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Abstract
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1 Introduction and preliminaries
Fixed-point theory is one of the most intriguing research fields in nonlinear analysis. The
number of authors have published papers and have increased continuously in the last
decades. Themain reason for this involvement can be observed easily: Application poten-
tial. Fixed point theory has an application in many disciplines such as chemistry, physics,
biology, computer science and many branches of mathematics. Banach contraction map-
ping principle or Banach fixed-point theorem is the most celebrated and pioneer result in
this direction: In a complete metric space, each contraction mapping has a unique fixed
point. Following Banach [], many authors give various generalizations of this principle in
various space (see e.g. [–]). One of the interesting results was given by Samet et al. []
by defining α-ψ-contractive mappings via admissible mappings, see also [].
In this paper, we introduce an α-ψ-Meir-Keeler contractive mapping in the setting of

completemetric spaces via a triangularα-admissiblemapping.Weprove the existence and
uniqueness of a fixed point of such a mapping. We also consider a number of examples to
illustrate our results.

Definition  Let f : X → X and α : X × X → (–∞, +∞). We say that f is a triangular
α-admissible mapping if
(T) α(x, y)≥  implies α(fx, fy) ≥ , x, y ∈ X ,
(T)

{
α(x, z) ≥ ,
α(z, y) ≥ , implies α(x, y)≥ , x, y, z ∈ X .

Example  Let X =R, fx = √x and α(x, y) = ex–y then f is a triangular α-admissible map-
ping. Indeed, if α(x, y) = ex–y ≥  then x ≥ y which implies fx ≥ fy. That is, α(fx, fy) =
efx–fy ≥ . Also, if

{
α(x, z) ≥ ,
α(z, y) ≥  then

{
x – z ≥ ,
z – y ≥ . That is, x – y≥  and so α(x, y) = ex–y ≥ .

Example  Let X = R, fx = ex and α(x, y) = √x – y + . Hence, f is a triangular α-
admissible mapping. Again, if α(x, y) = √x – y +  ≥  then x ≥ y which implies fx ≥ fy.
That is, α(fx, fy)≥ .
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Moreover, if
{

α(x, z) ≥ ;
α(z, y) ≥ , then x – y≥ , and hence, α(x, y)≥ .

Example  Let X = [,+∞), fx = x + ln(x + ) and

α(x, y) =
x

 + x
–

y

y + 
+ .

Then f is a triangular α-admissible mapping. In fact, if

α(x, y) =
x

 + x
–

y

y + 
+  ≥ 

then x ≥ y. Hence, fx ≥ fy. That is, α(fx, fy) ≥ . Also,

α(x, z) + α(z, y) =
x

 + x
–

z

z + 
+  +

z

 + z
–

y

y + 
+ 

=
x

 + x
–

y

y + 
+ ≤ 

(
x

 + x
–

y

y + 
+ 

)
= α(x, y).

Thus, α(x, z) + α(z, y) ≤ α(x, y). Now, if
{

α(x, z) ≥ ;
α(z, y) ≥ , then α(x, y)≥ .

Example  Let X = R, fx = x + √x and α(x, y) = x – y + . Then f is a triangular α-
admissible mapping.

Example  Let X = [,+∞), fx = x + ex and

α(x, y) =

⎧⎨
⎩
, if x, y ∈ [, ],

, otherwise.

Hence, f is a triangular α-admissible mapping.

Lemma  Let f be a triangular α-admissible mapping. Assume that there exists x ∈ X
such that α(x, fx) ≥ . Define sequence {xn} by xn = f nx. Then

α(xm,xn) ≥  for all m,n ∈N with m < n.

Proof Since there exist x ∈ X such that α(x, fx) ≥  then from (T), we deduce that
α(x,x) = α(fx, f x)≥ . By continuing this process, we get

α(xn,xn+) ≥  for all n ∈ N∪ . (.)

Suppose thatm < n. Since
{

α(xm ,xm+)≥ ,
α(xm+,xm+)≥ , then from (T) we have α(xm,xm+) ≥ .

Again, since
{

α(xm ,xm+) ≥ ,
α(xm+,xm+) ≥ , then we deduce α(xm,xm+) ≥ .

