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On a reduction and solutions of non-linear
wave equations with broken symmetry

W.I. FUSHCHYCH, I.M. TSYFRA

A generalised definition for invariance of partial differential equations is proposed. Exact
solutions of the equations with broken symmetry are obtained.

Let us consider the non-linear wave equation

�u+ F1(u) = 0, u = u(x0, x1, x2, x3),

� = ∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 , ∂µ = ∂/∂xµ, µ = 0, 1, 2, 3,
(1)

where F1(u) is an arbitrary smooth function. The ansatz

u = f(x)ϕ(ω) + g(x) (2)

suggested by Fushchych [5] was used to construct the family of exact solutions of
equations (1). f(x), g(x) are given functions, ϕ(ω) is the function to be determined
and ω = (ω1, ω2, ω3) are new invariant variable. Wide classes of exact solutions of
equation (1) have been constructed by Fushchych and Serov [7, 8], Fushchych et al
[10] and Fushchych and Shtelen [9]. It is important to note that Poincaré invariance
of equation (1) was used.

The possibility of using an ansatz of type (2) to find exact solutions of the non-
linear wave equations with broken symmetry naturally arises in connection with the
fact that many equations of theoretical physics are not invariant with respect to the
Poincaré, Galilei and Euclidean groups. A more specific formulation of this problem
is as follows: are we able to construct the solutions of wave equations not invariant
with respect to the Lorentz groups, for example, but nevertheless with the help of
the Lorentz-invariant ansatz?

The present letter suggests an affirmative answer to this question, i.e. we construct
the many-dimensional non-linear wave equations with broken symmetry. The multi-
parametrical exact solutions of these equations are found with the help of ansatz (2),
previously used to find exact solutions of Poincaré- and Galilei-invariant equations
only. It is obvious that ansatz (2) cannot be applied to the equations with arbitrary
breakdown of symmetry, which is why the equation with the breakdown of symmetry
should have some hidden symmetry. The set of equations with such symmetry was
considered by Fushchych and Nikitin [6]. We do not deal with the symmetry of all
the solutions of the equations but only with a definite subset of solutions, which may
be much wider that the symmetry of the equation itself. This idea will be used below.

Let us consider the wave equation with broken symmetry

Lu ≡ �u+ F (x, u
1
, u) = 0, (3)
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where F (x, u
1
, u) is an arbitrary smooth function, depending on x = (x0, x1, x2, x3),

u
1
≡ (∂u/∂x0, ∂u/∂x1, ∂u/∂x2, ∂u/∂x3). Following Fushchych [3] we generalise the

Lie definition of invariance of equation (3).

Definition. We shall say that equation (3) is invariant with respect to some set of
operators Q̂ = {Q̂A}, A = 1, 2, . . . , N , a number of linearly independent operators,
if the following condition is fulfilled:

Q̂ALu
∣∣∣Lu = 0,

{Q̂Au} = 0

= 0, (4)

where {Q̂Au} = 0 is a set of equations

Q̂Au = 0, DQ̂Au = 0, D2Q̂Au = 0, . . . , DnQ̂Au = 0, (5)

where D is an operator of total differentiation. Condition (4) is a necessary condition
for reduction of differential equations.

Definition (4) is a generalisation of the Lie definition (see, e.g., Ovsyannikov [12])

Q̂ALu
∣∣∣
Lu=0

= 0, (6)

where Q̂A are a number of first-order differential operators forming a Lie algebra.
To demonstrate the efficacy of definition (4) and to find exact solutions of equation

(3) we choose the function F in a form

F = −
(
λ0

x0

)2(
∂u

∂x0

)2

+
(
λ1

x1

)2(
∂u

∂x1

)2

+

+
(
λ2

x2

)2(
∂u

∂x2

)2

+
(
λ3

x3

)2(
∂u

∂x3

)2

,

(7)

where λµ are arbitrary parameters and xµ �= 0.

Theorem. The maximal local (in the Lie sense) invariance group of equations (3)
and (7) is the two-parametrical group of the transformations

xµ = eaxµ, u′ = e2au (8)

and

u′ = u+ c, c = constant,

where a is real parameter.

The proof of the theorem is reduced to application of the well known Lie algorithm
and we do not present it here. One can make sure non-linearity breaks the rotational
and translational symmetry.

