ON A QUESTION OF DAVENPORT AND LEWIS AND NEW CHARACTER SUM BOUNDS IN FINITE FIELDS

Mei-Chu Chang

Abstract.

Let χ be a nontrivial multiplicative character of $\mathbb{F}_{p^{n}}$. We obtain the following results. (1). Let $\varepsilon>0$ be given. If $B=\left\{\sum_{j=1}^{n} x_{j} \omega_{j}: x_{j} \in\left[N_{j}+1, N_{j}+H_{j}\right] \cap \mathbb{Z}, j=1, \ldots, n\right\}$ is a box satisfying $\prod_{j=1}^{n} H_{j}>p^{\left(\frac{2}{5}+\varepsilon\right) n}$, then for $p>p(\varepsilon)$ and some absolute constant $c>0$, we have, denoting χ a nontrivial multiplicative character

$$
\left|\sum_{x \in B} \chi(x)\right|<c n p^{-\frac{\varepsilon^{2}}{4}}|B|
$$

unless n is even, χ is principal on a subfield F_{2} of size $p^{n / 2}$ and $\max _{\xi}\left|B \cap \xi F_{2}\right|>p^{-\varepsilon}|B|$.
(2). Assume $A, B \subset \mathbb{F}_{p}$ such that

$$
|A|>p^{\frac{4}{9}+\varepsilon},|B|>p^{\frac{4}{9}+\varepsilon},|B+B|<K|B| .
$$

Then

$$
\left|\sum_{x \in A, y \in B} \chi(x+y)\right|<p^{-\tau}|A||B| .
$$

(3). Let $I \subset \mathbb{F}_{p}$ be an interval with $|I|=p^{\beta}$ and let $\mathcal{D} \subset \mathbb{F}_{p}$ be a p^{β} - spaced set with $|\mathcal{D}|=p^{\sigma}$. Assume $\beta>\frac{1}{4}-\frac{\sigma}{4(1-\sigma)}+\delta$. Then for a non-principal multiplicative character χ

$$
\left|\sum_{x \in I, y \in \mathcal{D}} \chi(x+y)\right|<p^{-\frac{\delta^{2}}{4}}|I||\mathcal{D}| .
$$

We also improve a result of Karacuba.

Introduction.

In this paper we obtain new character sum bounds in finite fields \mathbb{F}_{q} with $q=p^{n}$, using methods from additive combinatorics related to the sum-product phenomenon. More precisely, Burgess' classical amplification argument is combined with our estimate on the 'multiplicative energy' for subsets in \mathbb{F}_{q}. (See Proposition 1 in §1.) The latter appears as a quantitative version of the sum-product theorem in finite fields (see [BKT] and [TV]) following arguments from $[\mathrm{G}],[\mathrm{KS1}]$ and $[\mathrm{KS} 2]$.

Our first results relate to the work [DL] of Davenport and Lewis. We recall their result. Let $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be an arbitrary basis for $\mathbb{F}_{p^{n}}$ over \mathbb{F}_{p}. Then elements of $\mathbb{F}_{p^{n}}$ have a unique representation as

$$
\begin{equation*}
\xi=x_{1} \omega_{1}+\ldots+x_{n} \omega_{n}, \quad\left(0 \leq x_{i}<p\right) \tag{0.1}
\end{equation*}
$$

We denote B a box in n-dimensional space, defined by

$$
\begin{equation*}
N_{j}+1 \leq x_{j} \leq N_{j}+H_{j}, \quad(j=1, \ldots, n) \tag{0.2}
\end{equation*}
$$

where N_{j} and H_{j} are integers satisfying $0 \leq N_{j}<N_{j}+H_{j}<p$, for all j.
Theorem DL. ([DL], Theorem 2) Let $H_{j}=H$ for $j=1, \ldots, n$, with

$$
\begin{equation*}
H>p^{\frac{n}{2(n+1)}}+\delta \text { for some } \delta>0 \tag{0.3}
\end{equation*}
$$

and let $p>p_{1}(\delta)$. Then, with B defined as above

$$
\left|\sum_{x \in B} \chi(x)\right|<\left(p^{-\delta_{1}} H\right)^{n}
$$

where $\delta_{1}=\delta_{1}(\delta)>0$.
For $n=1$ (i.e. $\mathbb{F}_{q}=\mathbb{F}_{p}$) we are recovering Burgess' result $\left(H>p^{\frac{1}{4}+\delta}\right)$. But as n increases, the exponent in (0.3) tends to $\frac{1}{2}$. In fact, in [DL] the authors were quite aware of the shortcoming of their approach which they formulated as follows (see [DL], p130)
'The reason for this weakening in the result lies in the fact that the parameter q used in Burgess' method has to be a rational integer and cannot (as far as we can see) be given values in \mathbb{F}_{q}.

In this paper we address to some extent their problem and are able to prove the following

[^0]Theorem 2*. Let χ be a nontrivial multiplicative character of $\mathbb{F}_{p^{n}}$, and let $\varepsilon>0$ be given. If

$$
B=\left\{\sum_{j=1}^{n} x_{j} \omega_{j}: x_{j} \in\left[N_{j}+1, N_{j}+H_{j}\right] \cap \mathbb{Z}, j=1, \ldots, n\right\}
$$

is a box satisfying

$$
\prod_{j=1}^{n} H_{j}>p^{\left(\frac{2}{5}+\varepsilon\right) n}
$$

then for $p>p(\varepsilon)$ and some absolute constant c

$$
\left|\sum_{x \in B} \chi(x)\right|<c n p^{-\frac{\varepsilon^{2}}{4}}|B|,
$$

unless n is even and $\left.\chi\right|_{F_{2}}$ is principal, where F_{2} is the subfield of size $p^{n / 2}$, in which case

$$
\left|\sum_{x \in B} \chi(x)\right| \leq \max _{\xi}\left|B \cap \xi F_{2}\right|+c n p^{-\frac{\varepsilon^{2}}{4}}|B| .
$$

Hence our exponent is uniform in n and supersedes [DL] for $n>4$. The novelty of the method in this paper is to exploit the finite field combinatorics without the need to reduce the problem to a divisor issue in \mathbb{Z} or in the integers of an algebraic number field K (as in the papers [Bu3] and [Kar2]).

Let us emphasize that there are no further assumptions on the basis $\omega_{1}, \ldots, \omega_{n}$. If one assumes $\omega_{i}=g^{i-1},(1 \leq i \leq n)$, where g satisfies a given irreducible polynomial equation $(\bmod p)$

$$
a_{0}+a_{1} g+\cdots+a_{n-1} g^{n-1}+g^{n}=0, \text { with } a_{i} \in \mathbb{Z},
$$

or more generally, if

$$
\begin{equation*}
\omega_{i} \omega_{j}=\sum_{k=1}^{n} c_{i j k} \omega_{k}, \tag{0.4}
\end{equation*}
$$

with $c_{i j k}$ bounded and p taken large enough, a result of the strength of Burgess' theorem was indeed obtained (see [Bu3] and [Kar2]) by reducing the problem of bounding the multiplicative energy in the finite field to counting divisors in the ring of integers

[^1]of an appropriate number field. But such reduction seems not possible in the general context considered in [DL].

Character estimates as considered above have many applications, e.g. quadratic non-residues, primitive roots, coding theory, etc. Corollary 3 in $\S 2$ is a standard consequence of Theorem 2 to the problem of primitive roots (see for instance [DL], p131).

The aim of [DL] (and in an extensive list of other works starting from Burgess' seminal paper [Bu1]) was to improve on the Polya-Vinogradov estimate (i.e. breaking the \sqrt{q}-barrier), when considering incomplete character sums of the form

$$
\begin{equation*}
\left|\sum_{x \in A} \chi(x)\right| \tag{0.5}
\end{equation*}
$$

where $A \subset \mathbb{F}_{q}$ has certain additive structure.
Note that the set B considered above has a small doubling set, i.e.

$$
\begin{equation*}
|B+B|<c(n)|B| \tag{0.6}
\end{equation*}
$$

and this is the property relevant to us in our combinatorial Proposition 1 in $\S 1$.
In the case of a prime field $(q=p)$, our method provides the following generalization of Burgess' inequality.

Theorem 4. Let \mathcal{P} be a proper d-dimensional generalized arithmetic progression in \mathbb{F}_{p} with

$$
|\mathcal{P}|>p^{2 / 5+\varepsilon}
$$

for some $\varepsilon>0$. If \mathcal{X} is a non-principal multiplicative character of \mathbb{F}_{p}, we have

$$
\left|\sum_{x \in \mathcal{P}} \mathcal{X}(x)\right|<p^{-\tau}|\mathcal{P}|
$$

where $\tau=\tau(\varepsilon, d)>0$ and assuming $p>p(\varepsilon, d)$.
See $\S 4$, where we also recall the notion of a 'proper generalized arithmetic progression'. Let us point out here that the proof of Proposition 1 below and hence Theorem 2 , uses the full linear independence of the elements $\omega_{1}, \ldots, \omega_{n}$ over the base field \mathbb{F}_{p}. Assuming in Theorem 2 only that B is a proper generalized arithmetic progression requires us to make more restrictive assumptions on the size $|B|$.

Next, we consider the problem of estimating character sums over sumsets of the form

$$
\begin{equation*}
\sum_{x \in A, y \in B} \chi(x+y) \tag{0.7}
\end{equation*}
$$

where χ is a non-principal multiplicative character modulo p (we consider again only the prime field case for simplicity). In this situation, a well-known conjecture* predicts a nontrivial bound on (0.7) as soon as $|A|,|B|>p^{\delta}$, for some $\delta>0$. (See [C] and [S] p.305.) Presently, such a result is only known (with no further assumptions) provided $|A|>p^{\frac{1}{2}+\delta}$ and $|B|>p^{\delta}$ for some $\delta>0$. (See [Kar1].) The problem is open even for the case $|A| \sim p^{\frac{1}{2}} \sim|B|$. Using Proposition 1 (combined with Freiman's theorem), we prove the following result.

Theorem 6. Assume $A, B \subset \mathbb{F}_{p}$ such that
(a) $|A|>p^{\frac{4}{9}+\varepsilon},|B|>p^{\frac{4}{9}+\varepsilon}$
(b) $|B+B|<K|B|$.

Then

$$
\left|\sum_{x \in A, y \in B} \chi(x+y)\right|<p^{-\tau}|A||B|,
$$

where $\tau=\tau(\varepsilon, K)>0, p>p(\varepsilon, K)$ and χ is a non-principal multiplicative character of \mathbb{F}_{p}.

Assuming $B=I$ an interval, we obtain the next estimate.
Theorem 8. Let $A \subset \mathbb{F}_{p}$ be a subset with $|A|=p^{\alpha}$ and let $I \subset[1, p]$ be an arbitrary interval with $|I|=p^{\beta}$, where

$$
(1-\alpha)(1-\beta)<\frac{1}{2}-\delta
$$

and $\beta>\delta>0$. Then for a non-principal multiplicative character χ, we have

$$
\left|\sum_{\substack{x \in I \\ y \in A}} \chi(x+y)\right|<p^{-\frac{\delta^{2}}{13}}|A||I| .
$$

The following variant of Theorem 8 may be compared with Theorem 2' in [FI]. (See the discussion in §4.)

[^2]Theorem 9. Let $I \subset \mathbb{F}_{p}$ be an interval with $|I|=p^{\beta}$ and let $\mathcal{D} \subset \mathbb{F}_{p}$ be a p^{β}-spaced set modulo p with $|\mathcal{D}|=p^{\sigma}$. Assume $\beta>\sigma$ and

$$
\begin{equation*}
(1-2 \beta)(1-\sigma)<\frac{1}{2}-\delta \tag{0.8}
\end{equation*}
$$

for some $\delta>0$. Then

$$
\begin{equation*}
\left|\sum_{x \in I, y \in \mathcal{D}} \chi(x+y)\right|<p^{-\frac{\delta^{2}}{17}}|I| \cdot|\mathcal{D}| \tag{0.9}
\end{equation*}
$$

for a non-principal multiplicative character χ.
Rewriting (0.8) as $\beta>\frac{1}{4}-\frac{\sigma}{4(1-\sigma)}$, we note that Theorem 9 breaks Burgess' $\frac{1}{4}$ threshold as soon as $\sigma>0$.

