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1 Introduction

Let D denote the unit disk in the complex plane C , and let H(D) be the space of all holo-

morphic functions on D with the topology of uniform convergence on compacts of D.

For  < α <∞, the α-Bloch space, denoted byBα , consists of all functions f ∈H(D) such

that

sup
z∈D

(

 – |z|
)α∣

∣f ′(z)
∣

∣ <∞.

ByZα we denote the Zygmund-type space consisting of those functions f ∈H(D) satisfy-

ing

sup
z∈D

(

 – |z|
)α∣

∣f ′′(z)
∣

∣ < ∞.

Bα and Zα are Banach spaces under the norms

‖f ‖Bα =
∣

∣f ()
∣

∣ + sup
z∈D

(

 – |z|
)α∣

∣f ′(z)
∣

∣,

‖f ‖Zα =
∣

∣f ()
∣

∣ +
∣

∣f ′()
∣

∣ + sup
z∈D

(

 – |z|
)α∣

∣f ′′(z)
∣

∣,

respectively. For some results on the Zygmund-type spaces on various domains in the

complex plane and Cn and operators on them, see, for example, [–]. The α-Bloch

space is introduced and studied by numerous authors. For the general theory of α-Bloch

or Bloch-type spaces and operators of them, see, e.g., [, –]. Recently, many au-

thors studied different classes of Bloch-type spaces, where the typical weight function,

ω(z) =  – |z|, z ∈ D, is replaced by a bounded continuous positive function μ defined

onD. More precisely, a function f ∈H(D) is called aμ-Bloch function, denoted by f ∈ Bμ,
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if ‖f ‖μ = supz∈D μ(z)|f ′(z)| < ∞. If μ(z) = ω(z)α , α > , Bμ is just the α-Bloch space Bα . It

is readily seen that Bμ is a Banach space with the norm ‖f ‖Bμ = |f ()| + ‖f ‖μ.

Recently, Ramos Fernández in [] used Young’s functions to define the Bloch-Orlicz

space. More precisely, let ϕ : [, +∞) → [, +∞) be a strictly increasing convex function

such that ϕ() =  and note that from these conditions it follows that limt→+∞ ϕ(t) = +∞.

The Bloch-Orlicz space associated with the function ϕ, denoted by Bϕ , is the class of all

analytic functions f in D such that

sup
z∈D

(

 – |z|
)

ϕ
(

λ
∣

∣f ′(z)
∣

∣

)

<∞

for some λ >  depending on f . Also, sinceϕ is convex, it is not hard to see thatMinkowski’s

functional

‖f ‖ϕ = inf

{

k >  : Sϕ

(

f ′

k

)

≤ 

}

defines a seminorm forBϕ , which, in this case, is known as Luxemburg’s seminorm, where

Sϕ(f ) = sup
z∈D

(

 – |z|
)

ϕ
(
∣

∣f (z)
∣

∣

)

.

Moreover, it can be shown that Bϕ is a Banach space with the norm ‖f ‖Bϕ = |f ()|+ ‖f ‖ϕ .

We also have that the Bloch-Orlicz space is isometrically equal to a particular μ-Bloch

space, where μ(z) = 

ϕ–( 
–|z|

)
with z ∈D. Thus, for any f ∈ Bϕ , we have

‖f ‖Bϕ =
∣

∣f ()
∣

∣ + sup
z∈D

μ(z)
∣

∣f ′(z)
∣

∣.

When ϕ is the identity map on [,+∞), Bϕ is the so-called Bloch space B.

Let u ∈ H(D) and φ be an analytic self-map of D. The differentiation operator D, the

multiplication operatorMu and the composition operator Cφ are defined by

(Df )(z) = f ′(z), (Muf )(z) = u(z)f (z), (Cφ f )(z) = f
(

φ(z)
)

, f ∈H(D).

There is a considerable interest in studying the above mentioned operators as well as their

products (see, e.g., [–, –] and the related references therein).

A product-type operator DMuCφ is defined as follows:

(DMuCφ f )(z) = u′(z)f
(

φ(z)
)

+ u(z)φ′(z)f ′
(

φ(z)
)

, u, f ∈H(D).

For  < α < ∞ and 

< |a| < , we define the test functions (see [])

fa(z) =


a

[

( – |a|)

( – az)α
–

 – |a|

( – az)α–

]

,

ha(z) =


a

∫ z



 – |a|

( – aλ)α
dλ, z ∈D.
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It is easy to show that fa,ha ∈Zα and fa(a) = ,

f ′
a(a) = h′

a(a) =


a

(

 – |a|
)–α

, f ′′
a (a) =

α

( – |a|)α
, h′′

a(a) =
α

( – |a|)α
.

Esmaeili and Lindström in [] investigated weighted composition operators between

Zygmund-type spaces. Ramos Fernández in [] studied the boundedness and compact-

ness of composition operators on Bloch-Orlicz spaces. Li and Stević in [] investigated

products of Volterra-type operator and composition operator from H∞ and Bloch spaces

to Zygmund spaces, and they in [] studied products of composition and differentiation

operators from Zygmund spaces to Bloch spaces and Bers spaces. Liu and Yu in [] char-

acterized the boundedness and compactness of products of composition, multiplication

and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on

the unit ball. Sharma in [] studied the boundedness and compactness of products of

composition multiplication and differentiation between Bergman and Bloch-type spaces.

In [], Stević investigated the properties of weighted differentiation composition oper-

ators from mixed-norm spaces to weighted-type spaces. Stević in [] studied weighted

radial operators from the mixed-norm space to the nth weighted-type space on the unit

ball. Stević et al. in [] characterized the boundedness and compactness of products of

multiplication composition and differentiation operators on weighted Bergman spaces.

Zhu in [] studied extended Cesàro operators from mixed-norm spaces to Zygmund-

type spaces.

