the concatenation �̃ 
 �̃2,
where �̃i: [0, 1] → Sp(V, ω) is given by:

�̃1(t) = �1(t) ·�2(0), �̃2(t) = �1(1) ·�2(t), ∀ t ∈ [0, 1].
In particular, iCZ(�) = iCZ(�̃1)+ iCZ(�̃2).

Proof The curve �1 is fixed-endpoints homotopic to the curve �1 defined by:

�1(t) =
{
�1(2t), if t ∈ [

0, 1
2

];
�1(1), if t ∈ [ 1

2 , 1
]
,

while �2 is fixed-endpoints homotopic to �2, given by:

�2(t) =
{
�2(0), if t ∈ [

0, 1
2

];
�2(2t − 1), if t ∈ [ 1

2 , 1
]
,

hence the pointwise product �1 ·�2 is fixed-endpoints homotopic to the pointwise product
�1 ·�2. Clearly, �1 ·�2 = �̃1 
 �̃2. ��

An immediate application of Lemma 2.4 and Lemma 3.3 gives:

Corollary 3.4 Given continuous paths �i : [0, 1] → Sp(V, ω), i = 1, 2, then:

iCZ(�1 ·�2) = iCZ(�1)+ iCZ(�2)

+q
(
�,Gr

(
�2(0)

−1); Gr (�1(0)),Gr (�1(1))
)

+q
(
�,Gr

(
�1(1)

−1); Gr (�2(0)),Gr (�2(1))
)
. (9)

In particular, if �2 is a homotopically trivial loop starting at the identity of Sp(V, ω), then
iCZ(�1 ·�2) = iCZ(�1).

Let us now consider the case that the paths�1 and�2 start at the identity of Sp(V, ω), in
which case obviously Gr (�1(0)) = Gr (�2(0)) = �, and the term

q
(
�,Gr

(
�2(0)

−1); Gr (�1(0)),Gr (�1(1))
) = q (�,�;�,Gr (�1(1)))

in equality (9) vanishes.

� Here, L = Gr(T ) is identified with IRn via the map: IRn � v �→ (v, T v) ∈ L .
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Corollary 3.5 Let �i : [0, 1] → Sp(V, ω) be continuous paths with �1(0) = �2(0) = Id
and with Id −�1(1), Id −�2(1) invertible. Then:

iCZ(�1 ·�2) = iCZ(�2 ·�1) = iCZ(�1)+ iCZ(�2)− 1
2 sign

(
M�1(1) + M�2(1)

)
. (10)

Proof Formula (10) follows easily from (9), using Proposition 3.2 applied to the symplec-
tic space (V 2, ω2) and to the Lagrangians L0 = �, L1 = �o, L = Gr

(
�1(1)−1

)
and

L ′ = Gr (�2(1)). ��

The result of Corollary 3.5 can be extended to the case of paths with arbitrary endpoints
in the symplectic group, using our generalized notion of symplectic Cayley transform.

Proposition 3.6 Let φ1, φ2, ψ ∈ Sp(V, ω) be fixed; assume that ψ ∈ Sp0(V, ω) and that
φ1, φ2 ∈ Spψ(V, ω). Then, the Hörmander index q (�,Gr(φ1);�,Gr(φ2)) is given by:

q (�,Gr(φ1);�,Gr(φ2)) = 1
2

[
sign

(Cψ(φ2)− Cψ(φ1)
) − sign

(Cψ(φ2)
) +sign

(Cψ(φ1)
)]
.

If φ1, φ2 ∈ Sp0(V, ω), then:

q (�,Gr(φ1);�,Gr(φ2)) = 1
2 sign

(Cψ(φ1)
−1 − Cψ(φ2)

−1).