By continuing this process, we get α(xm,xn) ≥ . �

Denotewith� the family of nondecreasing functionsψ : [, +∞) → [, +∞) continuous
in t =  such that
• ψ(t) =  if and only if t = ,
• ψ(t + s) ≤ ψ(t) +ψ(s).
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2 Main results
Definition  Let (X,d) be a metric space and ψ ∈ � . Suppose that f : X → X is a trian-
gular α-admissible mapping satisfying the following condition: for each ε >  there exists
δ >  such that

ε ≤ ψ
(
d(x, y)

)
< ε + δ implies α(x, y)ψ

(
d(fx, fy)

)
< ε (.)

for all x, y ∈ X. Then f is called an α-ψ-Meir-Keeler contractive mapping.

Remark  Let f be an α-ψ-Meir-Keeler contractive mapping. Then

α(x, y)ψ
(
d(fx, fy)

)
< ψ

(
d(x, y)

)

for all x, y ∈ X when x 	= y. Also, if x = y then d(fx, fy) = . i.e.,

α(x, y)ψ
(
d(fx, fy)

) ≤ ψ
(
d(x, y)

)

for all x, y ∈ X.

Theorem  Let (X,d) be a complete metric space. Suppose that f is a continuous α-ψ-
Meir-Keeler contractive mapping and that there exists x ∈ X such that α(x, fx) ≥ , then
f has a fixed point.

Proof Let x ∈ X and define a sequence {xn} by xn = f nx for all n ∈ N. If xn = xn+ for
some n ∈ N∪ {}, then obviously f has a fixed point. Hence, we suppose that

xn 	= xn+ (.)

for all n ∈ N∪{}.We have d(xn,xn+) >  for all n ∈N∪{}. Nowdefine sn = ψ(d(xn,xn+)).
By Remark , we deduce that for all n ∈ N∪ {},

α(xn,xn+)ψ
(
d(xn+,xn+)

)
= α(xn,xn+)ψ

(
d(fxn, fxn+)

)
< ψ

(
d(xn,xn+)

)
.

Then by applying Lemma 

ψ
(
d(xn+,xn+)

)
< ψ

(
d(xn,xn+)

)
.

Hence, the sequence {sn} is decreasing in R+ and so it is convergent to s ∈ R+. We will
show that s = . Suppose, to the contrary, that s > . Hence, we have

 < s < ψ
(
d(xn,xn+)

)
for all n ∈N∪ {}. (.)

Let ε = s > . Then by hypothesis, there exists a δ(ε) >  such that (.) holds. On the other
hand, by the definition of ε, there exists n ∈N such that

ε < sn = ψ
(
d(xn ,xn+)

)
< ε + δ.
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Now by (.), we have

sn+ = ψ
(
d(xn+,xn+)

) ≤ α(xn ,xn+)ψ
(
d(xn+,xn+)

)
= α(xn ,xn+)ψ

(
d(fxn , fxn+)

)
< ε = s

which is a contradiction. Hence, s = , that is, limn→+∞ sn = . Now, by the continuity of ψ
in t = , we have limn→+∞ d(xn,xn+) = . For given ε > , by the hypothesis, there exists a
δ = δ(ε) >  such that (.) holds. Without loss of generality, we assume δ < ε. Since s = ,
then there exists N ∈ N such that

sn– = ψ
(
d(xn–,xn)

)
< δ, for all n ≥ N . (.)

We will prove that for any fixed k ≥ N,

ψ
(
d(xk ,xk+l)

) ≤ ε, for all l ∈N, (.)

holds. Note that (.), by (.), holds for l = . Suppose the condition (.) is satisfied for
somem ∈N. For l =m + , by (.), we get

ψ
(
d(xk–,xk+m)

) ≤ ψ
(
d(xk–,xk) + d(xk ,xk+m)

)
≤ ψ

(
d(xk–,xk)

)
+ψ

(
d(xk ,xk+m)

)
< ε + δ. (.)