Motivated by the above papers, in this paper, we investigate the boundedness and com-

pactness of the product-type operator DMuCφ from Zygmund-type spaces to the Bloch-

Orlicz space. The paper is organized as follows. In Section , we give some necessary and

sufficient conditions for the boundedness of the operatorDMuCφ :Zα → Bϕ . In Section ,

we give some necessary and sufficient conditions for the compactness of the operator

DMuCφ :Zα → Bϕ .

Throughout this paper,

μ(z) =


ϕ–( 
–|z|

)
,

and we use letter C to denote a positive constant whose value may change at each occur-

rence.

2 The boundedness of DMuCφ :Zα
→B

ϕ

The following lemma was essentially proved in [] and [] (see also []).

Lemma  For f ∈Zα and α > . Then:

(i) For  < α < , |f ′(z)| ≤ 
–α

‖f ‖Zα and |f (z)| ≤ 
–α

‖f ‖Zα .

(ii) For α = , |f ′(z)| ≤ log e
–|z|

‖f ‖Z and |f (z)| ≤ ‖f ‖Z .

(iii) For α > , |f ′(z)| ≤ 
α–

‖f ‖Zα

(–|z|)α–
. For α = , |f ′(z)| ≤ e

–|z|
‖f ‖Z .

(iv) For  < α < , |f (z)| ≤ 
(α–)(–α)

‖f ‖Zα .

(v) For α = , |f (z)| ≤  log e
–|z|

‖f ‖Z .

(vi) For α > , |f (z)| ≤ 
(α–)(α–)

‖f ‖Zα

(–|z|)α–
.
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Lemma  If DMuCφ : Zα → Bϕ is bounded and  < α < ∞, then the following conditions

hold:

k = sup
z∈D

μ(z)
∣

∣u′′(z)
∣

∣ <∞, ()

k = sup
z∈D

μ(z)
∣

∣u′(z)φ′(z) + u(z)φ′′(z)
∣

∣ < ∞, ()

k = sup
z∈D

μ(z)
∣

∣u(z)
∣

∣

∣

∣φ′(z)
∣

∣


< ∞. ()

Proof Suppose thatDMuCφ :Zα → Bϕ is bounded. Taking the function f (z) =  ∈Zα and

using the obvious fact that ‖f ‖Zα = , we have that

Sϕ

(

(DMuCφ f )
′(z)

C‖f ‖Zα

)

= Sϕ

(

u′′(z)

C

)

= sup
z∈D

(

 – |z|
)

ϕ

(

|u′′(z)|

C

)

≤ ,

from which it follows that () holds. Taking the function f (z) = z ∈ Zα and using the fact

that ‖f ‖Zα = , we obtain

Sϕ

(

(DMuCφ f )
′(z)

C‖f ‖Zα

)

= Sϕ

(

u′′(z)φ(z) + u′(z)φ′(z) + u(z)φ′′(z)

C

)

= sup
z∈D

(

 – |z|
)

ϕ

(

|u′′(z)φ(z) + u′(z)φ′(z) + u(z)φ′′(z)|

C

)

≤ .

Hence

sup
z∈D

μ(z)
∣

∣u′(z)φ′(z) + u(z)φ′′(z) + u′′(z)φ(z)
∣

∣ < ∞.

From this, () and by the boundedness of φ(z), condition () easily follows. Now taking the

function f (z) = z ∈Zα and using the fact that ‖f ‖Zα = , we get

Sϕ

(

u′′(z)(φ(z)) + φ(z)(u′(z)φ′(z) + u(z)φ′′(z)) + u(z)φ′(z)

C

)

≤ .

Hence

sup
z∈D

μ(z)
∣

∣u′′(z)
(

φ(z)
)

+ φ(z)
(

u′(z)φ′(z) + u(z)φ′′(z)
)

+ u(z)φ′(z)
∣

∣ < ∞.

From this, (), () and the boundedness of φ(z), we obtain (). �

Now, we are ready to characterize the boundedness of the product-type operator

DMuCφ : Zα → Bϕ . For this purpose we need to break the problem into five different

cases:  < α < , α = ,  < α < , α =  and α > .

Theorem  Let u ∈ H(D), φ be an analytic self-map of D and  < α < . Then DMuCφ :

Zα → Bϕ is bounded if and only if k < ∞, k <∞ and

k = sup
z∈D

μ(z)|u(z)||φ′(z)|

( – |φ(z)|)α
< ∞. ()
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Proof Suppose that DMuCφ :Zα → Bϕ is bounded, by Lemma  we know that k,k,k <

∞. Now we will prove (). Let

gφ(ω)(z) = fφ(ω)(z) – hφ(ω)(z) + hφ(ω)

(

φ(ω)
)

for all z ∈D and ω ∈D such that 

< |φ(ω)| < , then gφ(ω) ∈Zα , and

gφ(ω)

(

φ(ω)
)

= g ′
φ(ω)

(

φ(ω)
)

= , g ′′
φ(ω)

(

φ(ω)
)

=
α

( – |φ(ω)|)α
.

By the boundedness of DMuCφ :Zα → Bϕ , we have ‖DMuCφgφ(ω)‖Bϕ ≤ C, then

 ≥ Sϕ

(

(DMuCφgφ(ω))
′(z)

C

)

≥ sup

 <|φ(ω)|<

(

 – |ω|
)

ϕ

(

α|u(ω)||φ′(ω)|

C( – |φ(ω)|)α

)

.

It follows that

sup

 <|φ(ω)|<

μ(ω)|u(ω)||φ′(ω)|

( – |φ(ω)|)α
<∞. ()

By k < ∞, we see that

sup
|φ(ω)|≤ 



μ(ω)|u(ω)||φ′(ω)|

( – |φ(ω)|)α
≤ C sup

|φ(ω)|≤ 


μ(ω)
∣

∣u(ω)
∣

∣

∣

∣φ′(ω)
∣

∣


<∞. ()

From () and (), we obtain ().