Proof By definition of Hörmander index, q (�,Gr(φ1);�,Gr(φ2)) is given by:

µGr(φ1)(γ )− µ�(γ ),

where γ : [a, b] → �(V 2, ω2) is any continuous curve with γ (a) = � and γ (b) = Gr(φ2).
We can choose one such curve γ whose image remains inside the set of Lagrangians of
(V 2, ω2) that are transversal to Gr(ψ). Then, by definition of Maslov index, we have:

µGr(φ1)(γ )− µ�(γ ) = 1
2

[
sign

(
ϕGr(φ1),Gr(ψ) (Gr(φ2))

) − sign
(
ϕGr(φ1),Gr(ψ)(�)

)]

− 1
2

[
sign

(
ϕ�,Gr(ψ) (Gr(φ2))

) − sign
(
ϕ�,Gr(ψ)(�)

)]
.

The first equality in the thesis is now obtained easily, using the following:

• ϕ�,Gr(ψ) (Gr(φ2)) = Cψ(φ2);

• sign
(
ϕGr(φ1),Gr(ψ)(�)

) by (3)= −sign
(
ϕ�,Gr(ψ) (Gr(φ1))

) = −sign
(Cψ(φ1)

)
;

• sign
(
ϕGr(φ1),Gr(ψ) (Gr(φ2))

)by (4)= sign
(
ϕ�,Gr(ψ) (Gr(φ2))− ϕ�,Gr(ψ) (Gr(φ1))

)

= sign
(Cψ(φ2)− Cψ(φ1)

)
;

• ϕ�,Gr(ψ)(�) = 0.

Finally, if φ1, φ2 ∈ Sp0(V, ω), i.e., if Cψ(φ1) and Cψ(φ2) are invertible, then, by
Lemma 3.1:

sign
(Cψ(φ2)− Cψ(φ1)

) − sign
(Cψ(φ2)

) + sign
(Cψ(φ1)

) = sign
(Cψ(φ1)

−1 − Cψ(φ2)
−1),

which concludes the proof. ��
Corollary 3.7 Let �i : [0, 1] → Sp(V, ω) be continuous paths with �1(0) = �2(0) = Id,
and let ψ ∈ Sp0(V, ω) be such that �1(1),�2(1) ∈ Spψ(V, ω). Then:

iCZ(�1 ·�2) = iCZ(�1)+ iCZ(�2)+ 1
2 sign

[Cψ (�2(1))− Cψ (�1(1))
]

− 1
2 sign

[Cψ (�2(1)))
] + 1

2 sign
[Cψ (�1(1)))

]
. (11)

If �: [0, 1] → Sp(V, ω) is a continuous path, then:
∣∣∣|iCZ(�

N )| − N |iCZ(�)|
∣∣∣ ≤ 1

2 n(N − 1), (12)

for all N ≥ 1.
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Proof The proof of formula (11) is analogous to the proof of (10), where one replaces the chart
ϕ�o,� by ϕ�,Gr(ψ), using the result of Proposition 3.6 for the computation of the Hörmander
index. The inequality in formula (12) is obtained readily from (11) using induction on N ;
for such induction argument one has to keep in mind the following observations.

• One has to use Cayley transform Cψ , where ψ ∈ Sp0(V, ω) is such that all the pow-
ers �(1)N belong to Spψ(V, ω). The set of such ψ’s is non empty, and in fact dense
in Sp(V, ω); namely, this set is the intersection of the countable family of dense open
subsets Sp0(V, ω)∩ Sp�(1) j (V, ω), j ≥ 1, and the claims follows from Baire’s theorem.

• Given any pair B1, B2 of symmetric bilinear form on any n-dimensional real vector space,
then

|sign(B2 − B1)− sign(B2)− sign(B1)| ≤ n.

Namely, if B1 and B2 are nondegenerate, the claim follows immediately from Lemma 3.1;
for the general case simply use an argument of density and continuity. ��

The inequality in formula (12) tells us that if |iCZ(�)| ≥ n
2 , then

∣
∣iCZ(�

N )
∣
∣ has a linear

growth in N .