The next result is a slight improvement of Karacuba's [Kar1].
Theorem 10. Let $I \subset[1, p]$ be an interval with $|I|=p^{\beta}$ and $S \subset[1, p]$ be an arbitrary set with $|S|=p^{\alpha}$. Assume that α, β satisfy

$$
\varepsilon<\beta \leq \frac{1}{k} \text { and }\left(1-\frac{2}{3 k}\right) \alpha+\frac{2}{3}\left(1+\frac{2}{k}\right) \beta>\frac{1}{2}+\frac{1}{3 k}+\varepsilon
$$

for some $\varepsilon>0$ and $k \in \mathbb{Z}_{+}$. Then

$$
\sum_{y \in I}\left|\sum_{x \in S} \chi(x+y)\right|<p^{-\varepsilon^{\prime}}|I||S|
$$

for some $\varepsilon^{\prime}=\varepsilon^{\prime}(\varepsilon)>0$.
We believe that this is the first paper exploring the application of recent developments in combinatorial number theory (for which we especially refer to [TV]) to the problem of estimating (multiplicative) character sums. (Those developments have been particularly significant in the context of exponential sums with additive characters. See [BGK] and subsequent papers.) One could clearly foresee more investigations along these lines.

The paper is organized as follows. We prove Proposition 1 in $\S 1$, Theorem 2 in $\S 2$, Theorems 6 in $\S 3$, and Theorems 8, 9, 10 in $\S 4$.

Notations. Let * be a binary operation on some ambient set S and let A, B be subsets of S. Then
(1) $A * B:=\{a * b: a \in A$ and $b \in B\}$.
(2) $a * B:=\{a\} * B$.
(3) $A B:=A * B$, if $*=$ multiplication.
(4) $A^{n}:=A A^{n-1}$.

Note that we use A^{n} for both the n-fold product set and n-fold Cartesian product when there is no ambiguity.
(5) $[a, b]:=\{i \in \mathbb{Z}: a \leq i \leq b\}$.

§1. Multiplicative energy of a box.

Let A, B be subsets of a commutative ring. Recall that the multiplicative energy of A and B is

$$
\begin{equation*}
E(A, B)=\left|\left\{\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \in A \times A \times B \times B: a_{1} b_{1}=a_{2} b_{2}\right\}\right| . \tag{1.1}
\end{equation*}
$$

(See [TV] p.61.)
We will use the following (see [TV] Corollary 2.10)
Fact 1. $E(A, B) \leq E(A, A)^{1 / 2} E(B, B)^{1 / 2}$.
Proposition 1. Let $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be a basis for $\mathbb{F}_{p^{n}}$ over \mathbb{F}_{p} and let $B \subset \mathbb{F}_{p^{n}}$ be the box

$$
B=\left\{\sum_{j=1}^{n} x_{j} \omega_{j}: x_{j} \in\left[N_{j}+1, N_{j}+H_{j}\right], j=1, \ldots, n\right\}
$$

where $1 \leq N_{j}<N_{j}+H_{j}<p$ for all j. Assume that

$$
\begin{equation*}
\max _{j} H_{j}<\frac{1}{2}(\sqrt{p}-1) \tag{1.2}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
E(B, B)<C^{n}(\log p)|B|^{11 / 4} \tag{1.3}
\end{equation*}
$$

for an absolute constant $C<2^{\frac{9}{4}}$.
The argument is an adaptation of [G] and [KS1] with the aid of a result in [KS2]. The structure of B allows us to carry out the argument directly from [KS1] leading to the same statement as for the case $n=1$.

We will use the following estimates from [KS1] (Corollaries 1.4-1.6). (See also [G].)

Let X, B_{1}, \cdots, B_{k} be subsets of a commutative ring and $a, b \in X$. Then
Fact 2. $\left|B_{1}+\cdots+B_{k}\right| \leq \frac{\left|X+B_{1}\right| \cdots\left|X+B_{k}\right|}{|X|^{k-1}}$.
Fact 3. $\exists X^{\prime} \subset X$ with $\left|X^{\prime}\right|>\frac{1}{2}|X|$ and $\left|X^{\prime}+B_{1}+\cdots+B_{k}\right| \leq 2^{k} \frac{\left|X+B_{1}\right| \cdots\left|X+B_{k}\right|}{|X|^{k-1}}$.
Fact 4. $|a X \pm b X| \leq \frac{|X+X|^{2}}{|a X \cap b X|}$.
Proof of Proposition 1.
Claim 1. $\mathbb{F}_{p} \not \subset \frac{B-B}{B-B}$.
Proof of Claim 1. Take $t \in \mathbb{F}_{p} \cap \frac{B-B}{B-B}$. Then $t \Sigma x_{j} \omega_{j}=\Sigma y_{j} \omega_{j}$ for some $x_{j}, y_{j} \in$ $\left[-H_{j}, H_{j}\right]$, where $1 \leq j \leq n$ and $\Sigma x_{j} \omega_{j} \neq 0$. Since $t x_{j}=y_{j}$ for all $j=1, \ldots, n$, choosing i such that $x_{i} \neq 0$, it follows that

$$
\begin{equation*}
t \in \frac{\left[-H_{i}, H_{i}\right]}{\left[-H_{i}, H_{i}\right] \backslash\{0\}} \subset \frac{\left[-\frac{1}{2}(\sqrt{p}-1), \frac{1}{2}(\sqrt{p}-1)\right]}{\left[-\frac{1}{2}(\sqrt{p}-1), \frac{1}{2}(\sqrt{p}-1)\right] \backslash\{0\}} \tag{1.4}
\end{equation*}
$$

Since the set (1.4) is of size at most $\sqrt{p}(\sqrt{p}-1)<p$, it cannot contain \mathbb{F}_{p}. This proves our claim.

We may now repeat verbatim the argument in [KS1], with the additional input of the multiplicative energy.

Claim 2. There exist $b_{0} \in B, A_{1} \subset B$ and $N \in \mathbb{Z}_{+}$such that

$$
\begin{gather*}
\left|a B \cap b_{0} B\right| \sim N \text { for all } a \in A_{1}, \tag{1.5}\\
N\left|A_{1}\right|>\frac{E(B, B)}{|B| \log |B|} \tag{1.6}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{A_{1}-A_{1}}{A_{1}-A_{1}}+1 \neq \frac{A_{1}-A_{1}}{A_{1}-A_{1}} . \tag{1.7}
\end{equation*}
$$

Proof of Claim 2.

From (1.1)

$$
E(B, B)=\sum_{a, b \in B}|a B \cap b B| .
$$

Therefore, there exists $b_{0} \in B$ such that

$$
\sum_{a \in B}\left|a B \cap b_{0} B\right| \geq \frac{E(B, B)}{|B|}
$$

Let A_{s} be the level set

$$
A_{s}=\left\{a \in B: 2^{s-1} \leq\left|a B \cap b_{0} B\right|<2^{s}\right\} .
$$

Then for some s_{0} with $1 \leq s_{0} \leq \log _{2}|B|$ we have

$$
2^{s_{0}}\left|A_{s_{0}}\right| \log _{2}|B| \geq \sum_{s=0}^{\log _{2}|B|} 2^{s}\left|A_{s}\right|>\sum_{a \in B}\left|a B \cap b_{0} B\right| \geq \frac{E(B, B)}{|B|} .
$$

(1.5) and (1.6) are obtained by taking $A_{1}=A_{s_{0}}$ and $N=2^{s_{0}}$.

Next we prove (1.7) by assuming the contrary. By iterating t times, we would have

$$
\begin{equation*}
\frac{A_{1}-A_{1}}{A_{1}-A_{1}}+t=\frac{A_{1}-A_{1}}{A_{1}-A_{1}} \text { for } t=0,1, \ldots, p-1 \tag{1.8}
\end{equation*}
$$

Since $0 \in \frac{A_{1}-A_{1}}{A_{1}-A_{1}}$, (1.8) would imply that $\mathbb{F}_{p} \subset \frac{A_{1}-A_{1}}{A_{1}-A_{1}} \subset \frac{B-B}{B-B}$, contradicting Claim 1. Hence (1.7) holds.

Take $c_{1}, c_{2}, d_{1}, d_{2} \in A_{1}, d_{1} \neq d_{2}$, such that

$$
\xi=\frac{c_{1}-c_{2}}{d_{1}-d_{2}}+1 \not \subset \frac{A_{1}-A_{1}}{A_{1}-A_{1}} .
$$

It follows that for any subset $A^{\prime} \subset A_{1}$, we have

$$
\begin{align*}
\left|A^{\prime}\right|^{2} & =\left|A^{\prime}+\xi A^{\prime}\right|=\left|\left(d_{1}-d_{2}\right) A^{\prime}+\left(d_{1}-d_{2}\right) A^{\prime}+\left(c_{1}-c_{2}\right) A^{\prime}\right| \\
& \leq\left|\left(d_{1}-d_{2}\right) A^{\prime}+\left(d_{1}-d_{2}\right) A_{1}+\left(c_{1}-c_{2}\right) A_{1}\right| . \tag{1.9}
\end{align*}
$$

In Fact 3, we take $X=\left(d_{1}-d_{2}\right) A_{1}, B_{1}=\left(d_{1}-d_{2}\right) A_{1}$ and $B_{2}=\left(c_{1}-c_{2}\right) A_{1}$. Then there exists $A^{\prime} \subset A_{1}$ with $\left|A^{\prime}\right|=\frac{1}{2}\left|A_{1}\right|$ and by (1.9)

$$
\begin{align*}
\left|A^{\prime}\right|^{2} & \leq\left|\left(d_{1}-d_{2}\right) A^{\prime}+\left(d_{1}-d_{2}\right) A_{1}+\left(c_{1}-c_{2}\right) A_{1}\right| \\
& \leq \frac{2^{2}}{\left|A_{1}\right|}\left|A_{1}+A_{1}\right|\left|\left(d_{1}-d_{2}\right) A_{1}+\left(c_{1}-c_{2}\right) A_{1}\right| . \tag{1.10}
\end{align*}
$$

Since $\left|A_{1}+A_{1}\right| \leq|B+B| \leq 2^{n}|B|$,

$$
\begin{align*}
2^{-2}\left|A_{1}\right|^{3} & \leq 2^{n+2}|B|\left|\left(d_{1}-d_{2}\right) A_{1}+\left(c_{1}-c_{2}\right) A_{1}\right| \\
& \leq 2^{n+2}|B|\left|c_{1} B-c_{2} B+d_{1} B-d_{2} B\right| . \tag{1.11}\\
& 9
\end{align*}
$$

Facts 2, 4 and (1.5) imply

$$
\begin{equation*}
2^{-2}\left|A_{1}\right|^{3} \leq 2^{n+2}|B| \frac{|B+B|^{8}}{N^{4}|B|^{3}} . \tag{1.12}
\end{equation*}
$$

Thus

$$
\begin{equation*}
N^{4}\left|A_{1}\right|^{3} \leq 2^{9 n+4}|B|^{6} \tag{1.13}
\end{equation*}
$$

and recalling (1.6)

$$
E(B, B)^{4} \leq(\log |B|)^{4}|B|^{5} N^{4}\left|A_{1}\right|^{3}<2^{9 n+4}(\log p)^{4}|B|^{11}
$$

implying (1.3).

§2. Burgess' method and the proof of Theorem 2.

The goal of this section is to prove the theorem below.
Theorem 2. Let χ be a non-principal multiplicative character of $\mathbb{F}_{p^{n}}$. Given $\varepsilon>0$, there is $\tau>\frac{\varepsilon^{2}}{4}$ such that if

$$
B=\left\{\sum_{j=1}^{n} x_{j} \omega_{j}: x_{j} \in\left[N_{j}+1, N_{j}+H_{j}\right] \cap \mathbb{Z}, j=1, \ldots, n\right\}
$$

is a box satisfying

$$
\prod_{j=1}^{n} H_{j}>p^{\left(\frac{2}{5}+\varepsilon\right) n}
$$

then for $p>p(\varepsilon)$ and some absolute constant c

$$
\left|\sum_{x \in B} \chi(x)\right|<c n p^{-\tau}|B|
$$

unless n is even and $\left.\chi\right|_{F_{2}}$ is principal, where F_{2} is the subfield of size $p^{n / 2}$, in which case

$$
\left|\sum_{x \in B} \chi(x)\right| \leq \max _{\xi}\left|B \cap \xi F_{2}\right|+c n p^{-\tau}|B| .
$$

First we will prove a special case of Theorem 2, assuming some further restriction on the box B.