Suppose that k,k,k <∞. For each f ∈Zα \ {}, by Lemma (i) we have

Sϕ

(

(DMuCφ f )
′(z)

C‖f ‖Zα

)

≤ sup
z∈D

(

 – |z|
)

ϕ

[

(k|f (φ(z))| + k|f
′(φ(z))| + k( – |φ(z)|)α|f ′′(φ(z))|)

Cμ(z)‖f ‖Zα

]

≤ sup
z∈D

(

 – |z|
)

ϕ

[

k


–α
+ k


–α

+ k

Cμ(z)

]

≤ ,

where C is a constant such that C ≥ k


–α
+ k


–α

+ k. Here we use the fact that

sup
z∈D

(

 –
∣

∣φ(z)
∣

∣

)α∣

∣f ′′
(

φ(z)
)
∣

∣ ≤ ‖f ‖Zα .

Now, we can conclude that there exists a constant C such that ‖DMuCφ f ‖Bϕ ≤ C‖f ‖Zα

for all f ∈Zα , so the product-type operator DMuCφ :Zα → Bϕ is bounded. �

Theorem  Let u ∈ H(D) and φ be an analytic self-map of D. Then DMuCφ :Z → Bϕ is

bounded if and only if k < ∞,

k = sup
z∈D

μ(z)
∣

∣u′(z)φ′(z) + u(z)φ′′(z)
∣

∣ log
e

 – |φ(z)|
< ∞, ()

k = sup
z∈D

μ(z)|u(z)||φ′(z)|

 – |φ(z)|
< ∞. ()
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Proof Suppose that DMuCφ : Z → Bϕ is bounded, by Lemma  we know that k,k,k <

∞. Let

r(z) = (z – )

[(

 + log
e

 – z

)

+ 

]

,

sa(z) =
r(āz)

ā

(

log
e

 – |a|

)–

–

∫ z



log
e

 – āλ
dλ – c + c,

where

c =
r(|a|)

ā

(

log
e

 – |a|

)–

, c =

∫ a



log
e

 – āλ
dλ

for any a ∈D such that 

< |a| < . Then we have

∣

∣s′′a(z)
∣

∣ =


 – |z|

(

C + log
e

 – |a|

)(

log
e

 – |a|

)–

+


 – |z|
≤

C

 – |z|

for 

< |a| <  and sup 

 <|a|< ‖sa‖Z <∞.

Now let a = φ(ω), ω ∈D such that 

< |φ(ω)| < , then

sφ(ω)
(

φ(ω)
)

= s′φ(ω)
(

φ(ω)
)

= , s′′φ(ω)
(

φ(ω)
)

=
φ(ω)

 – |φ(ω)|
.

By the boundedness of DMuCφ :Z → Bϕ , we have ‖DMuCφsφ(ω)‖Bϕ ≤ C, then

 ≥ Sϕ

(

(DMuCφsφ(ω))
′(z)

C

)

≥ sup

 <|φ(ω)|<

(

 – |ω|
)

ϕ

(

|u(ω)||φ′(ω)||φ(ω)|

C( – |φ(ω)|)

)

.

From this it follows that




sup


 <|φ(ω)|<

μ(ω)|u(ω)||φ′(ω)|

 – |φ(ω)|
≤ sup


 <|φ(ω)|<

μ(ω)|u(ω)||φ′(ω)||φ(ω)|

 – |φ(ω)|
< ∞. ()

By k < ∞ we see that

sup
|φ(ω)|≤ 



μ(ω)|u(ω)||φ′(ω)|

 – |φ(ω)|
≤




sup

|φ(ω)|≤ 


μ(ω)
∣

∣u(ω)
∣

∣

∣

∣φ′(ω)
∣

∣


< ∞. ()

From () and () we obtain k <∞.

Let

tφ(ω)(z) =
r(φ(ω)z)

φ(ω)

(

log
e

 – |φ(ω)|

)–

– c

for ω ∈D such that 

< |φ(ω)| < , then, as above, we can get that tφ(ω) ∈Z and

tφ(ω)
(

φ(ω)
)

= , t′φ(ω)
(

φ(ω)
)

= log
e

 – |φ(ω)|
, t′′φ(ω)

(

φ(ω)
)

=
φ(ω)

 – |φ(ω)|
.
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By the boundedness of DMuCφ :Z → Bϕ , we have ‖DMuCφtφ(ω)‖Bϕ ≤ C, then

 ≥ Sϕ

(

(DMuCφtφ(ω))
′(z)

C

)

≥ sup

 <|φ(ω)|<

(

 – |ω|
)

ϕ

(

|(DMuCφtφ(ω))
′(ω)|

C

)

≥ sup

 <|φ(ω)|<

(

 – |ω|
)

· ϕ

(

|(u′(ω)φ′(ω) + u(ω)φ′′(ω)) log e
–|φ(ω)|

+ u(ω)(φ′(ω)) φ(ω)

–|φ(ω)|
|

C

)

.

From this and by k <∞, we get

sup

 <|φ(ω)|<

μ(ω)
∣

∣u′(ω)φ′(ω) + u(ω)φ′′(ω)
∣

∣ log
e

 – |φ(ω)|

≤ C + Ck < ∞. ()

By k < ∞ we see that

sup
|φ(ω)|≤ 



μ(ω)
∣

∣u′(ω)φ′(ω) + u(ω)φ′′(ω)
∣

∣ log
e

 – |φ(ω)|

≤ C sup
|φ(ω)|≤ 



μ(ω)
∣

∣u′(ω)φ′(ω) + u(ω)φ′′(ω)
∣

∣ < ∞. ()

From () and () we obtain ().