4 Iteration formulae

Let us now discuss the problem of determining the Conley–Zehnder index and the Maslov
index of the iteration of a periodic solution of a Hamiltonian system.

Let (M,�) be a 2n-dimensional symplectic manifold, and let H: M×IR → IR be a time-
dependent smooth Hamiltonian. Assume that H is T -periodic in time, and that z : [0, T ] → M
is a solution of H (i.e., ż = �H(z) such that z(0) = z(T ), where �H is the time-dependent
Hamiltonian vector field, defined by�( �H , ·) = dH ). Then, the iterates z(N ) of z, defined as
the concatenation:

z(N ) = z 
 · · · 
 z︸ ︷︷ ︸
N -times

: [0, N T ] −→ M

are also solutions of H . Assume that it is given a periodic symplectic trivialization of the
tangent bundle of M along z (i.e., of the pull-back z∗T M), which consists of a smooth family
� = {ψt }t∈[0,T ] of symplectomorphisms ψt : Tz(0)M → Tz(t)M with ψ0 = ψT = Id. By
a simple orientability argument, periodic symplectic trivializations along periodic solutions
always exist. By the periodicity assumption, we have a smooth extension IR � t �→ ψt by
setting ψt+N T = ψt for all t ∈ [0, T ].

Denote by F H
t,t ′ : M → M the (maximal) flow of �H ,� i.e., F H

t,t ′(p) = γ (t ′), where γ is

the unique integral curve of the time-dependent vector field �H on M satisfying γ (t) = p.
It is well known that for all t, t ′, the F H

t,t ′ is a symplectomorphism among open subsets of

M. Left composition with ψ−1
t gives a smooth map IR � t �→ �(t) = ψ−1

t ◦ F H
0,t (z(0)) of

linear symplectomorphisms of Tz(0)M; clearly X (t) = � ′(t)�(t)−1 lies in the Lie algebra
sp

(
Tz(0)M,�z(0)

)
of the symplectic group Sp

(
Tz(0)M,�z(0)

)
.

The linearized Hamilton equation along z is the linear system

v′(t) = X (t)v(t), (13)

� For our purposes, we will not be interested in questions of global existence of the flow F H .
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in Tz(0)M; the fundamental solution of this linear system is a smooth symplectic path �:
IR → Sp

(
Tz(0)M,�z(0)

)
that satisfies �(0) = Id and �′ = X�.

Definition 4.1 The Conley–Zehnder index of the solution z(1) associated to the symplectic
trivialization �, denoted by iCZ(z(1), �), is the Conley–Zehnder of the path in
Sp

(
Tz(0)M,�z(0)

)
obtained by restriction of the fundamental solution � to the interval

[0, T ].
Remark 4.2 It is known that, under suitable topological condition on the manifold M and
on the loop z, the Conley–Zehnder index iCZ(z(1), �) will not depend on the choice of the
trivialization �. For instance, if z : S1 → M is homotopically trivial, i.e., if z admits a
continuous extension to the 2-disk D2, then one can choose trivializations � of z∗(T M)

that admit continuous extensions to D2. In this situation, if the first Chern class c1(M) has
vanishing integral on every 2-sphere of M, then the Conley–Zehnder index of z will not
depend on �. Namely, in this case any two trivializations in the required class differ by a
loop in the symplectic group which is homotopically trivial which, by Corollary 3.4, does
not alter the value of the Conley–Zehnder index.

Using the results of Sect. 3, we can estimate the Conley–Zehnder index of the iterated of
a periodic Hamiltonian solution as follows:

Proposition 4.3 For all N ≥ 1, define �(N ) : [0, N T ] → Sp
(
Tz(0)M,�z(0)

)
to be the

restriction to the interval [0, N T ] of the fundamental solution � of (13). Then, �(N ) is
fixed-endpoint homotopic to the N th power of �(1).