Theorem 2'. Let χ be a non-principal multiplicative character of $\mathbb{F}_{p^{n}}$. Given $\varepsilon>0$, there is $\tau>\frac{\varepsilon^{2}}{4}$ such that if

$$
B=\left\{\sum_{j=1}^{n} x_{j} \omega_{j}: x_{j} \in\left[N_{j}+1, N_{j}+H_{j}\right], j=1, \ldots, n\right\}
$$

is a box satisfying

$$
\prod_{j=1}^{n} H_{j}>p^{\left(\frac{2}{5}+\varepsilon\right) n}
$$

and also

$$
\begin{equation*}
H_{j}<\frac{1}{2}(\sqrt{p}-1) \text { for all } j \tag{2.1}
\end{equation*}
$$

then for $p>p(\varepsilon)$

$$
\begin{equation*}
\left|\sum_{x \in B} \chi(x)\right|<c n p^{-\tau}|B| \tag{2.2}
\end{equation*}
$$

We will need the following version of Weil's bound on exponential sums. (See Theorem 11.23 in [IK])

Theorem W. Let χ be a non-principal multiplicative character of $\mathbb{F}_{p^{n}}$ of order $d>1$. Suppose $f \in \mathbb{F}_{p^{n}}[x]$ has m distinct roots and f is not a d-th power. Then for $n \geq 1$ we have

$$
\left|\sum_{x \in \mathbb{F}_{p^{n}}} \chi(f(x))\right| \leq(m-1) p^{\frac{n}{2}}
$$

Proof of Theorem 2'.
By breaking up B in smaller boxes, we may assume

$$
\begin{equation*}
\prod_{j=1}^{n} H_{j} \sim p^{\left(\frac{2}{5}+\varepsilon\right) n} \tag{2.3}
\end{equation*}
$$

Let $\delta>0$ be specified later. Let

$$
\begin{equation*}
I=\left[1, p^{\delta}\right] \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{0}=\left\{\sum_{j=1}^{n} x_{j} \omega_{j}: x_{j} \in\left[0, p^{-2 \delta} H_{j}\right], j=1, \ldots, n\right\} \tag{2.5}
\end{equation*}
$$

Since $B_{0} I \subset\left\{\sum_{j=1}^{n} x_{j} \omega_{j}: x_{j} \in\left[0, p^{-\delta} H_{j}\right], j=1, \ldots, n\right\}$, clearly

$$
\left|\sum_{x \in B} \chi(x)-\sum_{x \in B} \chi(x+y z)\right|<|B \backslash(B+y z)|+|(B+y z) \backslash B|<2 n p^{-\delta}|B|
$$

for $y \in B_{0}, z \in I$. Hence

$$
\begin{equation*}
\sum_{x \in B} \chi(x)=\frac{1}{\left|B_{0}\right||I|} \sum_{x \in B, y \in B_{0}, z \in I} \chi(x+y z)+O\left(n p^{-\delta}|B|\right) \tag{2.6}
\end{equation*}
$$

*Estimate following Burgess' method

$$
\begin{align*}
\left|\sum_{x \in B, y \in B_{0}, z \in I} \chi(x+y z)\right| & \leq \sum_{x \in B, y \in B_{0}}\left|\sum_{z \in I} \chi(x+y z)\right| \\
& =\sum_{x \in B, y \in B_{0}}\left|\sum_{z \in I} \chi\left(x y^{-1}+z\right)\right| \\
& =\sum_{u \in \mathbb{F}_{p^{n}}} w(u)\left|\sum_{z \in I} \chi(u+z)\right|, \tag{2.7}
\end{align*}
$$

where

$$
\begin{equation*}
\omega(u)=\left|\left\{(x, y) \in B \times B_{0}: \frac{x}{y}=u\right\}\right| \tag{2.8}
\end{equation*}
$$

Next, observe that

$$
\begin{align*}
\sum_{u \in \mathbb{F}_{p^{n}}} \omega(u)^{2} & =\left|\left\{\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in B \times B \times B_{0} \times B_{0}: x_{1} y_{2}=x_{2} y_{1}\right\}\right| \\
& =\sum_{\nu}\left|\left\{\left(x_{1}, x_{2}\right): \frac{x_{1}}{x_{2}}=\nu\right\}\right|\left|\left\{\left(y_{1}, y_{2}\right): \frac{y_{1}}{y_{2}}=\nu\right\}\right| \\
& \leq E(B, B)^{\frac{1}{2}} E\left(B_{0}, B_{0}\right)^{\frac{1}{2}} \\
& <2^{\frac{9}{4} n+1}(\log p)|B|^{\frac{11}{8}}\left|B_{0}\right|^{\frac{11}{8}} \\
& <2^{\frac{9}{4} n+1}(\log p)(|B|)^{\frac{11}{4}} p^{-\frac{11}{4} n \delta} \tag{2.9}
\end{align*}
$$

by the Cauchy-Schwarz inequality, Proposition 1 and (2.5). Compared with Burgess' argument (where $\omega(u)<p^{o(1)}$), obtaining good bounds on $\sum_{u} \omega(u)^{2}$ in our setting is considerably harder and (2.9), based on Proposition 1 is the main new ingredient.

[^3]Let r be the nearest integer to $\frac{n}{\varepsilon}$. Hence

$$
\begin{equation*}
\left|r-\frac{n}{\varepsilon}\right| \leq \frac{1}{2} . \tag{2.10}
\end{equation*}
$$

By Hölder's inequality, (2.7) is bounded by

$$
\begin{equation*}
\left(\sum_{u \in \mathbb{F}_{p^{n}}} \omega(u)^{\frac{2 r}{2 r-1}}\right)^{1-\frac{1}{2 r}}\left(\sum_{u \in \mathbb{F}_{p^{n}}}\left|\sum_{z \in I} \chi(u+z)\right|^{2 r}\right)^{\frac{1}{2 r}} \tag{2.11}
\end{equation*}
$$

Since $\sum_{u} \omega(u)=\left|B_{0}\right| \cdot|B|$ and (2.9) holds, we have

$$
\begin{align*}
\left(\sum_{u} \omega(u)^{\frac{2 r}{2 r-1}}\right)^{1-\frac{1}{2 r}} & \leq\left[\sum \omega(u)\right]^{1-\frac{1}{r}}\left[\sum \omega(u)^{2}\right]^{\frac{1}{2 r}} \\
& <2^{\left(\frac{9}{4} n+1\right) \frac{1}{2 r}}\left(\left|B_{0}\right| \cdot|B|\right)^{1-\frac{1}{r}}(|B|)^{\frac{11}{8 r}}(\log p) p^{-\frac{11}{8} \frac{n}{r} \delta} \tag{2.12}
\end{align*}
$$

The first inequality follows from the following fact, which is proved by using Hölder's inequality with $\frac{2 r-2}{2 r-1}+\frac{1}{2 r-1}=1$.
Fact 5. $\left(\sum_{u} f(u)^{\frac{2 r}{2 r-1}}\right)^{1-\frac{1}{2 r}} \leq\left[\sum f(u)\right]^{1-\frac{1}{r}}\left[\sum f(u)^{2}\right]^{\frac{1}{2 r}}$.
Proof. Write $f(u)^{\frac{2 r}{2 r-1}}=f(u)^{\frac{2 r-2}{2 r-1}} f(u)^{\frac{2}{2 r-1}}$.
Next, we bound the second factor of (2.11).
Let

$$
q=p^{n} .
$$

Write

$$
\begin{equation*}
\sum_{u \in \mathbb{F}_{p^{n}}}\left|\sum_{z \in I} \chi(u+z)\right|^{2 r} \leq \sum_{z_{1}, \ldots, z_{2 r} \in I}\left|\sum_{u \in \mathbb{F}_{q}} \chi\left(\left(u+z_{1}\right) \ldots\left(u+z_{r}\right)\left(u+z_{r+1}\right)^{q-2} \ldots\left(u+z_{2 r}\right)^{q-2}\right)\right| . \tag{2.13}
\end{equation*}
$$

For $z_{1}, \ldots, z_{2 r} \in I$ such that at least one of the elements is not repeated twice, the polynomial $f_{z_{1}, \ldots, z_{2 r}}(x)=\left(x+z_{1}\right) \ldots\left(x+z_{r}\right)\left(x+z_{r+1}\right)^{q-2} \ldots\left(x+z_{2 r}\right)^{q-2}$ clearly cannot be a d-th power. Since $f_{z_{1}, \ldots, z_{2 r}}(x)$ has no more that $2 r$ many distinct roots, Theorem W gives

$$
\begin{equation*}
\left|\sum_{u \in \mathbb{F}_{q}} \chi\left(\left(u+z_{1}\right) \ldots\left(u+z_{r}\right)\left(u+z_{r+1}\right)^{q-2} \ldots\left(u+z_{2 r}\right)^{q-2}\right)\right|<2 r p^{\frac{n}{2}} . \tag{2.14}
\end{equation*}
$$

For those $z_{1}, \ldots, z_{2 r} \in I$ such that every root of $f_{z_{1}, \ldots, z_{2 r}}(x)$ appears at least twice, we bound $\sum\left|\sum_{u \in \mathbb{F}_{q}} \chi\left(f_{z_{1}, \ldots, z_{2 r}}(u)\right)\right|$ by $\left|\mathbb{F}_{q}\right|$ times the number of such $z_{1}, \ldots, z_{2 r}$. Since there are at most r roots in I and for each $z_{1}, \ldots, z_{2 r}$ there are at most r choices, we obtain a bound $|I|^{r} r^{2 r} p^{n}$.

Therefore

$$
\begin{equation*}
\sum_{u \in \mathbb{F}_{p^{n}}}\left|\sum_{z \in I} \chi(u+z)\right|^{2 r}<|I|^{r} r^{2 r} p^{n}+2 r|I|^{2 r} p^{\frac{n}{2}} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\sum_{u \in \mathbb{F}_{p^{n}}}\left|\sum_{z \in I} \chi(u+z)\right|^{2 r}\right)^{\frac{1}{2 r}} \leq r|I|^{\frac{1}{2}} p^{\frac{n}{2 r}}+2|I| p^{\frac{n}{4 r}} . \tag{2.16}
\end{equation*}
$$

Putting (2.7), (2.11), (2.12) and (2.16) together, we have

$$
\begin{align*}
& \frac{1}{\left|B_{0}\right||I|} \sum_{x \in B, y \in B_{0}, z \in I} \chi(x+y z) \\
&<4^{\frac{n}{r}}(\log p)\left(\left|B_{0}\right||B|\right)^{-\frac{1}{r}}(|B|)^{1+\frac{11}{8 r}} p^{-\frac{11}{8} \frac{n}{r} \delta}\left(r|I|^{-\frac{1}{2}} p^{\frac{n}{2 r}}+2 p^{\frac{n}{4 r}}\right) \\
&<4^{\frac{n}{r}}(\log p) p^{\frac{1}{r} 2 n \delta-\frac{11}{8} \frac{n}{r} \delta}(|B|)^{1-\frac{5}{8 r}}\left(r p^{\frac{-\delta}{2}} p^{\frac{n}{2 r}}+2 p^{\frac{n}{4 r}}\right) \\
&<4^{\frac{n}{r}}(\log p) 2 r p^{\frac{n}{4 r}+2 \delta \frac{n}{r}-\frac{5}{8 r}\left(\frac{2}{5}+\varepsilon\right) n}|B| \\
&<2 \cdot 4^{\frac{n}{r}}(\log p) r|B| p^{-\frac{5}{8} \frac{n}{r}(\varepsilon-\delta)} . \tag{2.17}
\end{align*}
$$

The second to the last inequality holds because of (2.3) and assuming $\delta \geq n / 2 r$.
Let

$$
\begin{equation*}
\delta=\frac{n}{2 r} . \tag{2.18}
\end{equation*}
$$

To bound the exponent $\frac{5}{8} \frac{n}{r}(\varepsilon-\delta)=\frac{5}{16} \varepsilon^{2} \frac{n}{r \varepsilon}\left(2-\frac{n}{r \varepsilon}\right)$, we let

$$
\begin{equation*}
\theta=\frac{n}{\varepsilon r}-1 \tag{2.19}
\end{equation*}
$$

Then by (2.10),

$$
\begin{equation*}
|\theta|<\frac{1}{2 r}<\frac{\varepsilon}{2 n-\varepsilon}<\frac{3}{(10 n-3)} \leq \frac{3}{7} \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{5}{8} \frac{n}{r}(\varepsilon-\delta)=\frac{5}{16} \varepsilon^{2}(1+\theta)(1-\theta)>\frac{25}{98} \varepsilon^{2} \tag{2.21}
\end{equation*}
$$

Returning to (2.6), we have

$$
\begin{equation*}
\left|\sum_{x \in B} \chi(x)\right|<c n \varepsilon^{-1}(\log p) p^{-\frac{25}{98} \varepsilon^{2}}|B|<n p^{-\frac{\varepsilon^{2}}{4}}|B| \tag{2.22}
\end{equation*}
$$

and thus proves Theorem 2'.
Our next aim is to remove the additional hypothesis (2.1) on the shape of B. We proceed in several steps and rely essentially on a further key ingredient provided by the following estimate. (See [PS].)

Proposition \&*. Let χ be a non-principal multiplicative character of \mathbb{F}_{q} and let $g \in$ \mathbb{F}_{q} be a generating element, i.e. $\mathbb{F}_{q}=\mathbb{F}_{p}(g)$. For any integral interval $I \subset[1, p]$,

$$
\begin{equation*}
\left|\sum_{t \in I} \chi(g+t)\right| \leq c n \sqrt{p} \log p \tag{2.23}
\end{equation*}
$$

Note that (2.23) is nontrivial as soon as $|I| \gg \sqrt{p} \log p$.
First we make the following observation (extending slightly the range of the applicability of Theorem 2').