If ψ(d(xk–,xk+m)) ≥ ε, then by (.) we get

ψ
(
d(xk ,xk+m+)

) ≤ α(xk–,xk+m)ψ
(
d(xk ,xk+m+)

)
= α(xk ,xk+m+)ψ

(
d(fxk–, fxk+m)

)
< ε

and hence (.) holds.
If ψ(d(xk–,xk+m)) < ε, by Remark , we get

ψ
(
d(xk ,xk+m+)

) ≤ α(xk–,xk+m)ψ
(
d(xk ,xk+m+)

) ≤ ψ
(
d(xk–,xk+m)

)
< ε.

Consequently, (.) holds for l =m+ . Hence, ψ(d(xk ,xk+l)) ≤ ε for all k ≥ N and l ≥ ,
which means

d(xn,xm) < ε, for allm ≥ n≥ N. (.)

Hence {xn} is a Cauchy sequence. Since (X,d) is complete, there exists z ∈ X such that
xn → z as n→ ∞. Now, since, f is continuous then

fz = f
(
lim
n→∞xn

)
= lim

n→∞xn+ = z,

that is, f has a fixed point. �
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Theorem  Let (X,d) be a complete metric space and let f be a α-ψ-Meir-Keeler con-
tractive mapping. If the following conditions hold:

(i) there exists x ∈ X such that α(x, fx) ≥ ,
(ii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x as n→ +∞,

then α(xn,x)≥  for all n.
Then f has a fixed point.

Proof Following the proof of the Theorem , we say that α(xn,xn+) ≥  for all n ∈ N∪{}
and that there exist z ∈ X such that xn → z as n → +∞. Hence, from (ii) α(xn, z) ≥ . By
Remark , we have

ψ
(
d(fz, z)

) ≤ ψ
(
d(fz, fxn) + d(fxn, z)

)
≤ ψ

(
d(fz, fxn)

)
+ψ

(
d(fxn, z)

)
≤ α(xn, z)ψ

(
d(fz, fxn)

)
+ψ

(
d(fxn, z)

)
≤ ψ

(
d(z,xn)

)
+ψ

(
d(xn+, z)

)
.

By taking limit as n → +∞, in the above inequality, we get ψ(d(fz, z)) ≤ , that is,
d(fz, z) = . Hence, fz = z. �

Next, we give some examples to validate our main result.

Example  Let X = [,∞) and d(x, y) = |x – y| be a metric on X. Define f : X → X by

fx =

⎧⎨
⎩

x
 , if x ∈ [, ],

x, if x ∈ (,∞),
and α(x, y) =

⎧⎨
⎩
, if x, y ∈ [, ],

–, otherwise

and ψ(t) = 
 t. Clearly, (X,d) is a complete metric space. We show that f is a triangular

α-admissible mapping. Let x, y ∈ X, if α(x, y) ≥  then x, y ∈ [, ]. On the other hand, for
all x, y ∈ [, ] we have fx ≤  and fy≤ . It follows that α(fx, fy) ≥ . Also, if α(x, z)≥  and
α(z, y) ≥  then x, y, z ∈ [, ] and hence, α(x, y)≥ . Thus, the assertion holds by the same
arguments. Notice that α(, f ) ≥ .
Now, if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n ∈ N ∪ {} and xn → x

as n → +∞, then {xn} ⊂ [, ] and hence x ∈ [, ]. This implies that α(xn,x) ≥  for all
n ∈N∪ {}. Let x, y ∈ [, ]. Without loss of generality, take x ≤ y. Then

ψ
(
d(fx, fy)

)
=
y


–
x


,

ψ
(
d(x, y)

)
=
y

–
x

.

Clearly, by taking δ = ε the condition (.) holds. Otherwise, α(x, y) = –. Hence, for given
ε >  we have α(x, y)ψ(d(fx, fy))≤  < ε. Hence, conditions of Theorem  holds and f has
a fixed point. But, if x, y ∈ (,∞) and

ε ≤ d(x, y) < ε + δ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/94
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where ε >  and δ > . Then

d(fx, fy) = |x – y| = d(x, y) ≥ d(x, y)≥ ε.

That is, the Meir-Keeler theorem cannot applied for this example.