Now we show that the Lorentz-non-invariant equations (3) and (7) are reduced to
an ordinary differential equation with the help of the Lorentz-invariant ansatz

u = ϕ(ω), ω = xµx
µ = x2

0 − x2
1 − x2

2 − x2
3. (9)
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Substituting (9) into (3) and (7) we obtain the ordinary differential equation

ω
d2ϕ

dω2
+ 2

dϕ

dω
= −λ2

(
dϕ

dω

)2

, λ2 = λ2
0 − λ2

1 − λ2
2 − λ2

3. (10)

Solving equation (10), we obtain

ϕ(ω) = 2
(−λ2

)−1/2
tan−1

[
ω
(−λ2

)−1/2
]
, −λ2 > 0, (11)

ϕ(ω) = − (λ2
)−1/2

ln

((
λ2
)1/2 + ω

(λ2)1/2 − ω

)
, −λ2 < 0. (12)

Thus the Lorentz-non-invariant (in the Lie sense) equations (3) and (7) are reduced
to an ordinary differential equation.

Formulae (11) and (12) give a Lorentz-invariant family of solutions of equations
(3) and (7). It means that the following set of conditions is fulfilled:

Jµνu(x) = 0, µ, ν = 0, 1, 2, 3, (13)

J0a = x0
∂

∂xa
+ xa

∂

∂x0
, Jab = xa

∂

∂xb
− xb

∂

∂xa
, a, b = 1, 2, 3 (14)

for the set of solutions (11) and (12).
The operators (14) generate Lorentz transformations. Equations (13) are the con-

crete realisation of the first equation of (5). In this case the index A varies from 1 to
6.

Thus, equations (13) pick out a Lorentz-invariant subset of the set of all solutions
of equations (3) and (7). In other words, equations (3) and (7) are Lorentz-invariant
in the sense of definition (4).

Now let us consider the equation

∂2u

∂t2
= λ∆u(∇u)2, λ =

1
3
m2. (15)

It is simple to verify that equation (15) is not invariant with respect to Galilean
transformations, generated by operators

Ga = t
∂

∂xa
+mxa, a = 1, 2, 3. (16)

In this case equations {Q̂Au} = 0 are

Gau = t
∂u

∂xa
−mxau = 0, (17)

∂

∂t
(Gau) = 0. (18)

Thus equation (15) is invariant under transformations generated by operators (16)
in the sense of definition (4). It means that the subset of solutions of equations
(15) picked out by means of conditions (17) and (18) is invariant under Galilean
transformations while equation (15) is not invariant under these transformations.
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The Galilean-invariant ansatz has the form

u = ϕ(t) +m
(
x2

1 + x2
2 + x2

3

)
/2t, ω = t, f = 1. (19)

Substituting (19) into (15), we obtain

d2ϕ

∂t2
= 0 ↔ u = m

(
x2

1 + x2
2 + x2

3

)
/2t+At+ C, (20)

where A and C are arbitrary constants.
A generalised definition of the invariance (4) can be applied to the system of partial

differential equations.
Let us consider, for example, a non-linear Dirac system of equations:

γµ∂
µψ + g

[
2ψ̄(xµ∂

µ)ψ − (x2/cαx
α
)
ψ̄(cµ∂µ)ψ

]
M−1(x)(ψ̄ψ)1/3ψ = 0,

M(x) = 2(cαxα)−1ψ̄Sµνc
µβνψ + ψ̄ψ,

Sµν =
1
4
i(γµγν − γνγµ) µ, ν, α = 0, 1, 2, 3,

(21)

where g, βµ, cα are arbitrary parameters.
Equation (21) is not invariant under conformal transformations. Nevertheless, it is

reduced to the system of ordinary differential equations

iγµβ
µ dϕ

dω
+ g(ϕ̄ϕ)1/3ϕ = 0 (22)

with the help of the conformally invariant ansatz (4)

ψ(x) =
[
γµx

µ/(x2)2
]
ϕ(ω), ω = βµx

µ/x2, β2 �= 0, x2 = xµx
µ �= 0, (23)

where ϕ(ω) is the four-component spinor depending on a variable ω. The general
solution of equation (22) is the vector function

ϕ = exp
[
−iγµβ

µ

β2
g(χ̄χ)1/3ω

]
χ, (24)

where χ is a constant spinor.
Equation (21) is invariant under the transformations generated by the operator

cµK
µ on a set of solutions of the equations

cµK
µψ = 0,

cµKµ = 2(cx)(x∂) − x2(c∂) + 2(cx) − (γc)(γx).
(25)

In conclusion we note that an idea like the one set forward here was used by
Bluman and Cole [2], Ames [1], Fokas [3] and Olver and Rosenau [11], as was kindly
indicated by the referee.

We are grateful to the referee for his valuable remarks.
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