Let $H_{1} \geq H_{2} \geq \cdots \geq H_{n}$. If $H_{1} \leq p^{\frac{1}{2}+\frac{\varepsilon}{2}}$, we may clearly write B as a disjoint union of boxes $B_{\alpha} \subset B$ satisfying the first condition in (2.1) and $\left|B_{\alpha}\right|>\left(\frac{1}{2} p^{-\frac{\varepsilon}{2}}\right)^{n}|B|>$ $2^{-n} p^{\left(\frac{2}{5}+\frac{\varepsilon}{2}\right) n}$. Since (2.1) holds for each B_{α}, we have

$$
\left|\sum_{x \in B_{\alpha}} \chi(x)\right|<c n p^{-\tau}\left|B_{\alpha}\right| .
$$

Hence

$$
\left|\sum_{x \in B} \chi(x)\right|<c n p^{-\tau}|B| .
$$

Therefore we may assume that $H_{1}>p^{\frac{1}{2}+\frac{\varepsilon}{2}}$.
Proof of Theorem 2.
Case 1. n is odd.
We denote $I_{i}=\left[N_{i}+1, N_{i}+H_{i}\right]$ and estimate using (2.23)

$$
\begin{equation*}
\left|\sum_{x \in B} \chi(x)\right|=\left|\sum_{\substack{x_{i} \in I_{i} \\ 2 \leq i \leq n}} \sum_{x_{1} \in I_{1}} \chi\left(x_{1}+x_{2} \frac{\omega_{2}}{\omega_{1}}+\cdots+x_{n} \frac{\omega_{n}}{\omega_{1}}\right)\right| \leq c n p^{\frac{1}{2}} \log p \frac{|B|}{H_{1}}+(*) \tag{2.24}
\end{equation*}
$$

[^4]where
\[

$$
\begin{equation*}
(*)=\left|\sum_{x_{1} \in I_{1}} \sum_{\left(x_{2}, \ldots, x_{n}\right) \in D} \chi\left(x_{1}+x_{2} \frac{\omega_{2}}{\omega_{1}}+\cdots+x_{n} \frac{\omega_{n}}{\omega_{1}}\right)\right| \tag{2.25}
\end{equation*}
$$

\]

and

$$
D=\left\{\left(x_{2}, \ldots, x_{n}\right) \in I_{2} \times \cdots \times I_{n}: \mathbb{F}_{p}\left(x_{2} \frac{\omega_{2}}{\omega_{1}}+\cdots+x_{n} \frac{\omega_{n}}{\omega_{1}}\right) \neq \mathbb{F}_{q}\right\}
$$

In particular,

$$
(*) \leq p|D| \leq p \sum_{G}\left|G \bigcap \operatorname{Span}_{\mathbb{F}_{p}}\left(\frac{\omega_{2}}{\omega_{1}}, \ldots, \frac{\omega_{n}}{\omega_{1}}\right)\right|,
$$

where G runs over nontrivial subfields of \mathbb{F}_{q}. Since $q=p^{n}$ and n is odd, obviously $\left[\mathbb{F}_{q}: G\right] \geq 3$. Hence $\left[G: \mathbb{F}_{p}\right] \leq \frac{n}{3}$. Furthermore, since $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a basis of \mathbb{F}_{q} over $\mathbb{F}_{p}, 1 \notin \operatorname{Span}_{\mathbb{F}_{p}}\left(\frac{\omega_{2}}{\omega_{1}}, \ldots, \frac{\omega_{n}}{\omega_{1}}\right)$ and the proceeding implies that

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{F}_{p}}\left(G \bigcap \operatorname{Span}_{\mathbb{F}_{p}}\left(\frac{\omega_{2}}{\omega_{1}}, \ldots, \frac{\omega_{n}}{\omega_{1}}\right)\right) \leq \frac{n}{3}-1 . \tag{2.26}
\end{equation*}
$$

Therefore, under our assumption on $\left|H_{1}\right|$, back to (2.24)

$$
\begin{aligned}
\left|\sum_{x \in B} \chi(x)\right| & <c(n)\left((\log p) p^{-\frac{\varepsilon}{2}}|B|+p^{\frac{n}{3}}\right) \\
& <\left(c(n)(\log p) p^{-\frac{\varepsilon}{2}}+p^{-\frac{n}{13}}\right)|B|,
\end{aligned}
$$

since $|B|>p^{\frac{2}{5} n}$. This proves our claim.
We now treat the case when n is even. The analysis leading to the second part of Theorem 2 was kindly communicated by Andrew Granville to the author.

Case 2. n is even.
In view of the earlier discussion, our only concern is to bound

$$
\begin{equation*}
\left(*_{2}\right)=\left|\sum_{x_{1} \in I_{1}} \sum_{\left(x_{2}, \ldots, x_{n}\right) \in D_{2}} \chi\left(x_{1}+x_{2} \frac{\omega_{2}}{\omega_{1}}+\cdots+x_{n} \frac{\omega_{n}}{\omega_{1}}\right)\right| \tag{2.27}
\end{equation*}
$$

with

$$
\begin{equation*}
D_{2}=\left\{\left(x_{2}, \ldots, x_{n}\right) \in I_{2} \times \cdots \times I_{n}:\left(x_{2} \frac{\omega_{2}}{\omega_{1}}+\cdots+x_{n} \frac{\omega_{n}}{\omega_{1}}\right) \in F_{2}\right\} \tag{2.28}
\end{equation*}
$$

and F_{2} the subfield of size $p^{n / 2}$.
First, we note that since $1, \frac{\omega_{2}}{\omega_{1}}, \ldots, \frac{\omega_{n}}{\omega_{1}}$ are independent, $\frac{\omega_{j}}{\omega_{1}} \in F_{2}$ for at most $\frac{n}{2}-1$ many j 's. After reordering, we may assume that $\frac{\omega_{j}}{\omega_{1}} \in F_{2}$ for $2 \leq j \leq k$ and $\frac{\omega_{j}}{\omega_{1}} \notin F_{2}$ for $k+1 \leq j \leq n$, where $k \leq \frac{n}{2}$. We also assume that $H_{k+1} \leq \ldots \leq H_{n}$. Fix x_{2}, \ldots, x_{n-1}. Obviously there is no more than one value of x_{n} such that $x_{2} \frac{\omega_{2}}{\omega_{1}}+\cdots+x_{n} \frac{\omega_{n}}{\omega_{1}} \in F_{2}$, since otherwise $\left(x_{n}-x_{n}^{\prime}\right) \frac{\omega_{n}}{\omega_{1}} \in F_{2}$ with $x_{n} \neq x_{n}^{\prime}$ contradicting the fact that $\frac{\omega_{n}}{\omega_{1}} \notin F_{2}$.

Therefore,

$$
\begin{equation*}
\left|D_{2}\right| \leq\left|I_{2}\right| \cdots\left|I_{n-1}\right| \tag{2.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(*_{2}\right) \leq \frac{|B|}{H_{n}} \tag{2.30}
\end{equation*}
$$

If $H_{n}>p^{\tau}$, we are done. Otherwise

$$
\begin{equation*}
H_{k+1} \cdots H_{n} \leq p^{(n-k) \tau} \tag{2.31}
\end{equation*}
$$

Define

$$
B_{2}=\left\{x_{1}+x_{2} \frac{\omega_{2}}{\omega_{1}}+\cdots+x_{k} \frac{\omega_{k}}{\omega_{1}}: x_{i} \in I_{i}, 1 \leq i \leq k\right\} .
$$

Hence $B_{2} \subset F_{2}$ and by (2.31)

$$
\begin{equation*}
\left|B_{2}\right|>\frac{|B|}{H_{k+1} \cdots H_{n}}>p^{\left(\frac{2}{5}-\frac{\tau}{2}\right) n}>p^{\frac{n}{3}} \tag{2.32}
\end{equation*}
$$

(We can assume $\tau<\frac{2}{15}$.)
Clearly, if $\left(x_{2}, \ldots, x_{n}\right) \in D_{2}$, then $z=x_{k+1} \frac{\omega_{k+1}}{\omega_{1}}+\cdots+x_{n} \frac{\omega_{n}}{\omega_{1}} \in F_{2}$. Assume $\left.\chi\right|_{F_{2}}$ is non-principal, it follows from the generalized Polya-Vinogradov inequality and (2.32) that

$$
\begin{equation*}
\left|\sum_{y \in B_{2}} \chi(y+z)\right| \leq(\log p)^{\frac{n}{2}} \max _{\psi}\left|\sum_{x \in F_{2}} \psi(x) \chi(x)\right| \leq(\log p)^{\frac{n}{2}} \cdot\left|F_{2}\right|^{\frac{1}{2}} \leq p^{-\frac{n}{13}}\left|B_{2}\right| \tag{2.33}
\end{equation*}
$$

where ψ runs over all additive characters. Therefore, clearly

$$
\begin{equation*}
\left(*_{2}\right) \leq H_{k+1} \cdots H_{n} p^{-\frac{n}{13}}\left|B_{2}\right|=p^{-\frac{n}{13}}|B| \tag{2.34}
\end{equation*}
$$

providing the required estimate.

If $\left.\chi\right|_{F_{2}}$ is principal, then obviously

$$
\begin{equation*}
\left(*_{2}\right)=H_{1} \cdot\left|D_{2}\right|=\left|F_{2} \cap \frac{1}{\omega_{1}} B\right| \tag{2.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sum_{x \in B} \chi(x)\right|=\left|\omega_{1} F_{2} \cap B\right|+c n p^{-\tau}|B| . \tag{2.36}
\end{equation*}
$$

This complete the proof of Theorem 2.
Remark 2.1. The conclusion of Theorem 2 certainly holds, if we replace the assumption of $\prod_{j=1}^{n} H_{j}>p^{\left(\frac{2}{5}+\varepsilon\right) n}$ by the stronger assumption

$$
\begin{equation*}
p^{\frac{2}{5}+\varepsilon}<H_{j} \text { for all } j . \tag{2.37}
\end{equation*}
$$

This improves on Theorem 2 of [DL] for $n>4$. In [DL], the condition $H_{j}>p^{\frac{n}{2(n+1)}+\varepsilon}$ is required. Our assumption (2.37) is independent of n, while, in the [DL] result, when n goes to ∞, the exponent $\frac{n}{2(n+1)}$ goes to $\frac{1}{2}$.

Remark 2.2. In the case of a prime field ($n=1$), Burgess theorem (see [Bu1]) requires the assumption $H>p^{\frac{1}{4}+\varepsilon}$, for some $\varepsilon>0$, which seems to be the limit of this method. For $n>1$, the exact counterpart of Burgess' estimate seems unknown in the generality of an arbitrary basis $\omega_{1}, \ldots, \omega_{n}$ of $\mathbb{F}_{p^{n}}$ over \mathbb{F}_{p}, as considered in [DL] and here. Higher dimensional results of the strength of Burgess seem only known for certain special basis, in particular, basis of the form $\omega_{j}=g^{j}$ with given g generating $\mathbb{F}_{p^{n}}$. (See [Bu3], $[\mathrm{Bu} 4]$ and $[\mathrm{Kar} 2]$.)

Theorem 2 allows us to estimate the number of primitive roots of $\mathbb{F}_{p^{n}}$ that fall into B.

We denote the Euler function by ϕ.
Corollary 3. Let $B \subset \mathbb{F}_{p^{n}}$ be as in Theorem 2 and satisfying $\max _{\xi}\left|B \cap \xi F_{2}\right|<p^{-\varepsilon}|B|$ if n even. The number of primitive roots of $\mathbb{F}_{p^{n}}$ belonging to B is

$$
\frac{\varphi\left(p^{n}-1\right)}{p^{n}-1}|B|\left(1+O\left(p^{-\tau^{\prime}}\right)\right)
$$

where $\tau^{\prime}=\tau^{\prime}(\varepsilon)>0$ and assuming $n \ll \log \log p$.
§3. Some further implications of the method.

In what follows, we only consider for simplicity the case of a prime field (several statements below have variants over a general finite field, possibly with worse exponents).
3.1. Recall that a generalized d-dimensional arithmetic progression in \mathbb{F}_{p} is a set of the form

$$
\begin{equation*}
\mathcal{P}=a_{0}+\left\{\sum_{j=1}^{d} x_{j} a_{j}: x_{j} \in\left[0, N_{j}-1\right]\right\} \tag{3.1}
\end{equation*}
$$

for some elements $a_{0}, a_{1}, \ldots, a_{d} \in \mathbb{F}_{p}$. If the representation of elements of \mathcal{P} in (3.1) is unique, we call \mathcal{P} proper. Hence \mathcal{P} is proper if and only if $|\mathcal{P}|=N_{1} \cdots N_{d}$ (which we assume in the sequel).