Suppose that k,k,k <∞. Then, by Lemma (ii) and similar to the proof of Theorem ,

we get that DMuCφ :Z → Bϕ is bounded. �

Theorem  Let u ∈ H(D), φ be an analytic self-map of D and  < α < . Then DMuCφ :

Zα → Bϕ is bounded if and only if k < ∞,

k = sup
z∈D

μ(z)|u′(z)φ′(z) + u(z)φ′′(z)|

( – |φ(z)|)α–
< ∞, ()

k = sup
z∈D

μ(z)|u(z)||φ′(z)|

( – |φ(z)|)α
<∞. ()

Proof Suppose that DMuCφ :Zα → Bϕ is bounded, by Lemma  we know that k,k,k <

∞. Inequality () can be proved as in Theorem . Using the test function fφ(ω)(z) in Sec-

tion , where z ∈D, ω ∈D such that 

< |φ(ω)| < , then we have that fφ(ω) ∈Zα , and

fφ(ω)
(

φ(ω)
)

= ,

f ′
φ(ω)

(

φ(ω)
)

=


φ(ω)( – |φ(ω)|)α–
,

f ′′
φ(ω)

(

φ(ω)
)

=
α

( – |φ(ω)|)α
.
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By the boundedness of DMuCφ :Zα → Bϕ , we have ‖DMuCφ fφ(ω)‖Bϕ ≤ C, then

 ≥ Sϕ

(

(DMuCφ fφ(ω))
′(z)

C

)

≥ sup

 <|φ(ω)|<

(

 – |ω|
)

ϕ

(

|(DMuCφ fφ(ω))
′(ω)|

C

)

≥ sup

 <|φ(ω)|<

(

 – |ω|
)

ϕ

( |
u′(ω)φ′(ω)+u(ω)φ′′(ω)

φ(ω)(–|φ(ω)|)α–
+ αu(ω)φ′(ω)

(–|φ(ω)|)α
|

C

)

.

From this and by k < ∞, we get

sup

 <|φ(ω)|<

μ(ω)|u′(ω)φ′(ω) + u(ω)φ′′(ω)|

( – |φ(ω)|)α–
≤ C + Cαk < ∞.

Then, according to the former proof with k < ∞, we can get ().

Suppose that k,k,k < ∞. Then, by Lemma (iii) and (iv) and similar to the proof of

Theorem , we get that DMuCφ :Zα → Bϕ is bounded. �

Theorem  Let u ∈H(D) and φ be an analytic self-map ofD. Then DMuCφ :Z → Bϕ is

bounded if and only if

k = sup
z∈D

μ(z)
∣

∣u′′(z)
∣

∣ log
e

 – |φ(z)|
< ∞, ()

k = sup
z∈D

μ(z)|u′(z)φ′(z) + u(z)φ′′(z)|

 – |φ(z)|
<∞, ()

k = sup
z∈D

μ(z)|u(z)||φ′(z)|

( – |φ(z)|)
< ∞. ()

Proof Suppose that DMuCφ : Z → Bϕ is bounded, from Lemma  we know that

k,k,k < ∞. By repeating the arguments in the proof of Theorem  and Theorem ,

() and () can be proved similarly. Hence we only need to show k < ∞. For every

z ∈ D and ω ∈ D such that 

< |φ(ω)| < , let pφ(ω)(z) = log e

–φ(ω)z
. Clearly pφ(ω) ∈ Z, and

pφ(ω)(φ(ω)) = log e
–|φ(ω)|

,

p′
φ(ω)

(

φ(ω)
)

=
φ(ω)

 – |φ(ω)|
,

p′′
φ(ω)

(

φ(ω)
)

=
φ(ω)



( – |φ(ω)|)
.

By the boundedness of DMuCφ :Z → Bϕ , we have ‖DMuCφpφ(ω)‖Bϕ ≤ C, then

 ≥ Sϕ

(

(DMuCφpφ(ω))
′(z)

C

)

≥ sup

 <|φ(ω)|<

(

 – |ω|
)

ϕ

(

|(DMuCφpφ(ω))
′(ω)|

C

)
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≥ sup

 <|φ(ω)|<

(

 – |ω|
)

· ϕ

(

|u′′(ω) log e
–|φ(ω)|

+ (u′(ω)φ′(ω)+u(ω)φ′′(ω))φ(ω)

–|φ(ω)|
+ u(ω)(φ′(ω))φ(ω)



(–|φ(ω)|)
|

C

)

.

By k,k < ∞ we get

sup

 <|φ(ω)|<

μ(ω)
∣

∣u′′(ω)
∣

∣ log
e

 – |φ(ω)|
≤ C +Ck +Ck < ∞. ()

By k < ∞ we see that

sup
|φ(ω)|≤ 



μ(ω)
∣

∣u′′(ω)
∣

∣ log
e

 – |φ(ω)|
≤ C sup

|φ(ω)|≤ 


μ(ω)
∣

∣u′′(ω)
∣

∣ < ∞. ()

From () and () we obtain ().

Suppose that k,k,k < ∞. Then, by Lemma (iii) and (v) and similar to the proof of

Theorem , we get that DMuCφ :Z → Bϕ is bounded. �

Theorem Let u ∈H(D), φ be an analytic self-map ofD and α > .Then DMuCφ :Zα →

Bϕ is bounded if and only if

k = sup
z∈D

μ(z)|u′′(z)|

( – |φ(z)|)α–
< ∞, ()

k = sup
z∈D

μ(z)|u′(z)φ′(z) + u(z)φ′′(z)|

( – |φ(z)|)α–
< ∞, ()

k = sup
z∈D

μ(z)|u(z)||φ′(z)|

( – |φ(z)|)α
<∞. ()

Proof Suppose that DMuCφ :Zα → Bϕ is bounded, by Lemma  we know that k,k,k <

∞. With the same argument as in Theorem  one can show that () and () hold.