Proof Use the group law�(t + T ) = �(t) ·�(T ), and argue as in the proof of Lemma 3.3.
��

Corollary 4.4 In the above notations, the following inequality holds:
∣∣∣iCZ

(
z(N ), �

)
− N · iCZ

(
z(1), �

)∣∣∣ ≤ 1
2 n(N − 1).

In particular,
∣∣iCZ

(
z(N ), �

)∣∣ and
∣∣µL0

(
z(N ), �

)∣∣ have sublinear growth in N; moreover, if∣∣iCZ
(
z(1), �

)∣∣ > 1
2 n

(
resp., ifµL0

(
z(1), �

)
> 7

2 n), then iCZ
(
z(N ), �

) (
resp.,µL0

(
z(N ), �

) )

has linear growth in N.

Proof Follows immediately from Corollary 3.7 and Proposition 4.3. ��

5 The Weyl representation of Mp(2n,RRR)

5.1 The metaplectic group

We say that a quadratic form W : R
n × R

n −→ R is “non-degenerate” if it can be written

W (x, x ′) = 1
2 〈Px, x〉 − 〈

K x, x ′〉 + 1
2

〈
Qx ′, x ′〉 (14)

where P and Q are symmetric and K invertible. The data of such a quadratic form determine
a symplectomorphism�W ∈ Sp(2nIR), whose matrix in the canonical basis of IR2n is written
in n × n blocks as:

(
K −1 Q K −1

P K −1 Q − K T K −1 P

)

.

Set L0 = {0} × IRn ; the symplectomorphism �W can be characterized by the properties:
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• �W (L0) ∩ L0 = {0}
• setting z = (x, p), z′ = (x ′, p′) ∈ IR2n , then z = �W (z′) if and only if p = ∂x W (x, x ′)

and p′ = −∂x ′ W (x, x ′).

Definition 5.1 �W is the free symplectic automorphism determined by the generating func-
tion W .

Let S(Rn) be the Schwartz space of rapidly decreasing funcions on IRn . We associate to
�W the Fourier integral operator �̂W,m : S(IRn) −→ S(IRn) defined by

�̂W,m f (x) = (2π i)−n/2�(W )

∫
eiW (x,x ′) f (x ′)dn x ′

where �(W ) = im√| det K | and m corresponds to a choice of arg det K through

mπ = arg(det K ) mod 4π

(for each K there are thus two choices of m modulo 4). The operators �̂W,m extend by con-
tinuity to unitary operators on L2(IRn); the inverse of �̂W,m is �̂W ∗,m∗ with W ∗(x, x ′) =
−W (x ′, x) and m∗ = n − m. These operators thus generate a group of unitary operators
on L2(IRn), the metaplectic group Mp(2n, IR), which is a double cover of Sp(2n, IR); the
projection πMp : Mp(2n, IR) −→ Sp(2n, IR) is unambiguously determined by the condition
πMp(�̂W,m) = �W . We have (see [12]):

Proposition 5.2 For every �̂ ∈ Mp(2n, IR) there exist two generating functions W and W ′
and integers m,m′ such that �̂ = �̂W,m�̂W ′,m′ and �W ,�W ′ ∈ Sp0(2n, IR); the condition
�W ∈ Sp0(2n, IR) is equivalent to det(P + Q − L − LT ) �= 0.

The value modulo 4 of m + m′ − n−(P ′ + Q) (recall the n−(R) denotes the index of the
symmetric matrix R) is independent of the choice of factorization, and thus only depends on
�̂ (see [8]):

Definition 5.3 The class modulo 4 of m + m′ − n−(P ′ + Q) is called the Maslov index of
�̂ ∈ Mp(2n,R); we denote it by m(�̂). We call the function m : Mp(2n, IR) −→ Z4 thus
defined “Maslov index” on Mp(2n, IR).