Assume $|\mathcal{P}|<10^{-d} \sqrt{p}$, hence $\mathbb{F}_{p} \neq \frac{\mathcal{P}-\mathcal{P}}{\mathcal{P}-\mathcal{P}}$ (in the considerations below, $|\mathcal{P}| \ll p^{1 / 2}$ so that there is no need to consider the alternative $|\mathcal{P}| \gg p^{1 / 2}$). Following the argument in [KS1] (or the proof of Proposition 1), we have

$$
\begin{equation*}
E(\mathcal{P}, \mathcal{P})<c^{d}(\log p)|\mathcal{P}|^{11 / 4} \tag{3.2}
\end{equation*}
$$

Also, repeating the proof of Theorem 2, we obtain
Theorem 4. Let \mathcal{P} be a proper d-dimensional generalized arithmetic progression in \mathbb{F}_{p} with

$$
\begin{equation*}
|\mathcal{P}|>p^{2 / 5+\varepsilon} \tag{3.3}
\end{equation*}
$$

for some $\varepsilon>0$. If \mathcal{X} is a non-principal multiplicative character of \mathbb{F}_{p}, we have

$$
\begin{equation*}
\left|\sum_{x \in \mathcal{P}} \mathcal{X}(x)\right|<p^{-\tau}|\mathcal{P}| \tag{3.4}
\end{equation*}
$$

where $\tau=\tau(\varepsilon, d)>0$ and assuming $p>p(\varepsilon, d)$.
Theorem 4 is another extension of Burgess' inequality. A natural problem is to try to improve the exponent $\frac{2}{5}$ in (3.3) to $\frac{1}{4}$.

Let us point out one consequence of Theorem 4 which gives an improvement of a result in [HIS]. (See [HIS], Corollary 1.3.)

Corollary 5. Given $C>0$ and $\varepsilon>0$, there is a constant $c=c(C, \varepsilon)>0$ and a positive integer $k<k(\varepsilon)$, such that if $A \subset \mathbb{F}_{p}$ satisfies
(i) $|A+A|<C|A|$
(ii) $|A|>p^{\frac{2}{5}+\varepsilon}$.

Then we have

$$
\left|A^{k}\right|>c p
$$

Proof.

According to Freiman's structural theorem for sets with small doubling constants (see [TV]), under assumption (i), there is a proper generalized d-dimensional progression \mathcal{P} such that $A \subset \mathcal{P}$ and

$$
\begin{gather*}
d \leq C \tag{3.5}\\
\log \frac{|\mathcal{P}|}{|A|}<C^{2}(\log C)^{3} \tag{3.6}
\end{gather*}
$$

By assumption (ii), Theorem 4 applies to \mathcal{P}. Let τ be as given in Theorem 4. We fix

$$
\begin{equation*}
k \in \mathbb{Z}_{+}, \quad k>\frac{1}{\tau} \tag{3.7}
\end{equation*}
$$

(Hence $k>k(\varepsilon)$.) Denote by ν the probability measure on \mathbb{F}_{p} obtained as the image measure of the normalized counting measure on the k-fold product \mathcal{P}^{k} under the product map

$$
\begin{aligned}
& \mathcal{P} \times \cdots \times \mathcal{P} \longrightarrow \mathbb{F}_{p} \\
& \left(x_{1}, \ldots, x_{k}\right) \longmapsto x_{1} \ldots x_{k} .
\end{aligned}
$$

Hence by the Fourier inversion formula, we have

$$
\begin{aligned}
\nu(x) & =\frac{1}{p-1} \sum_{\chi} \chi(x) \hat{\nu}(\chi)=\frac{1}{p-1} \sum_{\chi} \chi(x)\left(\sum_{t} \nu(t) \overline{\chi(t)}\right) \\
& =\frac{|\mathcal{P}|^{-k}}{p-1} \sum_{\chi} \chi(x)\left(\sum_{y \in \mathcal{P}} \bar{\chi}(y)\right)^{k} \leq \frac{|\mathcal{P}|^{-k}}{p-1} \sum_{\chi}\left|\sum_{y \in \mathcal{P}} \chi(y)\right|^{k},
\end{aligned}
$$

χ denoting a multiplicative character, and we get

$$
\begin{equation*}
\max _{x \in \mathbb{F}_{p}^{*}} \nu(x) \leq \frac{1}{p-1}+\max _{\chi \text { non-principal }}|\mathcal{P}|^{-k}\left|\sum_{x \in \mathcal{P}} \chi(x)\right|^{k}<\frac{1}{p-1}+p^{-\tau k}<\frac{2}{p} . \tag{3.8}
\end{equation*}
$$

The last inequality is by (3.7). Assuming $A \subset \mathbb{F}_{p}^{*}$, we write

$$
\begin{aligned}
|A|^{k} & \leq\left|A^{k}\right| \max _{x \in \mathbb{F}_{p}^{*}}\left|\left\{\left(x_{1}, \ldots, x_{k}\right) \in A \times \cdots \times A: x_{1} \ldots x_{k}=x\right\}\right| \\
& \leq\left|A^{k}\right||\mathcal{P}|^{k} \max _{x \in \mathbb{F}_{p}^{*}} \nu(x)
\end{aligned}
$$

implying by (3.6) and (3.8)

$$
\left|A^{k}\right|>\left(\frac{|A|}{|\mathcal{P}|}\right)^{k} \frac{p}{2}>\frac{p}{2} \exp \left(-k C^{2}(\log C)^{3}\right)>c(C, \varepsilon) p
$$

This proves Corollary 5.
3.2. Recall the well-known conjecture stating that if $A, B \subset \mathbb{F}_{p},|A|>p^{\varepsilon},|B|>p^{\varepsilon}$, then

$$
\begin{equation*}
\left|\sum_{x \in A, y \in B} \chi(x+y)\right|<p^{-\delta}|A||B| \tag{3.9}
\end{equation*}
$$

where $\delta=\delta(\varepsilon)>0$ and χ a non-principal multiplicative character.
An affirmative answer is only known in the case $|A|>p^{\frac{1}{2}+\varepsilon},|B|>p^{\varepsilon}$ for some $\varepsilon>0$ (as a consequence of Weil's inequality (2.14)). Even for $|A|>p^{1 / 2},|B|>p^{1 / 2}$, an inequality of the form (3.9) seems unknown. On the other hand, for more structured sets A and B, better results can be obtained (See in particular [Kar1] and [FI].) In the rest of this section and the next section, we will establish further estimates in this vein.

Our first result provides a statement of this type, assuming A or B has a small doubling constant.

Theorem 6. Assume $A, B \subset \mathbb{F}_{p}$ such that
(a) $|A|>p^{\frac{4}{9}+\varepsilon},|B|>p^{\frac{4}{9}+\varepsilon}$
(b) $|B+B|<K|B|$.

Then

$$
\left|\sum_{x \in A, y \in B} \chi(x+y)\right|<p^{-\tau}|A||B|,
$$

where $\tau=\tau(\varepsilon, K)>0, p>p(\varepsilon, K)$ and χ is a non-principal multiplicative character of \mathbb{F}_{p}.

Proof.

The argument is a variant of the proof of Theorem 2, so we will be brief. The case $|B|>p^{\frac{1}{2}+\varepsilon}$ is taken care of by Weil's estimate (2.14). Since we can dissect B into $\leq p^{\varepsilon}$ subsets satisfying assumptions (a) and (b), we may assume that $|B|<\frac{1}{2}(\sqrt{p}-1)$. We denote the various constants (possibly depending on the constant K in assumption (b)) by C.

Let \mathcal{B}_{1} be a generalized d-dimensional proper arithmetic progression in \mathbb{F}_{p} satisfying $B \subset \mathcal{B}_{1}$ and

$$
\begin{gather*}
d \leq K \tag{3.10}\\
\log \frac{\left|\mathcal{B}_{1}\right|}{|B|}<C \tag{3.11}
\end{gather*}
$$

Let

$$
\mathcal{B}_{2}=\left(-\mathcal{B}_{1}\right) \cup \mathcal{B}_{1} .
$$

We take

$$
\begin{equation*}
\delta=\frac{\varepsilon}{4 d}, \quad r=\left[\frac{10}{\delta}\right] . \tag{3.12}
\end{equation*}
$$

Similar to the proof of Theorem 2, we take a proper progression $\mathcal{B}_{0} \subset \mathcal{B}_{2} \subset \mathbb{F}_{p}$ and an integral interval $I=\left[1, p^{\delta}\right]$ with the following properties

$$
\begin{gather*}
\left|B_{0}\right|>p^{-2 d \delta}\left|\mathcal{B}_{2}\right| \\
B-\mathcal{B}_{0} I \subset \mathcal{B}_{2} . \tag{3.13}
\end{gather*}
$$

Therefore,

$$
\begin{equation*}
|\mathcal{B}| \leq\left|\mathcal{B}_{1}\right| \leq e^{C(K)}|\mathcal{B}| \text { and }\left|\mathcal{B}_{2}\right|=2\left|\mathcal{B}_{1}\right|-1 \tag{3.14}
\end{equation*}
$$

Estimate

$$
\begin{align*}
\left|\sum_{x \in A, y \in B} \chi(x+y)\right| & \leq \sum_{y \in B}\left|\sum_{x \in A} \chi(x+y)\right| \\
& \leq\left|\mathcal{B}_{0}\right|^{-1}|I|^{-1} \sum_{\substack{y \in \mathcal{B}_{2} \\
z \in \mathcal{B}_{0}, t \in I}}\left|\sum_{x \in A} \chi(x+y+z t)\right| . \tag{3.15}
\end{align*}
$$

The second inequality is by (3.13). Write

$$
\begin{equation*}
\sum_{\substack{y \in \mathcal{B}_{2} \\ z \in \mathcal{B}_{0}, t \in I}}\left|\sum_{x \in A} \chi(x+y+z t)\right| \leq\left(\left|\mathcal{B}_{2}\right|\left|\mathcal{B}_{0}\right||I|\right)^{\frac{1}{2}}\left|\sum_{\substack{y \in \mathcal{B}_{2}, z \in \mathcal{B}_{0}, t \in I \\ x_{1}, x_{2} \in A}} \chi\left(\frac{\left(x_{1}+y\right) z^{-1}+t}{\left(x_{2}+y\right) z^{-1}+t}\right)\right|^{\frac{1}{2}} \tag{3.16}
\end{equation*}
$$

The sum on the right-hand side of (3.16) equals

$$
\begin{align*}
& \left|\sum_{u_{1}, u_{2} \in \mathbb{F}_{p}} \nu\left(u_{1}, u_{2}\right) \sum_{t \in I} \chi\left(\frac{u_{1}+t}{u_{2}+t}\right)\right| \\
\leq & {\left[\sum_{u_{1}, u_{2}} \nu\left(u_{1}, u_{2}\right)^{\frac{2 r}{2 r-1}}\right]^{1-\frac{1}{2 r}}\left[\sum_{u_{1}, u_{2}}\left|\sum_{t \in I} \chi\left(\frac{u_{1}+t}{u_{2}+t}\right)\right|^{2 r}\right]^{\frac{1}{2 r}} } \tag{3.17}
\end{align*}
$$

where for $\left(u_{1}, u_{2}\right) \in \mathbb{F}_{p}^{2}$ we define

$$
\begin{equation*}
\left.\nu\left(u_{1}, u_{2}\right)=\left\lvert\,\left\{\left(x_{1}, x_{2}, y, z\right) \in A \times A \times \mathcal{B}_{2} \times \mathcal{B}_{0}: \frac{x_{1}+y}{z}=u_{1} \text { and } \frac{x_{2}+y}{z}=u_{2}\right\}\right. \right\rvert\, . \tag{3.18}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\sum_{u_{1}, u_{2}} v\left(u_{1}, u_{2}\right)=|A|^{2}\left|\mathcal{B}_{2}\right|\left|\mathcal{B}_{0}\right| \tag{3.19}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{u_{1}, u_{2}} \nu\left(u_{1}, u_{2}\right)^{2} \\
= & \left.\left\lvert\,\left\{\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}, y, y^{\prime}, z, z^{\prime}\right) \in A^{4} \times \mathcal{B}_{2}^{2} \times \mathcal{B}_{0}^{2}: \frac{x_{i}+y}{z}=\frac{x_{i}^{\prime}+y^{\prime}}{z^{\prime}} \text { for } i=1,2\right\}\right. \right\rvert\, \\
\leq & |A|^{3} \max _{x_{1}, x_{1}^{\prime}}\left|\left\{\left(y, y^{\prime}, z, z^{\prime}\right) \in \mathcal{B}_{2}^{2} \times \mathcal{B}_{0}^{2}: \frac{x_{1}+y}{z}=\frac{x_{1}^{\prime}+y^{\prime}}{z^{\prime}}\right\}\right| \\
\leq & |A|^{3} E\left(\mathcal{B}_{0}, \mathcal{B}_{0}\right)^{\frac{1}{2}} \max _{x} E\left(x+\mathcal{B}_{2}, x+\mathcal{B}_{2}\right)^{\frac{1}{2}} \\
< & |A|^{3} \log p\left|\mathcal{B}_{0}\right|^{\frac{11}{8}}\left|\mathcal{B}_{2}\right|^{\frac{11}{8}} \\
< & C|A|^{3}\left|\mathcal{B}_{2}\right|^{\frac{11}{4}} \tag{3.20}
\end{align*}
$$

by Proposition 1, Fact 1 and several applications of the Cauchy-Schwarz inequality. Therefore, by Fact 5 (after (2.12)), $(4,19)$ and (3.20), the first factor of (3.17) is bounded by

$$
\begin{align*}
& {\left[\sum \nu\left(u_{1}, u_{2}\right)\right]^{1-\frac{1}{r}}\left[\sum \nu\left(u_{1}, u_{2}\right)^{2}\right]^{\frac{1}{2 r}} } \\
\leq & C|A|^{2}\left|\mathcal{B}_{2}\right|\left|\mathcal{B}_{0}\right|\left(|A|^{-\frac{1}{2}}\left|\mathcal{B}_{2}\right|^{-\frac{5}{8}} p^{2 d \delta}\right)^{\frac{1}{r}} \tag{3.21}
\end{align*}
$$