Now we prove that k < ∞. For every a, z ∈ D, define qa(z) =
(–|a|)

(–āz)α
. Then supz∈D( –

|z|)α|q′′
a(z)| ≤ α · α · (α + ), which shows that qa ∈ Zα . Now we let a = φ(ω) for every

ω ∈D such that 

< |φ(ω)| < , and we have

qφ(ω)

(

φ(ω)
)

=


( – |φ(ω)|)α–
,

q′
φ(ω)

(

φ(ω)
)

=
αφ(ω)

( – |φ(ω)|)α–
, q′′

φ(ω)

(

φ(ω)
)

=
α(α + )φ(ω)



( – |φ(ω)|)α
.

By the boundedness of DMuCφ :Zα → Bϕ , we have ‖DMuCφqφ(ω)‖Bϕ ≤ C, then

 ≥ Sϕ

(

(DMuCφqφ(ω))
′(z)

C

)

≥ sup

 <|φ(ω)|<

(

 – |ω|
)

· ϕ

(

|
u′′(ω)

(–|φ(ω)|)α–
+ αφ(ω)(u′(ω)φ′(ω)+u(ω)φ′′(ω))

(–|φ(ω)|)α–
+ α(α+)φ(ω)


u(ω)φ′(ω)

(–|φ(ω)|)α
|

C

)

.
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Then we have

sup

 <|φ(ω)|<

μ(ω)|u′′(ω)|

( – |φ(ω)|)α–

≤ C + sup

 <|φ(ω)|<

αμ(ω)

∣

∣

∣

∣

u′(ω)φ′(ω) + u(ω)φ′′(ω)

φ(ω)( – |φ(ω)|)α–
+

α + 

α

αu(ω)φ′(ω)

( – |φ(ω)|)α

∣

∣

∣

∣

≤ C + sup

 <|φ(ω)|<

αμ(ω)

{
∣

∣

∣

∣

u′(ω)φ′(ω) + u(ω)φ′′(ω)

φ(ω)( – |φ(ω)|)α–

∣

∣

∣

∣

+
α + 

α

∣

∣

∣

∣

αu(ω)φ′(ω)

( – |φ(ω)|)α

∣

∣

∣

∣

}

. ()

Since α+
α

< , then by (), (), () and according to the former proof with k < ∞ for

|φ(ω)| ≤ 

, then k < ∞. Suppose that k,k,k < ∞. Then, by Lemma (iii) and (vi) and

similar to the proof of Theorem , we get that DMuCφ :Zα → Bϕ is bounded. �

3 The compactness of DMuCφ :Zα
→B

ϕ

In order to prove the compactness of the product-type operator DMuCφ : Zα → Bϕ , we

need the following lemmas. The proof of the following lemma is similar to that of Propo-

sition . in []. The details are omitted.

Lemma  Let u ∈ H(D), φ be an analytic self-map of D and  < α < ∞. Then DMuCφ :

Zα → Bϕ is compact if and only if DMuCφ : Zα → Bϕ is bounded and for any bounded

sequence {fn}n∈N in Zα which converges to zero uniformly on compact subsets ofD as n →

∞, we have ‖DMuCφ fn‖Bϕ →  as n→ ∞.

The following lemma was essentially proved in paper [] in Lemma ..

Lemma  Fix  < α <  and let {fn}n∈N be a bounded sequence in Zα which converges to

zero uniformly on compact subsets of D as n → ∞. Then limn→∞ supz∈D |fn(z)| = .More-

over, for  < α < , if {fn}n∈N is a bounded sequence inZα which converges to zero uniformly

on compact subsets of D as n → ∞, then limn→∞ supz∈D |f ′
n(z)| = .

Theorem  Let u ∈ H(D), φ be an analytic self-map of D and  < α < . Then DMuCφ :

Zα → Bϕ is compact if and only if DMuCφ :Zα → Bϕ is bounded,

lim
|φ(z)|→

μ(z)|u(z)||φ′(z)|

( – |φ(z)|)α
= . ()

Proof Suppose that DMuCφ : Zα → Bϕ is compact. It is clear that DMuCφ : Zα → Bϕ is

bounded. By Lemma , we have that k,k,k < ∞. Let {zn}n∈N be a sequence in D such

that |φ(zn)| →  as n → ∞. Without loss of generality, suppose that |φ(zn)| >


for all n.

Taking the function

gn(z) =


φ(zn)


[

( – |φ(zn)|
)

( – φ(zn)z)α
–

 – |φ(zn)|


( – φ(zn)z)α–

]

–


φ(zn)

∫ z



 – |φ(zn)|


( – φ(zn)λ)α
dλ.

Then supn∈N ‖gn‖Zα < ∞, and gn →  uniformly on compact subsets ofD. SinceDMuCφ :

Zα → Bϕ is compact, then limn→∞ ‖DMuCφgn‖Bϕ = . Since limn→∞ |φ(zn)| = , then
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limn→∞ supz∈D |gn(z)| = . Moreover, we have

g ′
n

(

φ(zn)
)

= , g ′′
n

(

φ(zn)
)

=
α

( – |φ(zn)|)α
.

Then

 ≥ Sϕ

(

(DMuCφgn)
′(zn)

‖DMuCφgn‖Bϕ

)

≥
(

 – |zn|

)

ϕ

(

|u′′(zn)gn(φ(zn)) +
αu(zn)φ

′(zn)


(–|φ(zn)|)α
|

‖DMuCφgn‖Bϕ

)

.

Hence

∣

∣

∣

∣

αμ(zn)|u(zn)||φ
′(zn)|



( – |φ(zn)|)α
–μ(zn)

∣

∣u′′(zn)
∣

∣

∣

∣gn
(

φ(zn)
)
∣

∣

∣

∣

∣

∣

≤ ‖DMuCφgn‖Bϕ .

Therefore

lim
|φ(zn)|→

μ(zn)|u(zn)||φ
′(zn)|



( – |φ(zn)|)α
= lim

n→∞

αμ(zn)|u(zn)||φ
′(zn)|



( – |φ(zn)|)α
= .