Let Inert be the 2-cocycle on � defined by

Inert(L , L ′, L ′′) = 1
2 (τ (L , L ′, L ′′)+ n + ∂ dim(L , L ′, L ′′) (15)

with ∂ dim is the Čech coboundary of the 1-cochain dim(L , L ′) = dim(L ∩ L ′), that is

∂ dim(L , L ′, L ′′) = dim(L ∩ L ′)− dim(L ∩ L ′′)+ dim(L ′ ∩ L ′′).

We have (see [8]):

Proposition 5.4 We have m(�̂W,m) = [m]4 and the Maslov index on Mp(2n, IR) is related
to the Leray index µ by the formula

m(�̂) = [ 1
2 (µ(�∞L0,∞, L0,∞)+ n + dim(�L0, L0))

]
4 (16)

where �∞ is any element of Sp∞(2n, IR) having projection �̂ ∈ Mp(2n, IR) and L0,∞ is
any element of �∞ covering L0 = 0 × IRn.

It follows from formula (16) and the properties of the Leray index that

m(�̂�̂′) = m(�̂)+ m(�̂′)+ [
Inert(L0,�L0,��

′L0)
]

4 . (17)
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5.2 Weyl representation and Conley–Zehnder index

Defining, as in [20], the operator Rν(φ) associated to (φ, ν) ∈ Sp0(2n, IR)×Z by the Bochner
integral

Rν(φ) = ( 1
2π

)n iν√| det(φ − Id)|
∫

e
i
2 〈Mφ z,z〉T (z)d2nz

where T (z) is the Heisenberg–Weyl operator, we have (see [12], Proposition 6, Sect. 3.2 and
Proposition 10, Sect. 3.3):

• Let φW be the free symplectic matrix generated by the quadratic form (14). We have
�̂W,m = Rν(φW ) if and only ν = ν(�̂W,m) with

ν(�̂W,m) ≡ m − n−(Wxx ) mod 4 (18)

where n−(Wxx ) is the index of inertia of the Hessian matrix Wxx of the function x �−→
W (x, x);

• Let �̂ ∈ Mp(2n, IR) be such that πMp(�̂) ∈ Sp0(2n, IR). If φ = φWφW ′ and

�̂ = Rν(�̂W,m )
(φW )Rν(�̂W ′,m′ )(φW ′)

then �̂ = Rν(�̂)(φ) with�

ν(�̂) ≡ ν(�̂W,m)+ ν(�̂W ′,m′)− 1
2 sign(MφW + Mφ′

W
) mod 4. (19)

These formulae suggest that there is a relation between the integer ν(�̂) and the Conley–
Zehnder index of some symplectic path ending at φ = πMp(�̂). To study this relation we
will need the following two lemmas:

Lemma 5.5 (i) Let (L , L ′) ∈ (�(V, ω))2. If L ∩ L ′′ = 0 then τ(L , L ′, L ′′) is the signature
of the quadratic form

Q′(z′) = ω(PrL L ′′ z′, z′) = ω(z′,PrL ′′L z′)

on L ′, where PrL L ′′ is the projection onto L along L ′′ and PrL ′′L = Id − PrL L ′′ is the
projection on L ′′ along L. (ii) Let (L , L ′, L ′′) be such that L = L ∩ L ′ + L ∩ L ′′. Then
τ(L , L ′, L ′′) = 0.

(See, e.g., [18] for a proof).

Lemma 5.6 Let � : [0, 1] −→ Sp(2n, IR) be a continuous path such that �(0) = Id,
�(1) = φ ∈ Sp0(2n, IR). Then

iCZ(�) = − 1
2µ

2((Id ⊕ φ)∞�∞,�∞) (20)

where�∞ is any element of�∞(IR4n, ω2) with projection� = {(z, z) : z ∈ IR2n} and (Id ⊕
φ)∞ ∈ Sp∞(IR4n, ω2) is the homotopy class in Sp(IR4n, ω2) of the path t �−→ {(z,�(t)z) :
z ∈ IR2n}, 0 ≤ t ≤ 1.