Next, write using Weil's inequality (2.14)

$$
\begin{align*}
& \sum_{u_{1}, u_{2} \in \mathbb{F}_{p}}\left|\sum_{t \in I} \chi\left(\frac{u_{1}+t}{u_{2}+t}\right)\right|^{2 r} \leq \sum_{t_{1}, \ldots, t_{2 r} \in I}\left|\sum_{u \in \mathbb{F}_{p}} \chi\left(\frac{\left(u+t_{1}\right) \cdots\left(u+t_{r}\right)}{\left(u+t_{r+1}\right) \cdots\left(u+t_{2 r}\right)}\right)\right|^{2} \\
& \leq p^{2}|I|^{r} r^{2 r}+C r^{2} p|I|^{2 r} \tag{3.22}\\
& 23
\end{align*}
$$

so that the second factor in (3.17) is bounded by

$$
\begin{equation*}
C r p^{\frac{1}{r}}|I|^{\frac{1}{2}}+C p^{\frac{1}{2 r}}|I| . \tag{3.23}
\end{equation*}
$$

Applying (3.14) and collecting estimates (3.16), (3.17), (3.21), (3.23) and assumption (a), we bound (3.15) by

$$
\begin{align*}
\left|\sum_{x \in A, y \in B} \chi(x+y)\right| & <C|A||B||I|^{-\frac{1}{2}}\left(|A|^{-\frac{1}{2}}|B|^{-\frac{5}{8}} p^{2 d \delta}\right)^{\frac{1}{2 r}}\left(\sqrt{r} p^{\frac{1}{2 r}}|I|^{\frac{1}{4}}+p^{\frac{1}{4 r}}|I|^{\frac{1}{2}}\right) \\
& <C \sqrt{r}|A||B|\left(p^{-\left(\frac{4}{9}+\varepsilon\right) \frac{9}{8}+2 d \delta} \frac{1}{2 r}\left(p^{\frac{1}{2 r}-\frac{\delta}{4}}+p^{\frac{1}{4 r}}\right)\right. \\
& <C \sqrt{r}|A||B|\left(p^{\frac{1}{2}-\frac{9}{8} \varepsilon+2 d \delta-\frac{\delta}{2} r}+p^{-\frac{9}{8} \varepsilon+2 d \delta}\right)^{\frac{1}{2 r}} \tag{3.24}
\end{align*}
$$

Recall (3.12). The theorem follows by taking $\tau(\varepsilon)=\frac{\varepsilon^{2}}{128 K}$

§4. The case of an interval.

Next, we consider the special case $\sum_{x \in A, y \in I} \chi(x+y)$, where $A \subset \mathbb{F}_{p}$ is arbitrary and $I \subset \mathbb{F}_{p}$ is an interval. We begin with the following technical lemma.

Lemma 7. Let $A \subset \mathbb{F}_{p}^{*}$ and let I_{1}, \ldots, I_{s} be intervals such that $I_{i} \subset\left[1, p^{\frac{1}{k_{i}}}\right]$. Denote

$$
\begin{equation*}
w(u)=\left|\left\{\left(y, z_{1}, \ldots, z_{s}\right) \in A \times I_{1} \times \cdots \times I_{s}: y \equiv u z_{1} \ldots z_{s}(\bmod p)\right\}\right| \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma=\frac{1}{k_{1}}+\cdots+\frac{1}{k_{s}} . \tag{4.2}
\end{equation*}
$$

Then

$$
\sum_{u} w(u)^{2}<|A|^{1+\gamma} \prod_{i=1}^{s}\left|I_{i}\right| p^{\frac{s}{\log \log p}}<|A|^{1+\gamma} p^{\gamma+\frac{s}{\log \log p}} .
$$

Proof. Using multiplicative characters and Plancherel, we have

$$
\begin{equation*}
\sum_{u} w(u)^{2}=\frac{1}{p-1} \sum_{\chi}\langle w, \chi\rangle^{2}, \tag{4.3}
\end{equation*}
$$

where

$$
\langle w, \chi\rangle=\sum_{u} w(u) \overline{\chi(u)}=\sum_{\substack{y \in A \\ z_{i} \in I_{i}}} \overline{\chi(y)} \chi\left(z_{1}\right) \ldots \chi\left(z_{s}\right)
$$

Hence

$$
|\langle w, \chi\rangle|=\left|\sum_{y \in A} \chi(y)\right| \prod_{i}\left|\sum_{z_{i} \in I_{i}} \chi\left(z_{i}\right)\right| .
$$

Using generalized Hölder inequality with $1=(1-\gamma)+\frac{1}{k_{1}}+\cdots+\frac{1}{k_{s}}$, we have

$$
\begin{align*}
\sum_{u} w(u)^{2} & =\frac{1}{p-1} \sum_{\chi}\left|\sum_{y \in A} \chi(y)\right|^{2} \prod_{i}\left|\sum_{z_{i} \in I_{i}} \chi\left(z_{i}\right)\right|^{2} \\
& \leq \frac{1}{p-1}\left(\sum_{\chi}\left|\sum_{y \in A} \chi(y)\right|^{\frac{2}{1-\gamma}}\right)^{1-\gamma} \prod_{i}\left(\sum_{\chi}\left|\sum_{z_{i} \in I_{i}} \chi\left(z_{i}\right)\right|^{2 k_{i}}\right)^{\frac{1}{k_{i}}} \tag{4.4}
\end{align*}
$$

Now we estimate different factors. Writing the exponent as $\frac{2}{1-\gamma}=\frac{2 \gamma}{1-\gamma}+2$ and using the trivial bound, we have

$$
\begin{equation*}
\sum_{\chi}\left|\sum_{y \in A} \chi(y)\right|^{\frac{2}{1-\gamma}} \leq|A|^{\frac{2 \gamma}{1-\gamma}} \sum_{\chi}\left|\sum_{y \in A} \chi(y)\right|^{2}=|A|^{\frac{2 \gamma}{1-\gamma}} \sum_{y, z \in A} \sum_{\chi} \chi\left(y z^{-1}\right)=p|A|^{\frac{1+\gamma}{1-\gamma}} \tag{4.5}
\end{equation*}
$$

For an interval $I \subset\left[1, p^{\frac{1}{k}}\right]$, we define

$$
\eta(u)=\left|\left\{\left(z_{1}, \ldots, z_{k}\right) \in I \times \cdots \times I: z_{1} \ldots z_{k} \equiv u(\bmod p)\right\}\right| .
$$

Since $z_{1} \ldots z_{k} \equiv z_{1}^{\prime} \ldots z_{k}^{\prime}(\bmod p)$ implies $z_{1} \ldots z_{k}=z_{1}^{\prime} \ldots z_{k}^{\prime}$ in $\mathbb{Z}, \eta(u)<\left(\exp \left(\frac{\log p}{\log \log p}\right)\right)^{k}$.
On the other hand $\sum_{u} \eta(u)=|I|^{k}$. Therefore,
$\sum_{\chi}\left|\sum_{z \in I} \chi(z)\right|^{2 k}=\sum_{\chi}\left(\sum_{u} \eta(u) \chi(u)\right)^{2}=\sum_{\chi}\langle\eta, \chi\rangle^{2}=(p-1) \sum_{u} \eta(u)^{2}<p^{1+\frac{k}{\log \log p}}|I|^{k}$.

Putting (4.4)-(4.6) together, we have the lemma.
We may state Lemma 7 in the following sharper version.
Lemma 7'. Under the same assumption as Lemma 7, we have

$$
\sum_{u} w(u)^{2}<|A|^{1-2 \gamma} E(A, A)^{\gamma} p^{\frac{s}{\log \log p}} \prod_{i=1}^{s}\left|I_{i}\right|<|A|^{1-2 \gamma} E(A, A)^{\gamma} p^{\gamma+\frac{s}{\log \log p}},
$$

where $E(A, A)$ is defined as in (1.1).
Proof. Proceeding as in the proof of Lemma 7, we replace (4.5) by the estimate

$$
\begin{aligned}
\sum_{\chi}\left|\sum_{y \in A} \chi(y)\right|^{\frac{2}{1-\gamma}} & \leq\left[\sum_{\chi}\left|\sum_{y \in A} \chi(y)\right|^{2}\right]^{\frac{1-2 \gamma}{1-\gamma}}\left[\sum_{\chi}\left|\sum_{y \in A} \chi(y)\right|^{4}\right]^{\frac{\gamma}{1-\gamma}} \\
\leq & \leq(p|A|)^{\frac{1-2 \gamma}{1-\gamma}}(p E(A, A))^{\frac{\gamma}{1-\gamma}}
\end{aligned} \square
$$

Theorem 8. Let $A \subset \mathbb{F}_{p}$ be a subset with $|A|=p^{\alpha}$ and let $I \subset[1, p]$ be an arbitrary interval with $|I|=p^{\beta}$, where

$$
\begin{equation*}
(1-\alpha)(1-\beta)<\frac{1}{2}-\delta \tag{4.7}
\end{equation*}
$$

and $\beta>\delta>0$. Then for a non-principal multiplicative character χ, we have

$$
\left|\sum_{\substack{x \in I \\ y \in A}} \chi(x+y)\right|<p^{-\frac{\delta^{2}}{13}}|A||I| .
$$

Proof. Let

$$
\begin{equation*}
\tau=\frac{\delta}{6} \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
R=\left\lfloor\frac{1}{2 \tau}\right\rfloor . \tag{4.9}
\end{equation*}
$$

Choose $k_{1}, \ldots, k_{s} \in \mathbb{Z}^{+}$such that

$$
\begin{equation*}
2 \tau<\beta-\sum_{i} \frac{1}{k_{i}}<3 \tau \tag{4.10}
\end{equation*}
$$

Denote

$$
I_{0}=\left[1, p^{\tau}\right], \quad I_{i}=\left[1, p^{\frac{1}{k_{i}}}\right] \quad(1 \leq i \leq s)
$$

We perform the Burgess amplification as follows. First, for any $z_{0} \in I_{0}, \ldots, z_{s} \in I_{s}$,

$$
\sum_{\substack{x \in I \\ y \in A}} \chi(x+y)=\sum_{\substack{x \in I \\ y \in A}} \chi\left(x+y+z_{0} z_{1} \ldots z_{s}\right)+O\left(|A| p^{\beta-\tau}\right)
$$

Letting $\gamma=\sum_{i} \frac{1}{k_{i}}$, we have (up to the error term)

$$
\begin{align*}
\left|\sum_{\substack{x \in I \\
y \in A}} \chi(x+y)\right| & =p^{-\gamma-\tau}\left|\sum_{\substack{x \in I, y \in A \\
z_{0} \in I_{0}, \ldots, z_{s} \in I_{s}}} \chi\left(x+y+z_{0} z_{1} \ldots z_{s}\right)\right| \\
& \leq p^{-\gamma-\tau} \sum_{\substack{x \in I, y \in A \\
z_{1} \in I_{1}, \ldots, z_{s} \in I_{s}}}\left|\sum_{z_{0} \in I_{0}} \chi\left(x+y+z_{0} z_{1} \ldots z_{s}\right)\right| \\
& \leq p^{\beta-\gamma-\tau} \max _{x \in I} \sum_{\substack{y \in A \\
z_{1} \in I_{1}, \ldots, z_{s} \in I_{s} \\
26}}\left|\sum_{z_{0} \in I_{0}} \chi\left(\frac{x+y}{z_{1} \ldots z_{s}}+z_{0}\right)\right| . \tag{4.11}
\end{align*}
$$