Suppose that DMuCφ : Zα → Bϕ is bounded and () holds. Then k,k,k < ∞ by

Lemma  and for every ǫ > , there is δ ∈ (, ) such that

μ(z)|u(z)||φ′(z)|

( – |φ(z)|)α
< ǫ ()

whenever δ < |φ(z)| < .Assume that {fn}n∈N is a sequence inZα such that supn∈N ‖fn‖Zα ≤

L, and fn converges to  uniformly on compact subsets of D as n → ∞. Let K = {z ∈ D :

|φ(z)| ≤ δ}. Then by k,k,k < ∞ and () it follows that

sup
z∈D

μ(z)
∣

∣(DMuCφ fn)
′(z)

∣

∣

≤ sup
z∈D

μ(z)
∣

∣u′′(z)
∣

∣

∣

∣fn
(

φ(z)
)
∣

∣ + sup
z∈D

μ(z)
∣

∣u′(z)φ′(z) + u(z)φ′′(z)
∣

∣

∣

∣f ′
n

(

φ(z)
)
∣

∣

+ sup
z∈K

μ(z)
∣

∣u(z)
∣

∣

∣

∣φ′(z)
∣

∣

∣
∣f ′′
n

(

φ(z)
)
∣

∣ + sup
z∈D\K

μ(z)
∣

∣u(z)
∣

∣

∣

∣φ′(z)
∣

∣

∣
∣f ′′
n

(

φ(z)
)
∣

∣

≤ k sup
z∈D

∣

∣fn
(

φ(z)
)∣

∣ + k sup
z∈D

∣

∣f ′
n

(

φ(z)
)∣

∣ + k sup
z∈K

∣

∣f ′′
n

(

φ(z)
)∣

∣

+ sup
z∈D\K

μ(z)|u(z)||φ′(z)|( – |φ(z)|)α|f ′′
n (φ(z))|

( – |φ(z)|)α

≤ k sup
ω∈D

∣

∣fn(ω)
∣

∣ + k sup
ω∈D

∣

∣f ′
n(ω)

∣

∣ + k sup
|ω|≤δ

∣

∣f ′′
n (ω)

∣

∣ + Lǫ.

Here we use the fact that supz∈D( – |φ(z)|)α|f ′′
n (φ(z))| ≤ ‖fn‖Zα ≤ L. So we obtain

‖DMuCφ fn‖Bϕ

=
∣

∣u′()fn
(

φ()
)

+ u()φ′()f ′
n

(

φ()
)
∣

∣ + sup
z∈D

μ(z)
∣

∣(DMuCφ fn)
′(z)

∣

∣

≤
∣

∣u′()
∣

∣

∣

∣fn
(

φ()
)
∣

∣ +
∣

∣u()
∣

∣

∣

∣φ′()
∣

∣

∣

∣f ′
n

(

φ()
)
∣

∣

+ k sup
ω∈D

∣

∣fn(ω)
∣

∣ + k sup
ω∈D

∣

∣f ′
n(ω)

∣

∣ + k sup
|ω|≤δ

∣

∣f ′′
n (ω)

∣

∣ + Lǫ. ()
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Since fn converges to  uniformly on compact subsets ofD as n → ∞, Cauchy’s estimation

gives that f ′
n, f

′′
n also do as n→ ∞. In particular, since {ω : |ω| ≤ δ} and {φ()} are compact,

it follows that

lim
n→∞

{
∣

∣u′()
∣

∣

∣

∣fn
(

φ()
)
∣

∣ +
∣

∣u()
∣

∣

∣

∣φ′()
∣

∣

∣

∣f ′
n

(

φ()
)
∣

∣

}

=  and lim
n→∞

k sup
|ω|≤δ

∣

∣f ′′
n (ω)

∣

∣ = .

Moreover, since  < α < , by Lemma  we have

lim
n→∞

sup
ω∈D

∣

∣fn(ω)
∣

∣ = , lim
n→∞

sup
ω∈D

∣

∣f ′
n(ω)

∣

∣ = .

Hence, letting n → ∞ in (), we get

lim
n→∞

‖DMuCφ fn‖Bϕ = .

Employing Lemma  the implication follows. �

Theorem  Let u ∈H(D) and φ be an analytic self-map ofD. Then DMuCφ :Z → Bϕ is

compact if and only if DMuCφ :Z → Bϕ is bounded,

lim
|φ(z)|→

μ(z)
∣

∣u′(z)φ′(z) + u(z)φ′′(z)
∣

∣ log
e

 – |φ(z)|
= , ()

lim
|φ(z)|→

μ(z)|u(z)||φ′(z)|

 – |φ(z)|
= . ()

Proof Suppose that DMuCφ : Z → Bϕ is compact. It is clear that DMuCφ : Z → Bϕ is

bounded. By Lemma , we have that k,k,k < ∞. Let {zn}n∈N be a sequence in D such

that |φ(zn)| →  as n → ∞. Without loss of generality, we may suppose that |φ(zn)| >


for

all n. Taking the function

sn(z) =
r(φ(zn)z)

φ(zn)

(

log
e

 – |φ(zn)|

)–

–

(

log
e

 – |φ(zn)|

)– ∫ z



log
e

 – φ(zn)λ
dλ.

Then supn∈N ‖sn‖Z < ∞ by the proof of Theorem , and sn →  uniformly on compact

subsets ofD by a direct calculation. Consequently, limn→∞ supz∈D |sn(z)| =  by Lemma .

Since DMuCφ :Z → Bϕ is compact, then limn→∞ ‖DMuCφsn‖Bϕ = . Moreover, we have

s′n
(

φ(zn)
)

= , s′′n
(

φ(zn)
)

= –
φ(zn)

 – |φ(zn)|
.