Proof See [13]. ��

It follows from the properties of the Leray index (see [9]) that the right-hand side of (20)
does not depend on the choice of �∞ covering �.)

Let us now prove the main result of this section:

� Recall that the Cayley transform used in this paper and that in [12] differ by a sign.

123



180 Ann Glob Anal Geom (2008) 34:167–183

Proposition 5.7 Let �∞ ∈ Sp∞(2n, IR) be the homotopy class of a continuous path � :
[0, 1] −→ Sp(2n, IR) such that �(0) = Id, �(1) = φ ∈ Sp0(2n, IR). Let �̂ the image of
�∞ in Mp(2n, IR) by the covering mapping Sp∞(2n, IR) −→ Mp(2n, IR). We have

ν(�̂) ≡ −iCZ(�) mod 4. (21)

Proof Since �̂ can be written as a product �̂W,m�̂W ′,m′ , formula (19) and the product for-
mula (9) in Corollary 3.5 reduce the proof to the case �̂ = �̂W,m . In view of Lemma 5.6 and
(18) it is sufficient to show that

m − n−(Wxx ) ≡ 1
2µ

2((Id ⊕ φW )∞�∞,�∞) mod 4. (22)

We will divide the proof of (22) in three steps. We denote as before byω2 the symplectic form
ω⊕ (−ω) on IR4n = IR2n ⊕ IR2n ; the corresponding Wall–Kashiwara and Leray indexes are
τ 2 and µ2.
(I) Let L(2) ∈ �(IR4n, ω2). Let L(2)∞ ∈ �∞(IR4n, ω2) cover L(2) ∈ �(IR4n, ω2). Using the
property ∂µ2 = π∗τ 2 we get after a few calculations

µ2((Id ⊕ φW )∞�∞,�∞) = (µ2((Id ⊕ φW )∞L(2)∞ , L(2)∞ )

+ τ 2((Id ⊕ φW )�,�, L(2))

− τ 2((Id ⊕ φW )�, (Id ⊕ φW )L
(2), L(2))).

Choosing in particular L(2) = L(2)0 = L0 ⊕ L0 (recall: L0 = {0} × IRn) we get

µ2
(
(Id ⊕ φW )∞L(2)0,∞, L(2)0,∞

)
= µ2 ((Id ⊕ φW )∞(L0 ⊕ L0)∞, (L0 ⊕ L0)∞)
= µ(L0,∞, L0,∞)− µ(L0,∞,�W,∞L P,∞)
= µ(�W,∞L0,∞, L0,∞)

so that there remains to prove that

τ 2
(
(Id ⊕ φW )�,�, L(2)0

)
− τ 2((Id ⊕ φW )�, (Id ⊕ φW )L

(2)
0 , L(2)0 ) = −2 sign Wxx .

(II) We are going to show that τ 2
(
(Id ⊕ φW )�, (Id ⊕ φW )L

(2)
0 , L(2)0

)
= 0; in view of the

symplectic invariance and the antisymmetry of τ 2 this is equivalent to

τ 2
(

L(2)0 ,�, L(2)0 , (Id ⊕ φW )
−1L(2)0

)
= 0. (23)

We have

� ∩ L(2)0 = {(0, p; 0, p): p ∈ IRn}
and (Id ⊕ φ)−1L(2)0 ∩ L(2)0 consists of all (0, p′, φ−1(0, p′′)) with φ−1(0, p′′) = (0, p′);
since φW (and hence also φ−1

W ) is free we must have p′ = p′′ = 0 so that

(Id ⊕ φW )
−1L(2)0 ∩ L(2)0 = {(0, p; 0, 0) : p ∈ IRn}.

It follows that we have

L0 = � ∩ L(2)0 + (Id ⊕ φW )
−1L(2)0 ∩ L(2)0

hence (23) in view of property (ii) in Lemma 5.5.
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(III) Let us finally show that.