Fix $x \in I$ achieving maximum in (4.11), and replace A by $A_{1}=A+x$. Denote $w(u)$ the function (4.1) with A replaced by A_{1}. Hence (4.11) is

$$
\begin{equation*}
p^{\beta-\gamma-\tau} \sum_{u} w(u)\left|\sum_{z \in I_{0}} \chi(u+z)\right| . \tag{4.12}
\end{equation*}
$$

By (4.12), Hölder inequality, Fact 5 and Weil estimate (cf (2.16)), (4.11) is bounded by

$$
\begin{aligned}
& p^{\beta-\gamma-\tau}\left(\sum_{u} w(u)^{\frac{2 R}{2 R-1}}\right)^{1-\frac{1}{2 R}}\left(\sum_{u}\left|\sum_{z \in I_{0}} \chi(u+z)\right|^{2 R}\right)^{\frac{1}{2 R}} \\
\leq & p^{\beta-\gamma-\tau}\left[\sum_{u} w(u)\right]^{1-\frac{1}{R}}\left[\sum_{u} w(u)^{2}\right]^{\frac{1}{2 R}}\left(R\left|I_{0}\right|^{\frac{1}{2}} p^{\frac{1}{2 R}}+2\left|I_{0}\right| p^{\frac{1}{4 R}}\right) \\
\ll & p^{\alpha+\beta-\frac{1}{2 R}\left(\delta-3 \tau-\frac{1}{\log \log p}\right)}<|A||I| p^{-\frac{\delta^{2}}{13}} .
\end{aligned}
$$

In the last inequalities, we use $\left|\sum_{u} w(u)\right|=|A| p^{\gamma}$, (4.7)-(4.10) and Lemma 7.
Next we consider the sum

$$
\begin{equation*}
\sum_{x \in I, y \in \mathcal{D}} \chi(x+y), \tag{4.13}
\end{equation*}
$$

where $I \subset \mathbb{F}_{p}$ is an interval with $|I|=p^{\beta}$ and \mathcal{D} is p^{β}-spaced modulo p. Such sums were estimated in [FI]. In particular, Theorem 2' of [FI] gives a non-trivial estimate for (4.13) under the following assumptions
$\left.{ }^{*}\right) \mathcal{D}$ lies in an interval of length D. Moreover, for some $r \in \mathbb{Z}_{+}$and $\varepsilon>0$

$$
\begin{equation*}
|I| D<p^{1+\frac{1}{2 r}} \quad \text { and } \quad|I||\mathcal{D}|^{\frac{1}{2}}>p^{\frac{1}{4}+\frac{1}{4 r}+\varepsilon} \tag{4.14}
\end{equation*}
$$

Note that if we do not specify \mathcal{D} to be contained in an interval of size D, (hence $D=p$), the restriction (4.14) forces I and \mathcal{D} to satisfy

$$
\begin{equation*}
|\mathcal{D}+I| \sim|I||\mathcal{D}|>p^{\frac{1}{2}+2 \varepsilon} \tag{4.15}
\end{equation*}
$$

which can be dealt with in an elementary way.
In what follows we give new estimates without any restriction on the $|I|$-spaced set.
Observe that any sum as considered in Theorem 8 may be replaced by a sum of the form (4.13). Conversely, Theorem 8 may be used to bound (4.13) as follows. Denote
$I^{\prime}=\left[1, p^{\beta-\tau}\right]$ for some $\tau>0$ and $A=\mathcal{D}+I^{\prime}$. Hence $|A|=|\mathcal{D}| \cdot\left|I^{\prime}\right|$ by the separation assumption. Also,

$$
\begin{align*}
\sum_{x \in I, y \in \mathcal{D}} \chi(x+y) & =\frac{1}{\left|I^{\prime}\right|} \sum_{\substack{x \in I, t \in I^{\prime} \\
y \in \mathcal{D}}} \chi(x+y+t)+O\left(p^{-\tau}|I||\mathcal{D}|\right) \\
& =\frac{1}{\left|I^{\prime}\right|} \sum_{x \in I, z \in A} \chi(x+z)+O\left(p^{-\tau}|I||\mathcal{D}|\right) \tag{4.16}
\end{align*}
$$

If $|\mathcal{D}|=p^{\sigma}$, then $|A|=p^{\alpha}$ with $\alpha=\sigma+\beta-\tau$ and condition (4.7) becomes (for τ small enough)

$$
\begin{equation*}
\sigma+(2-\beta-\sigma) \beta>\frac{1}{2} \tag{4.17}
\end{equation*}
$$

which improves over (4.15). One has in fact a stronger statement if $\beta>\sigma$ (when Lemma 7 ' is an improvement over Lemma 7).

Theorem 9. Let $I \subset \mathbb{F}_{p}$ be an interval with $|I|=p^{\beta}$ and let $\mathcal{D} \subset \mathbb{F}_{p}$ be a p^{β}-spaced set with $|\mathcal{D}|=p^{\sigma}$. Assume

$$
\begin{equation*}
(1-2 \beta)(1-\sigma)<\frac{1}{2}-\delta \tag{4.18}
\end{equation*}
$$

for some $\delta>0$. Then

$$
\left|\sum_{x \in I, y \in \mathcal{D}} \chi(x+y)\right|<p^{-\frac{\delta^{2}}{17}}|I| \cdot|\mathcal{D}|
$$

for a non-principal multiplicative character χ.
Sketch of the Proof. The argument is a technical refinement of that of Theorem 8 based on Lemma 7'. We use the same notation as above and assume $\beta<\frac{1}{2}$. We choose $\tau=\frac{\delta}{8}$ and R, γ the same as in Theorem 8. (See (4.8)-(4.10).)

Let $A=\mathcal{D}+I^{\prime}$. As in (4.11), we write

$$
\begin{aligned}
\sum_{x \in I, y \in \mathcal{D}} \chi(x+y) & =\frac{1}{\left|I^{\prime}\right|} \sum_{x \in I, z \in A} \chi(x+z)+O\left(p^{-\tau}|I||\mathcal{D}|\right) \\
& \leq \frac{p^{-\gamma-\tau}}{\left|I^{\prime}\right|}\left|\sum_{\substack{x \in I, y \in A \\
z_{0} \in I_{0}, \ldots, z_{s} \in I_{s}}} \chi\left(x+y+z_{0} z_{1} \ldots z_{s}\right)\right|+O\left(p^{-\tau}|I||\mathcal{D}|\right) \\
& \leq p^{-\gamma} \max _{x \in I} \sum_{\substack{y \in A \\
z_{1} \in I_{1}, \ldots, z_{s} \in I_{s} \\
28}}\left|\sum_{z_{0} \in I_{0}} \chi\left(\frac{x+y}{z_{1} \ldots z_{s}}+z_{0}\right)\right|+O\left(p^{-\tau}|I||\mathcal{D}|\right) .
\end{aligned}
$$

To use Lemma 7', we bound $E(A, A)$ as follows. Write

$$
\begin{align*}
E(A, A)=E\left(\mathcal{D}+I^{\prime}, \mathcal{D}+I^{\prime}\right) & \leq p^{4 \sigma} \max _{d_{1}, d_{2} \in \mathcal{D}} E\left(d_{1}+I^{\prime}, d_{2}+I^{\prime}\right) \\
& <p^{4 \sigma+o(1)}\left|I^{\prime}\right|^{2}<p^{2 \sigma+o(1)}|A|^{2} \tag{4.19}
\end{align*}
$$

Here we use the well-known estimate (e.g. see [FI] p.369).

$$
\begin{equation*}
E\left(I_{1}, I_{2}\right)<p^{o(1)}\left|I_{1}\right| \cdot\left|I_{2}\right| \tag{4.20}
\end{equation*}
$$

for the multiplicative energy of intervals $I_{1}, I_{2} \subset \mathbb{F}_{p}$ such that $\left|I_{1}\right| \cdot\left|I_{2}\right|<p$. Substitution of (4.19) in Lemma 7 ' gives

$$
\sum_{u} w(u)^{2}<|A| p^{\gamma(1+2 \sigma)+o(1)}
$$

and the proof is completed as in Theorem 8.
Finally we establish some improvement over Karacuba's theorem [Ka1]. Recall the statement of [Ka1]. Let $I \subset[1, p]$ be an interval with $|I|=p^{\beta}$ and $S \subset[1, p]$ be an arbitrary set with $|S|=p^{\alpha}$. If for some $\varepsilon>0$

$$
\alpha>\varepsilon, \beta>\varepsilon \text { and } \alpha+2 \beta>1+\varepsilon
$$

then for some $\varepsilon^{\prime}>0$

$$
\begin{equation*}
\sum_{y \in I}\left|\sum_{x \in S} \chi(x+y)\right|<p^{-\varepsilon^{\prime}}|I||S| \tag{4.21}
\end{equation*}
$$

We will prove the following
Theorem 10. In the above setting, assume that α, β satisfy

$$
\begin{equation*}
\varepsilon<\beta \leq \frac{1}{k} \text { and }\left(1-\frac{2}{3 k}\right) \alpha+\frac{2}{3}\left(1+\frac{2}{k}\right) \beta>\frac{1}{2}+\frac{1}{3 k}+\varepsilon . \tag{4.22}
\end{equation*}
$$

for some $\varepsilon>0$ and $k \in \mathbb{Z}_{+}$. Then (4.21) holds for some $\varepsilon^{\prime}=\varepsilon^{\prime}(\varepsilon)>0$.
To see the strength of Theorem 10, for example, we take $\alpha=\beta$, and let $k=3$, then estimate (4.21) is valid, provided

$$
\alpha, \beta>\frac{11}{34}+\varepsilon
$$

which is a slight improvement over the condition $\alpha, \beta>\frac{1}{3}$ gotten from [Ka1].

The proof of Theorem 10 is a combination of variants of arguments used in [FI] (Theorem 3) and [Ka2], together with Lemma 7'.

Proof of Theorem 10.

Take $\beta_{1}=\beta-\tau$ with $\tau>0$ and $\tau=o(1)$.
We partition $[1, p]$ in intervals I_{j} of size $p^{\beta_{1}}$ and consider the intersections $S \cap I_{j}$. Up to a factor of $\log p$, one may clearly replace S by sets of the form

$$
\begin{equation*}
S=\bigcup_{\xi_{r} \in \mathcal{D}}\left(\xi_{r}+S_{r}\right) \tag{4.24}
\end{equation*}
$$

where \mathcal{D} is a $p^{\beta_{1}}$-spaced set with $|\mathcal{D}|=p^{\gamma}$ and $S_{r} \subset\left[0, p^{\beta_{1}}\right]$ satisfying $\left|S_{r}\right| \sim p^{\beta_{1}-\sigma}$ (for some σ independent of r) and $|\mathcal{D}| \cdot p^{\beta_{1}-\sigma}>p^{-o(1)}|S|$. Hence

$$
\begin{equation*}
\alpha \geq \gamma+\beta_{1}-\sigma>\alpha-o(1) . \tag{4.25}
\end{equation*}
$$

We will carry out two estimates.
Case 1. $\alpha+\beta-\sigma-\frac{2 \gamma}{k}>\frac{1}{2}+\delta$ for some $\delta>0$.
We assume $\sigma<\beta_{1}-\tau$ (more restrictive conditions will appear later).
By (4.24) and Cauchy-Schwarz, we have

$$
\begin{aligned}
\sum_{y \in I}\left|\sum_{x \in S} \chi(x+y)\right| & \leq \sum_{\xi_{r} \in \mathcal{D}} \sum_{y \in I}\left|\sum_{x \in S_{r}} \chi\left(\xi_{r}+x+y\right)\right| \\
& \leq|\mathcal{D}|^{\frac{1}{2}}|I|^{\frac{1}{2}}\left|\sum_{\xi_{r} \in \mathcal{D}, y \in I, x_{1}, x_{2} \in S_{r}} \chi\left(\frac{\xi_{r}+x_{1}+y}{\xi_{r}+x_{2}+y}\right)\right|^{\frac{1}{2}}
\end{aligned}
$$

It will suffice to establish a non-trivial bound on the inner sum

$$
\begin{equation*}
\sum_{\substack{\xi_{r} \in \mathcal{D}, y \in I \\ x_{1} \neq x_{2} \in S_{r}}} \chi\left(1+\frac{x_{1}-x_{2}}{\xi_{r}+x_{2}+y}\right) . \tag{4.26}
\end{equation*}
$$

Denote V the interval $\left[0, p^{\frac{\tau}{2}}\right]$. We recall that $x_{1}-x_{2} \in\left[-p^{\beta-\tau}, p^{\beta-\tau}\right]$. After fixing r and $x_{1}, x_{2} \in S_{r}$ in the summation (4.26), we may translate $y \in I$ by a product $t .\left(x_{1}-x_{2}\right)$ with $t \in V$. The error is $O\left(p^{-\frac{\tau}{2}}|I|\left(\sum_{\mathcal{D}}\left|S_{r}\right|^{2}\right)\right)$.