Then

 ≥ Sϕ

(

(DMuCφsn)
′(zn)

‖DMuCφsn‖Bϕ

)

≥
(

 – |zn|

)

ϕ

(

|u′′(zn)sn(φ(zn)) +
–φ(zn)u(zn)φ

′(zn)


–|φ(zn)|
|

‖DMuCφgn‖Bϕ

)

.

It follows that

∣

∣

∣

∣

μ(zn)|φ(zn)||u(zn)||φ
′(zn)|



 – |φ(zn)|
–μ(zn)

∣

∣u′′(zn)
∣

∣

∣

∣sn
(

φ(zn)
)
∣

∣

∣

∣

∣

∣

≤ ‖DMuCφsn‖Bϕ .
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Therefore

lim
|φ(zn)|→

μ(zn)|u(zn)||φ
′(zn)|



 – |φ(zn)|
= lim

n→∞

μ(zn)|φ(zn)||u(zn)||φ
′(zn)|



 – |φ(zn)|
= . ()

On the other hand, let

tn(z) =
φ(zn)z – 

φ(zn)

[(

 + log
e

 – φ(zn)z

)

+ 

](

log
e

 – |φ(zn)|

)–

– cn,

where

cn =
|φ(zn)|

 – 

φ(zn)

[(

 + log
e

 – |φ(zn)|

)

+ 

](

log
e

 – |φ(zn)|

)–

such that limn→∞ cn = . By a direct calculation, we may easily prove that tn →  uni-

formly on compact subsets ofD, and supn∈N ‖tn‖Z < ∞ by the proof of Theorem . Since

DMuCφ :Z → Bϕ is compact, then limn→∞ ‖DMuCφtn‖Bϕ = . Moreover, we have

tn
(

φ(zn)
)

= , t′n
(

φ(zn)
)

= log
e

 – |φ(zn)|
, t′′n

(

φ(zn)
)

=
φ(zn)

 – |φ(zn)|
.

Then

 ≥ Sϕ

(

(DMuCφtn)
′(zn)

‖DMuCφtn‖Bϕ

)

≥
(

 – |zn|

)

· ϕ

(

|(u′(zn)φ
′(zn) + u(zn)φ

′′(zn)) log e
–|φ(zn)|

+ φ(zn)u(zn)φ
′(zn)



–|φ(zn)|
|

‖DMuCφtn‖Bϕ

)

.

It follows that

μ(zn)
∣

∣u′(zn)φ
′(zn) + u(zn)φ

′′(zn)
∣

∣ log
e

 – |φ(zn)|

≤ ‖DMuCφtn‖Bϕ +
μ(zn)|φ(zn)||u(zn)||φ

′(zn)|


 – |φ(zn)|
. ()

Letting n → ∞ in () and combining with (), we can get

lim
|φ(zn)|→

μ(zn)
∣

∣u′(zn)φ
′(zn) + u(zn)φ

′′(zn)
∣

∣ log
e

 – |φ(zn)|
= . ()

The implication follows from () and ().

Conversely, by Lemma (ii), Lemma , Lemma  and Lemma , we can prove the con-

verse implication similar to Theorem , so we omit the details. �

Theorem  Let u ∈ H(D), φ be an analytic self-map of D and  < α < . Then DMuCφ :

Zα → Bϕ is compact if and only if DMuCφ :Zα → Bϕ is bounded,

lim
|φ(z)|→

μ(z)|u′(z)φ′(z) + u(z)φ′′(z)|

( – |φ(z)|)α–
= , ()
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lim
|φ(z)|→

μ(z)|u(z)||φ′(z)|

( – |φ(z)|)α
= . ()

Proof Suppose that DMuCφ : Zα → Bϕ is compact. It is clear that DMuCφ : Zα → Bϕ is

bounded. By Lemma , we have that k,k,k < ∞. Let {zn}n∈N be a sequence in D such

that |φ(zn)| →  as n → ∞. Without loss of generality, we may suppose that |φ(zn)| >


for

all n. Then () can be proved as the method of () in Theorem , so we only need to

show that () holds. Taking the function

fn(z) =


φ(zn)


[

( – |φ(zn)|
)

( – φ(zn)z)α
–

 – |φ(zn)|


( – φ(zn)z)α–

]

.

Then supn∈N ‖fn‖Zα < ∞, and fn →  uniformly on compact subsets ofD. Since DMuCφ :

Zα → Bϕ is compact, it gives limn→∞ ‖DMuCφ fn‖Bϕ = . Moreover, we have

fn
(

φ(zn)
)

= , f ′
n

(

φ(zn)
)

=


φ(zn)( – |φ(zn)|)α–
, f ′′

n

(

φ(zn)
)

=
α

( – |φ(zn)|)α
.

Then

 ≥ Sϕ

(

(DMuCφ fn)
′(zn)

‖DMuCφ fn‖Bϕ

)

≥
(

 – |zn|

)

ϕ

( |
u′(zn)φ

′(zn)+u(zn)φ
′′(zn)

φ(zn)(–|φ(zn)|)α–
+ αu(zn)φ

′(zn)


(–|φ(zn)|)α
|

‖DMuCφ fn‖Bϕ

)

.

It follows that

∣

∣

∣

∣

μ(zn)|u
′(zn)φ

′(zn) + u(zn)φ
′′(zn)|

|φ(zn)|( – |φ(zn)|)α–
–
αμ(zn)|u(zn)||φ

′(zn)|


( – |φ(zn)|)α

∣

∣

∣

∣

≤ ‖DMuCφ fn‖Bϕ .

Therefore

lim
|φ(zn)|→

μ(zn)|u
′(zn)φ

′(zn) + u(zn)φ
′′(zn)|

( – |φ(zn)|)α–
= .