Example  Let X = [,∞) and d(x, y) = |x – y| be a metric on X. Define f : X → X by

fx =

⎧⎪⎪⎨
⎪⎪⎩


 ( – x), if x ∈ [, ],
√
–x

+sin(x) , if x ∈ (, ],
√x–
x+ , if x ∈ (,∞)

and ψ(t) = 
 t,

α(x, y) =

⎧⎨
⎩
, if x, y, z ∈ [, ],

–, otherwise.

Let x, y ∈ [, ]. Without loss of generality, take x≤ y. Then

ψ
(
d(fx, fy)

)
=


(y – x),

ψ
(
d(x, y)

)
=


(y – x).

Clearly, by taking δ = ε the condition (.) holds. Otherwise, α(x, y) = –. Hence, for given
ε >  we have α(x, y)ψ(d(fx, fy))≤  < ε. Hence, conditions of Theorem  holds and f has
a fixed point.

Denote with �st the family of strictly nondecreasing functions ψst : [, +∞) → [, +∞)
continuous in t =  such that
• ψst(t) =  if and only if t = ,
• ψst(t + s)≤ ψst(t) +ψst(s).

Definition  Let (X,d) be a metric space and ψst ∈ �st . Suppose that f : X → X is a
triangular α-admissible mapping satisfying the following condition: for each ε >  there
exists δ >  such that

ε ≤ ψst
(
M(x, y)

)
< ε + δ implies α(x, y)ψst

(
d(fx, fy)

)
< ε (.)

for all x, y ∈ X where

M(x, y) =max

{
d(x, y),d(fx,x),d(fy, y),



[
d(fx, y) + d(x, fy)

]}
.

Then f is called generalized an α-ψst-Meir-Keeler contractive mapping.

http://www.fixedpointtheoryandapplications.com/content/2013/1/94
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Remark  Let f be a generalized α-ψst-Meir-Keeler contractive mapping. Then

α(x, y)ψst
(
d(fx, fy)

)
< ψst

(
M(x, y)

)

for all x, y ∈ X when M(x, y) > . Also, if M(x, y) =  then x = y which implies ψ(d(fx,
fy)) = , i.e.,

α(x, y)ψst
(
d(fx, fy)

) ≤ ψst
(
M(x, y)

)

for all x, y ∈ X.

Proposition  Let (X,d) be a metric space and f : X → X a generalized α-ψst-Meir-
Keeler contractive mapping, if there exists x ∈ X such that α(x, fx) ≥  . Then
limn→∞ d(f n+x, f nx) = .

Proof Define a sequence {xn} by xn = f nx for all n ∈N. If xn = xn+ for some n ∈N∪{},
then obviously f has a fixed point. Hence, we suppose that

xn 	= xn+ (.)

for all n ∈ N ∪ {}. Then we have M(xn+,xn) >  for every n ≥ . Then by Lemma  and
Remark , we have

ψst
(
d(xn+,xn+)

) ≤ α(xn,xn+)ψst
(
d(xn+,xn+)

)
= α(xn,xn+)ψst

(
d(fxn, fxn+)

)
< ψst

(
M(xn,xn+)

)

= ψst

(
max

{
d(xn,xn+),d(fxn,xn),d(fxn+,xn+),



[
d(fxn,xn+) + d(xn, fxn+)

]})

≤ ψst
(
max

{
d(xn,xn+),d(xn+,xn+)

})
.

Now, since ψst is strictly nondecreasing then, we get

d(xn+,xn+) <max
{
d(xn+,xn),d(xn+,xn+)

}
.

Hence, the case where

max
{
d(xn+,xn),d(xn+,xn+)

}
= d(xn+,xn+)

is not possible. Therefore, we deduce that

d(xn+,xn+) < d(xn+,xn) (.)

for all n. That is, {d(xn+,xn)}∞n= is a decreasing sequence in R+ and it converges to ε ∈R+,
that is,

lim
n→∞ψst

(
d(xn+,xn)

)
= lim

n→∞ψst
(
M(xn+,xn)

)
= ψst(ε). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/94
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Notice that ε = inf{p(xn,xn+) : n ∈ N}. Let us prove that ε = . Suppose, to the contrary,
that ε > . Then ψ(ε) > . Regarding (.) together with the assumption that f is a gener-
alized α-ψst-Meir-Keeler contractive mapping, for ψst(ε), there exists δ >  and a natural
numberm such that

ψst(ε) ≤ ψst
(
M(xm,xm+)

)
< ψst(ε) + δ

implies that

ψst
(
d(xm+,xm+)

) ≤ α(xm,xm+)ψst
(
d(xm+,xm+)

)
= α(xm,xm+)ψst

(
d(fxm, fxm+)

)
<ψst(ε).