Hence we obtain

$$
\frac{1}{|V|} \sum_{\substack{\xi_{r} \in \mathcal{D}, y \in I, t \in V \\ x_{1} \neq x_{2} \in S_{r}}} \chi\left(1+\frac{1}{\frac{\xi_{r}+y+x_{2}}{x_{1}-x_{2}}+t}\right),
$$

which we bound by

$$
\begin{equation*}
\frac{1}{|V|} \sum_{u \in \mathbb{F}_{p}} \eta(u)\left|\sum_{t \in V} \chi\left(1+\frac{1}{u+t}\right)\right| . \tag{4.27}
\end{equation*}
$$

Here

$$
\left.\eta(u)=\left\lvert\,\left\{\left(\xi_{r}, y, x_{1}, x_{2}\right) \in \mathcal{D} \times I \times S_{r}^{2}: x_{1} \neq x_{2} \text { and } u=\frac{\xi_{r}+y+x_{2}}{x_{1}-x_{2}}\right\}\right. \right\rvert\, .
$$

Under the assumption of the case, we claim

$$
\begin{equation*}
\left(\sum_{u} \eta(u)\right)^{2}>p^{\frac{1}{2}+\delta}\left(\sum_{u} \eta(u)^{2}\right) \tag{4.28}
\end{equation*}
$$

It is obvious from the construction that

$$
\begin{equation*}
\sum_{u} \eta(u) \sim|\mathcal{D}| \cdot|I| \cdot p^{2\left(\beta_{1}-\sigma\right)} \sim p^{\beta+\gamma+2\left(\beta_{1}-\sigma\right)} . \tag{4.29}
\end{equation*}
$$

Also

$$
\begin{aligned}
& \sum_{u} \eta(u)^{2} \\
& \left.=\left\lvert\,\left\{\left(\xi_{r}, \xi_{r^{\prime}}, y, y^{\prime}, x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right): x_{1} \neq x_{2}, x_{1}^{\prime} \neq x_{2}^{\prime} \text { and } \frac{\xi_{r}+y+x_{2}}{x_{1}-x_{2}}=\frac{\xi_{r^{\prime}}+y^{\prime}+x_{2}^{\prime}}{x_{1}^{\prime}-x_{2}^{\prime}}\right\}\right. \right\rvert\, \\
& \leq p^{2\left(\beta_{1}-\sigma\right)}\left|\left\{\left(\xi_{r}, \xi_{r^{\prime}}, \bar{y}, \bar{y}^{\prime}, z, z^{\prime}\right) \in \mathcal{D}^{2} \times\left[0,2 p^{\beta}\right]^{2} \times\left[-p^{\beta_{1}}, p^{\beta_{1}}\right]^{2}: \frac{\xi_{r}+\bar{y}}{z}=\frac{\xi_{r^{\prime}}+\bar{y}^{\prime}}{z^{\prime}}\right\}\right| \\
& =p^{2\left(\beta_{1}-\sigma\right)} E\left(\mathcal{D}+\left[0,2 p^{\beta}\right],\left[-p^{\beta_{1}}, p^{\beta_{1}}\right]\right) .
\end{aligned}
$$

Applying Lemma 7^{\prime} with $A=\mathcal{D}+\left[0,2 p^{\beta}\right], s=1, \gamma=\frac{1}{k}$ and $I=\left[0,2 p^{\beta_{1}}\right]$ where $\beta_{1}<\beta \leq \frac{1}{k}$, we get $E(A, A) \ll|\mathcal{D}|{ }^{4} p^{2 \beta+o(1)}$ by (4.21), and

$$
\begin{equation*}
E(A, I)<p^{o(1)}|A|^{1-\frac{2}{k}} E(A, A)^{\frac{1}{k}}|I|<p^{\beta+\beta_{1}+\left(1+\frac{2}{k}\right) \gamma+o(1)} . \tag{4.30}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\sum_{u} \eta(u)^{2}<p^{\beta+3 \beta_{1}-2 \sigma+\left(1+\frac{2}{k}\right) \gamma+o(1)} . \tag{4.31}
\end{equation*}
$$

and (4.28) holds by (4.29), (4.31) and recalling (4.25).
We follow the usual procedure (e.g. see the bounding of (4.11)), we have the bound $|I||S| p^{-\frac{\delta^{2}}{4}}$.

Note that since we may assume $\alpha<\frac{1}{2}+o(1)$, the condition $\sigma<\beta_{1}-\tau$ for τ small enough, is automatically satisfied under the assumption of this case.

Case 2. $2 \alpha+\beta+\sigma-\frac{2 \gamma}{k}>1+\delta$ for some $\delta>0$.
Since

$$
\sum_{y \in I}\left|\sum_{x \in S} \chi(x+y)\right| \leq|I|^{\frac{1}{2}}\left|\sum_{\substack{x_{1}, x_{2} \in S \\ y \in I}} \chi\left(\frac{x_{1}+y}{x_{2}+y}\right)\right|^{\frac{1}{2}}
$$

we need a nontrivial estimate on

$$
\sum_{\substack{x_{1}, x_{2} \in S \\ y \in I}} \chi\left(\frac{x_{1}+y}{x_{2}+y}\right) .
$$

Making a translation $y \rightarrow y+z t$ with $z \in\left[1, p^{\beta_{1}}\right]=I_{1}, t \in V=\left[0, p^{\frac{\tau}{2}}\right]$ leads to

$$
\begin{equation*}
\frac{1}{|V|} \sum_{u_{1}, u_{2} \in \mathbb{F}_{p}} \eta\left(u_{1}, u_{2}\right)\left|\sum_{t \in V} \chi\left(\frac{u_{1}+t}{u_{2}+t}\right)\right|, \tag{4.32}
\end{equation*}
$$

where

$$
\left.\eta\left(u_{1}, u_{2}\right)=\left\lvert\,\left\{\left(x_{1}, x_{2}, y, z\right) \in S^{2} \times I \times I_{1}: u_{i}=\frac{x_{i}+y}{z}, \text { for } i=1,2\right\}\right. \right\rvert\, .
$$

Let $\eta(u)=\eta\left(u_{1}, u_{2}\right)$. We will show that the assumption of this case implies

$$
\begin{equation*}
\left(\sum_{u} \eta(u)\right)^{2}>p^{1+\delta}\left(\sum_{u} \eta(u)^{2}\right) . \tag{4.33}
\end{equation*}
$$

Here

$$
\sum_{u} \eta(u)=p^{2 \alpha+\beta+\beta_{1}}
$$

Clearly, using the bound (4.30), we have

$$
\begin{aligned}
& \sum_{u} \eta(u)^{2} \\
& =\left|\left\{\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}, y, y^{\prime}, z, z^{\prime}\right) \in S^{4} \times I^{2} \times I_{1}^{2}: \frac{x_{i}+y}{z}=\frac{x_{i}^{\prime}+y^{\prime}}{z^{\prime}}, i=1,2\right\}\right| \\
& \leq|S|\left|\left\{\left(x, x^{\prime}, y, y^{\prime}, z, z^{\prime}\right) \in S^{2} \times I^{2} \times I_{1}^{2}: \frac{x+y}{z}=\frac{x^{\prime}+y^{\prime}}{z^{\prime}}\right\}\right| \\
& <p^{\alpha}\left|\left\{\left(\xi_{r}, \xi_{r^{\prime}}, x, x^{\prime}, y, y^{\prime}, z, z^{\prime}\right) \in \mathcal{D}^{2} \times S^{2} \times I^{2} \times I_{1}^{2}: \frac{\xi_{r}+x+y}{z}=\frac{\xi_{r^{\prime}}+x^{\prime}+y^{\prime}}{z^{\prime}}\right\}\right| \\
& <p^{\alpha} p^{2\left(\beta_{1}-\sigma\right)} E\left(\mathcal{D}+\left[0,2 p^{\beta}\right],\left[0, p^{\beta_{1}}\right]\right) \\
& <p^{\alpha+\beta+3 \beta_{1}-2 \sigma+\left(1+\frac{2}{k}\right) \gamma+o(1)} .
\end{aligned}
$$

Proceeding in the same way as before, we obtain the bound $|I||S| p^{-\frac{1}{2}\left(\frac{\delta^{2}}{2}-\beta_{1}\right)}$.
To reach condition (4.22), we assume Case 1 fails. Hence

$$
\alpha+\beta-\sigma-\frac{2 \gamma}{k}<\frac{1}{2}+o(1)
$$

and recalling (4.25), i.e.

$$
\alpha+o(1)>\gamma+\beta-\sigma>\alpha-o(1)
$$

(letting τ be small enough), it follows that

$$
\left(1+\frac{2}{k}\right) \sigma>\left(1-\frac{2}{k}\right) \alpha+\left(1+\frac{2}{k}\right) \beta-\frac{1}{2}-o(1) .
$$

Therefore the assumption of Case 2 will be satisfied if

$$
\left(1-\frac{2}{3 k}\right) \alpha+\frac{2}{3}\left(1+\frac{2}{k}\right) \beta>\frac{1}{2}+\frac{1}{3 k}+\left(\frac{1}{3}+\frac{2}{3 k}\right) \delta .
$$

This proves Theorem 10.
Acknowledgement. The author is grateful to Andrew Granville for removing some additional restriction on the set B in Theorem 2 in an earlier version of the paper, and to the referees for many helpful comments. The author would also like to thank J. Bourgain and Nick Katz for communication on Proposition \&, and Gwoho Liu for assistance.

References

[BGK]. J. Bourgain, A. Glibichuk, S. Konyagin, Estimate for the number of sums and products and for exponential sums in fields of prime order, submitted to J. London Math. Soc 73 (2006), 380-398.
[BKT]. J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields and their applications, GAFA 14 (2004), n1, 27-57.
[Bu1]. D.A. Burgess, On character sums and primitive roots, Proc. London Math. Soc (3) 12 (1962), 179-192.
[Bu2]. \quad, On primitive roots in finite fields, Quarterly J. of Math., 8 (1937), 308-312.
[Bu3]. , Character sums and primitive roots in finite fields, Proc. London Math. Soc (3) 37 (1967), 11-35.
[Bu4]. , A note on character sums over finite fields, J. Reine Angew. Math. 255 (1972), 80-82.
[C]. F. Chung, Several generalizations of Weil sums, J. of Number Theory, 49, (1994) 95-106.
[DL]. Davenport, D. Lewis, Character sums and primitive roots in finite fields, Rend. Circ. Matem. Palermo-Serie II-Tomo XII-Anno (1963), 129-136.
[FI]. J. Friedlander, H. Iwaniec, Estimates for character sums, Proc. Amer. Math. Soc. 119, No 2, (1993), 265-372.
[G]. M. Garaev, An explicit sum-product estimate in \mathbb{F}_{p}, (preprint).
[HIS]. D. Hart, A. Iosevich, J. Solymosi, Sum product estimates in finite fields via Kloosterman sums, IMRN (to appear).
[IK]. H. Iwaniec, E. Kowalski, Analytic number theory, AMS Colloquium Publications, Vol 53 (2004).
[Kar1]. A.A. Karacuba, Distribution of values of Dirichlet characters on additive sequences, Soviet Math. Dokl. 44 (1992), no. 1, 145-148.
[Kar2]. \qquad , Estimates of character sums, Math. USSR-Izvestija Vol. 4 (1970), No. 1, 19-29.
[KS1]. Nets Katz, C-Y. Shen, A slight improvement of Garaev's sum product estimate, (preprint).
[KS2]. \qquad Garaev's inequality in finite fields not of prime order, (preprint).
[K]. Nick Katz, An estimate for character sums, JAMS Vol 2, No 2 (1989), 197-200.
[PS]. G.I. Perel'muter, I. Shparlinski, Distribution of primitive roots in finite fields, Russian Math. Surveys 45 (1990), no. 1, 223-224.
[S]. I. Shparlinski, Finite Fields: Theory and Computation, Kluwer Academic Publishers, 1999..
[TV]. T. Tao, V. Vu, Additive Combinatorics,, Cambridge University Press, 2006.

[^0]: 2000 Mathematics Subject Classification. Primary 11L40, 11L26; Secondary 11A07, 11B75.
 Key words. character sums, primitive roots, Davenport-Lewis, Paley Graph conjecture .
 Research partially financed by the National Science Foundation.

[^1]: *The author is grateful to Andrew Granville for removing an additional restriction on the set B from an earlier version of this theorem.

[^2]: *This conjecture was partly motivated by the 'Paley-Graph conjecture' on the maximal size of a set $C \subset \mathbb{F}_{p}$ such that $x-y$ is a quadratic residue $(\bmod p)$ for all $x, y \in C$.

[^3]: *This initial step of translation by a product is by now standard and was first used in [Kar2] in the context of character sums.

[^4]: *This was originally communicated to the author by Nick Katz as an extension of his work $[\mathrm{K}]$.