By Lemma (iii), Lemma , Lemma  and Lemma , we can prove the converse implica-

tion similar to Theorem , so we omit the details. �

Theorem  Let u ∈ H(D) and φ be an analytic self-map of D. Then DMuCφ :Z → Bϕ

is compact if and only if DMuCφ :Z → Bϕ is bounded,

lim
|φ(z)|→

μ(z)
∣

∣u′′(z)
∣

∣ log
e

 – |φ(z)|
= , ()

lim
|φ(z)|→

μ(z)|u′(z)φ′(z) + u(z)φ′′(z)|

 – |φ(z)|
= , ()

lim
|φ(z)|→

μ(z)|u(z)||φ′(z)|

( – |φ(z)|)
= . ()

Proof Suppose that DMuCφ : Z → Bϕ is compact. It is clear that DMuCφ : Z → Bϕ is

bounded. By Lemma , we have that k,k,k < ∞. Let {zn}n∈N be a sequence in D such
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that |φ(zn)| →  as n → ∞. Without loss of generality, we may suppose that |φ(zn)| >



for all n. Then, by repeating the arguments in the proof of Theorem  and Theorem ,

() and () can be proved similarly, so we only need to show that () holds. Taking the

function

pn(z) =

(

 +

(

log
e

 – φ(zn)z

))(

log
e

 – |φ(zn)|

)–

. ()

Then we have

p′
n(z) =

φ(zn)

 – φ(zn)z

(

log
e

 – φ(zn)z

)(

log
e

 – |φ(zn)|

)–

, ()

p′′
n(z) =

φ(zn)


( – φ(zn)z)

(

log
e

 – φ(zn)z
+ 

)(

log
e

 – |φ(zn)|

)–

. ()

It is easy to show that {pn}n∈N is a bounded sequence inZ, and pn →  uniformly on com-

pact subsets of D. Since DMuCφ :Z → Bϕ is compact, then limn→∞ ‖DMuCφpn‖Bϕ = .

From (), () and (), we can get that

μ(zn)
∣

∣u′′(zn)
∣

∣

[

log
e

 – |φ(zn)|
+

(

log
e

 – |φ(zn)|

)–]

–
μ(zn)|φ(zn)||u

′(zn)φ
′(zn) + u(zn)φ

′′(zn)|

 – |φ(zn)|

–
μ(zn)|φ(zn)|

|u(zn)||φ
′(zn)|

[ + (log e
–|φ(zn)|

)–]

( – |φ(zn)|)

≤ ‖DMuCφpn‖Bϕ .

Since limn→∞(log e
–|φ(zn)|

)– = , and by () and (), we can get ().

By Lemma (iii) and (v), Lemma  and Lemma , we can prove the converse implication

similar to Theorem , so we omit the details. �

Theorem  Let u ∈ H(D), φ be an analytic self-map of D and α > . Then DMuCφ :

Zα → Bϕ is compact if and only if DMuCφ :Zα → Bϕ is bounded,

lim
|φ(z)|→

μ(z)|u′′(z)|

( – |φ(z)|)α–
= , ()

lim
|φ(z)|→

μ(z)|u′(z)φ′(z) + u(z)φ′′(z)|

( – |φ(z)|)α–
= , ()

lim
|φ(z)|→

μ(z)|u(z)||φ′(z)|

( – |φ(z)|)α
= . ()

Proof Suppose that DMuCφ : Zα → Bϕ is compact. It is clear that DMuCφ : Zα → Bϕ is

bounded. By Lemma , we have that k,k,k < ∞. Let {zn}n∈N be a sequence in D such

that |φ(zn)| →  as n → ∞. Without loss of generality, we may suppose that |φ(zn)| >


for

all n. Then, by repeating the arguments in the proof of Theorem  and Theorem , ()

and () can be proved similarly, so we only need to show that () holds.
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Now let qn(z) =
(–|φ(zn)|

)

(–φ(zn)z)α
, then supn∈N ‖qn‖Zα < ∞, qn →  uniformly on compact sub-

sets of D, and

qn
(

φ(zn)
)

=


( – |φ(zn)|)α–
,

q′
n

(

φ(zn)
)

=
αφ(zn)

( – |φ(zn)|)α–
, q′′

n

(

φ(zn)
)

=
α(α + )φ(zn)



( – |φ(zn)|)α
.

Then we have

μ(zn)|u
′′(zn)|

( – |φ(zn)|)α–

≤ ‖DMuCφqn‖Bϕ

+ α
∣

∣φ(zn)
∣

∣μ(zn)

∣

∣

∣

∣

u′(zn)φ
′(zn) + u(zn)φ

′′(zn)

( – |φ(zn)|)α–
+ (α + )φ(zn)

u(zn)φ
′(zn)



( – |φ(zn)|)α

∣

∣

∣

∣

≤ ‖DMuCφqn‖Bϕ + αμ(zn)

∣

∣

∣

∣

u′(zn)φ
′(zn) + u(zn)φ

′′(zn)

φ(zn)( – |φ(zn)|)α–
+

α + 

α

αu(zn)φ
′(zn)



( – |φ(zn)|)α

∣

∣

∣

∣

≤ ‖DMuCφqn‖Bϕ

+ αμ(zn)

{
∣

∣

∣

∣

u′(zn)φ
′(zn) + u(zn)φ

′′(zn)

φ(zn)( – |φ(zn)|)α–

∣

∣

∣

∣

+
α + 

α

∣

∣

∣

∣

αu(zn)φ
′(zn)



( – |φ(zn)|)α

∣

∣

∣

∣

}

. ()

Since α+
α

< , then by (), () and letting n→ ∞ in (), we can get ().

For the converse, by Lemma (iii) and (vi), Lemma  and Lemma , we can prove the

converse implication similar to Theorem , so we omit the details. �
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5. Li, S, Stević, S: Products of Volterra type operator and composition operator from H∞ and Bloch spaces to the

Zygmund space. J. Math. Anal. Appl. 345, 40-52 (2008)
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