Now, since ψst is strictly nondecreasing then we get

d(xm+,xm+) < ε

which is a contradiction since ε = inf{p(xn,xn+) : n ∈N}. Then ε =  and so limn→∞ d(xn+,
xn) = . �

Theorem  Let (X,d) be a complete metric space and f : X → X a orbitally contin-
uous generalized α-ψst-Meir-Keeler contractive mapping, if there exist x ∈ X such that
α(x, fx) ≥ . Then, f has a fixed point.

Proof Define xn+ = f n+x for all n ≥ . We want to prove that limm,n→∞ d(xn,xm) = . If
this is not, then there exist ε >  and a subsequence {xn(i)} of {xn} such that

d(xn(i),xn(i+)) > ε. (.)

For this ε > , there exists δ >  such that ε ≤ ψst(M(x, y)) < ε + δ implies that
α(x, y)ψst(d(fx, fy)) < ε. Put r = min{ε, δ} and sn = d(xn,xn+) for all n ≥ . From Proposi-
tion , there exists n such that

sn = d(xn,xn+) <
r


(.)

for all n ≥ n. Let n(i) > n. We get n(i) ≤ n(i + ) – . If d(xn(i),xn(i+)–) ≤ ε + r
 , then

d(xn(i),xn(i+)) ≤ d(xn(i),xn(i+)–) + d(xn(i+)–,xn(i+))

≤ d(xn(i),xn(i+)–) + d(xn(i+)–,xn(i+))

< ε +
r

+ sn(i+)– < ε +

r


< ε

which contradicts the assumption (.). Therefore, there are values of k such that n(i) ≤
k ≤ n(i + ) and d(xn(i),xk) > ε + r

 . Now if d(xn(i),xn(i)+)≥ ε + r
 , then

sn(i) = d(xn(i),xn(i)+)≥ ε +
r

> r +

r

>
r


http://www.fixedpointtheoryandapplications.com/content/2013/1/94
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which is a contradiction with (.). Hence, there are values of k with n(i) ≤ k ≤ n(i + )
such that d(xn(i),xk) < ε + r

 . Choose smallest integer k with k ≥ n(i) such that d(xn(i),xk) ≥
ε + r

 . Thus, d(xn(i),xk–) < ε + r
 and so

d(xn(i),xk) ≤ d(xn(i),xk–) + d(xk–,xk)

≤ d(xn(i),xk–) + d(xk–,xk) < ε +
r

+
r

= ε +

r

.

Now, we can choose a natural number k satisfying n(i) ≤ k ≤ n(i + ) such that

ε +
r


≤ d(xn(i),xk) < ε +
r

. (.)

Therefore, we obtain

d(xn(i),xk) < ε +
r


< ε + r, (.)

d(xn(i),xn(i)+) = dn(i) <
r

< ε + r, (.)

and

d(xk ,xk+) = dk <
r

< ε + r. (.)

Thus, we have



[
d(xn(i),xk+) + d(xn(i)+,xk)

]

≤ 

[
d(xn(i),xk) + d(xk ,xk+) + d(xn(i)+,xn(i)) + d(xn(i),xk)

]

≤ 

[
d(xn(i),xk) + d(xk ,xk+) + d(xn(i)+,xn(i)) + d(xn(i),xk)

]

= d(xn(i),xk) +


[sk + sn(i)]

< ε +
r


+



[
r

+
r


]
= ε + r. (.)