τ 2((Id ⊕ φW )�,�, L(2)0 ) = −2 sign Wxx ;

this will complete the proof. The condition det(φW − Id) �= 0 is equivalent to (Id ⊕φW )�∩
� = 0 hence, using property (i) in Lemma 5.5:

τ 2((Id ⊕ φW )�,�, L(2)0 ) = −τ 2(Id ⊕ φW )�, L(2)0 ,�)

is the signature of the quadratic form Q on L0 defined by

Q(0, p, 0, p′) = −ω2(Pr(Id⊕φW )�,�(0, p, 0, p′); 0, p, 0, p′)

where

Pr(Id⊕φW )�,� =
[

(φW − Id)−1 −(φW − Id)−1

φW (φW − Id)−1 −φW (φW − Id)−1

]

is the projection on (Id ⊕ φW )� along � in IR2n ⊕ IR2n . It follows that the quadratic form
Q is given by

Q(0, p, 0, p′) = −ω2((Id − φW )
−1(0, p′′), φW (Id − φW )

−1(0, p′′); 0, p, 0, p′)

where we have set p′′ = p − p′; by definition of ω2 this is

Q(0, p, 0, p′) = −ω((Id − φW )
−1(0, p′′), (0, p))+ ω(φW (Id − φ)−1(0, p′′), (0, p′)).

We have

(Id − φW )
−1 = J MφW + 1

2 Id, φW (Id − φW )
−1 = J MφW − 1

2 Id

and hence

Q(0, p, 0, p′) = −ω((J MφW + 1
2 Id)(0, p′′), (0, p))+ ω

(
(J MφW − 1

2 Id)(0, p′′), (0, p′)
)

= −ω(J MφW (0, p′′), (0, p))+ ω(J MφW (0, p′′), (0, p′))
= ω(J MφW (0, p′′), (0, p′′))
= − 〈

MφW (0, p′′), (0, p′′)
〉
.

Let us calculate explicitly MφW . Writing φW =
[

A B
C D

]
we have

φW − Id =
[

0 B
Id D − Id

] [
C − (D − Id)B−1(A − Id) 0

B−1(A − Id) Id

]
(24)

that is

φW − Id =
[

0 B
Id D − Id

] [
Wxx 0

B−1(A − Id) Id

]
(25)

where we have used the identity

C − (D − Id)B−1(A − Id)) = B−1 A + DB−1 − B−1 − (BT )−1
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which follows from the relation C − DB−1 A = −(BT )−1 due to the fact that φW is sym-
plectic. We thus have, writing W −1

xx = (Wxx )
−1,

(φW − Id)−1 =
[

W −1
xx 0

B−1(Id − A)W −1
xx Id

][
(Id − D)B−1 Id

B−1 0

]

=
[

W −1
xx (Id − D)B−1 W −1

xx

B−1(Id − A)W −1
xx (Id − D)B−1 + B−1 B−1(Id − A)W −1

xx

]

and hence

MφW =
⎡

⎢
⎣

B−1(Id − A)W −1
xx (Id − D)B−1 + B−1 1

2 Id + B−1(Id − A)W −1
xx−1

− 1
2 Id − W −1

xx (Id − D)B−1 −W −1
xx

⎤

⎥
⎦

so that we have

Q(0, p, 0, p′) = 〈
W −1

xx p′′, p′′〉 = 〈
W −1

xx (p − p′), (p − p′)
〉
.

It follows that the matrix of the quadratic form Q is

2

[
W −1

xx −W −1
xx

−W −1
xx W −1

xx

]

and this matrix has signature 2 sign(Wxx )
−1 = 2 sign Wxx . This concludes the proof since

det(φW − Id) = (−1)n det B det Wxx and 2m − m = µ(φW,∞L0,∞, L0,∞). ��
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