Now, the inequalities (.)-(.) imply thatM(xn(i),xk) < ε + r ≤ ε + δ and so ψst(M(xn(i),
xk)) < ψst(ε + δ) ≤ ψst(ε) + ψst(δ) the fact that f is a generalized α-ψst-Meir-Keeler con-
tractive mapping yields that,

d(xn(i)+,xk+)≤ α(xn(i),xk)ψst
(
d(xn(i)+,xk+)

)
<ψst(ε).

Then d(xn(i)+,xk+) < ε. We deduce,

d
(
f n(i)x, f kx

) ≤ d
(
f n(i)x, f n(i)+x

)
+ d

(
f n(i)+x, f kx

)
≤ d

(
f n(i)x, f n(i)+x

)
+ d

(
f n(i)+x, f kx

)
≤ d

(
f n(i)x, f n(i)+x

)
+ d

(
f n(i)+x, f k+x

)
+ d

(
f k+x, f kx

)
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/94
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Hence, from this with (.), (.) and (.), we obtain

d(xn(i)+,xk+) ≥ d(xn(i),xk) – d(xn(i),xn(i)+) – d(xk ,xk+)

> ε +
r

–
r

–
r

= ε,

which is a contradiction. We obtained that limm,n→∞ d(xn,xm) =  and so {xn = f nx} is
a Cauchy sequence. Since, X is complete, then there exists z ∈ X such that f nx → z as
n→ ∞. Now, since f is orbitally continuous, then z = fz. �

Example  Let X = [,∞) and d(x, y) = |x – y| be a metric on X. Define f : X → X by

fx =

⎧⎨
⎩

x
 , if x ∈ [, ],

 + lnx, if x ∈ (,∞)

and ψst(t) = 
 t,

α(x, y) =

⎧⎨
⎩
, if x, y ∈ [, ],

, otherwise.

Clearly, f is a triangular α-admissible mapping and orbitally continuous. Let x, y ∈ [, ].
Without loss of generality, take x≤ y. Then

ψst
(
d(fx, fy)

)
=
y


–
x


,

ψst
(
M(x, y)

)
= ψst

(
max

{
y – x,x –

x


, y –

y



})
=max

{
y

–
x

,
x

–
x


,
y

–
y



}
.

Clearly, by taking δ = ε the condition (.) holds. Otherwise, α(x, y) = . Hence, for given
ε > , we have  = α(x, y)ψst(d(fx, fy)) < ε. Hence, condition of Theorem  is held and f
has a fixed point.

Theorem  Assume that all the hypotheses of Theorem  ( and ) hold. Adding the
following conditions:
(iii) for all x 	= y ∈ X there exists v ∈ X such that α(x, v)≥  and α(v, y)≥ ,

we obtain the uniqueness of the fixed point of f .

Proof Suppose that z and z* are two fixed points of f such that z 	= z*. Then α(z, v)≥  and
α(v, z*) ≥ . Hence, from (T), we have α(z, z*) ≥ . Now, by Remark , we get

d
(
z, z*

)
= d

(
fz, fz*

) ≤ α
(
z, z*

)
d
(
fz, fz*

)
< d

(
z, z*

)

which is a contradiction and so z = z*. Similarly, for Theorem , we can observe that f has
a unique fixed point. �

We can obtain the following corollaries intermediately.

http://www.fixedpointtheoryandapplications.com/content/2013/1/94
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Corollary  Let (X,d) be a completemetric space and f : X → X is self-mapping. Suppose
that for each ε > , there exists δ >  such that

ε ≤ ψ
(
d(x, y)

)
< ε + δ implies ψ

(
d(fx, fy)

)
<

ε

L
,

where ψ ∈ � and L ≥ . Then f has a unique fixed points.

Corollary  Let (X,d) be a complete metric space and f : X → X a orbitally continuous
self-mapping. Suppose that for each ε >  there exists δ >  such that

ε ≤ ψst
(
M(x, y)

)
< ε + δ implies ψst

(
d(fx, fy)

)
<

ε

L
,

where ψst ∈ �st , L ≥  and

M(x, y) =max

{
d(x, y),d(fx,x),d(fy, y),



[
d(fx, y) + d(x, fy)

]}
.

Then f has unique fixed points.
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