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ABSTRACT

Quasipotential eguations are constructed for the relativisiic
scattering amplitude and the wave funciion of two interacting partioles
with spin %u This is done with the help of specific ocovariant exira-
polation of the scattering amplitude off-the—energy-momentum shell.
Suitable diagram techniques are developed. The gquasipotential is
defined as a sum of "irreducible" diagrams. The free part of the
wave equation is spin independent and all features connected with spin
appear in the interaction (quasipotential). The spin siructure of

the quasipotential is invesgtigated.
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ON A RELATIVISTIC QUASIPOTERTIAL EQUATION
IN THE CASE OF PARTICLESWITH SPIN

I. INTRODUG TION

In quantum field theory the system of itwo interaciing particles
can be described in the framswork of the relativistio invariani Bethe~
Salpeter formalism 171;7. However, as is well known, the Bethe-Salpeier
wave function has itwo time variables and hence cannot be interpreted In
the usual quantum'mechanicai senge as the probability amplitudes for
finding the system in a definite state. For this reason the question of
its normalization is not at all trivial; and,up to now, a complete
understanding of this feature has not been achieved.

Several years ago Logunov and Tavkhelidze developed the

quagipotential approach to the prbblem of the interaction of two
relativistic particles / 2 /. The wave function which they introduced

is a natural generalization of the nonerelativistic one since it iz a
‘ function of only one time variable and satisfies a Schrodinger type
equation. For interacting scalar particles with equal masses in the
centre—ocf-mass system, the quasipotential equation in momentum spacs

can be written in the form:
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The "quasipotential" V(ﬁ{E;Eq) (in gemeral a complex quantity) can

be built according to £T2;7 with the help of perturbation theory.

This can be done in two different ways either by using the two-time

Green funotion of the system or with the help of ithe scattering
amplitude on the mase shell. In the formalism of Logunov and Tavkhelidrze
there is an equation of the Lippman~Schwinger type for the off-the-snergy-

shell soattering amplitude:
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It is important to stress that the integration on the right~hand

sides of eqs. (1.1) and (1.2) is performed over a three~dimensional
manifeld, while in the corresponding Bethe-Salpeter equations there
is integration over the four-dimensional momentum of the virtual

particle.

The quasgipotential method can be successfully applied to
the solution of the problem of scattering and bound states for any
particles independently of +their concrete nature 173_7; Zfﬂ;71 How-
ever, in the case of particles with spin, certain specific complications
arise in the construction of the quasipotenfial. They are connected
with fhe fact that the two-time, bare, free Green  function for a
system of two spinor particles is a singular matrix. In Ref.
£_4;7 thig difficulty is avoided by projecting the gquasipotential
egquation onto the subspace of the spinors corresponding to positive
energies, the quasipotential being built with the help of the on-
mags—shell scatiering amplitude. The problem of consirTucting the
quasipotential in the spinor case using the two-time Green function
has been discussed in detail in Ref. [Ti;?.

The purpose of this work is the construction of guasi-
potential equations of the type (1.1) and (1.2) for the case of
pariiciles with spin using a method whiok is not connected with the
usual Green function apparatus and the Bethe-Salpeter formalism,
In $his method / 6_/, whioh is a covariant formulation of "oldw
fashioned’ perturbation theory, all the particles in the initial,
intormediate and final states are on the mass shell and have
positive energies; but, due to the presence of specific spurions
(we will call them "guasiparticles"), the total four-momentum of
the system ig not conserved. It can be said that this approach is
an alternative to the usual Feynman perturbation theor&. Indeed,
in the first‘oase, we always have p2 = m2, v, > 0; and, in general,

the four-momenium is not oonserved;
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In the seocond cage the four-momentum is conserveds;
2_)? D_‘%" ;

but, in general, 22 7 n° and poEE 0.

In /77 7, with the help of the diagram technique from / 6/,
equations of the same type as (1.l) and {1.2) have been obtained:

EkE EW{) (3) = Gl g\K’P, _') L qy@) (1.3)
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The quasipotential V(E,E;Eq) has been built with the help of special

kinds of irreducible diagrams (compare with the Bethe-Salpeter

formalism Zrﬁ;jr){

In the following we shall show that a similar procedure
can be directly applied in the spinor case and we ghall find the

corresponding analogues .of egs. (1.3) and (1.4).

Special attention will be paid to the question of the spin
structure of the guasipotential (Sec. IV). For simplicity ahd to
avoid superfluous references to the scalar case,in Sec. IIT we
shall formulate in detail the diagram technigue /8,7/. As a concrete
model of the interaction the pseudoscalar coupling is cﬁosen:
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where one may consider that the spinor field W(x) describes nucleons
and antinucleons with mass N, while¥(x) corresponds to pseudoscalar

mesgons Wwith mass m.

II. DIAGRAM TECHNIQUE

Let

Hp) = S"Wx H O o x (2.1)

be the four-dimensional Fourier-transform of the interaction

Hamiltonian (1.5), and
S = I + iR (2.2)

be the goattering matrix oorresponding to this interaction. Then

according to 5,17,

R & RO, 0) = R(?\‘a‘c,'a\}f')i , (2.3)
®=x'=0

where the operator R(Aw , A¥' ) is determined From the oquation *

R kst hoe) = —H (e -2oc) - L g (- >.>e4) d*‘« R (nt, hae’) . (2.4)

¥} It is evident that from the very beginning, we could put ¥'s= O
and use, instead of (2.4), the eguation

oai) - Toe)- L (o 2000,

However we will need the matrix R{}l}e,}\ %} for the analysis of

the T—invariance of the scattering amplitude (Sec. IV), and this is

why we shall make &)l further considexrations on the basis of eq. {2.4).




The quantity A, appearing in these formulas, is a four-veotor wiikh

the property that

(2.5)
and ®, 2y and ' are one-dimensional invariant parameters.
From (2.3) it follows that on the surface
X = %' =0 | (2.6

which we shall call the energy-momentum shell, the matrix elements
of the operator R(\=¢,A%€') must be independent of the dircotion of
P\ *) . Thersfore the vector A, with the properiies (2.5), can be

chosen in a completely arbitrary way, for exanmple,as
o~ P (2.7)

whers P is the total four-momentum of the system.

To first order in the ocoupling constant we have

R, (rse, an)) = - Fl:[‘(xac_—me’) =
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#) This fact is a corollary from the locality of the operator H(x) 67
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(the Fourier decompositions of the operators ip(x), Y(x) and P(x)
aTe given in the Appendix-egs. (A.1), (A4.5) and (A.6)). Bq. (2.8)
is tho sum of eight normal products:
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(2.9)
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3y caloulating matrix elements of (2.9) with normalized staies

(farnormalization of gtates see Appendix - egs. (4.9)), it can be seon

that, for example, the operator

e ae)x,, A A C S

_ RN SIPNE
%,\)Q H"kx) O"X @ df/( . \iJ '\"') J‘é \J (X) \€ \)“J .

has a non-zero matrix element for the transition vacuum — nuclseon +
antinuoleon + mepon:
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and the operator

A=) X ~eNGe-RDX .
Se (0 dx = q ge - 00y, Y00 €09 d

gives a non-vanishing contribution to the amplitude for the process
nucleon + meson — nucleoh:
1 —in(se- 2 X

<’P;(“\ e u?(x)c{x\q,,v;lm>=

(2:11)
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Lot us accept the following rules for the graphical

deacription of the particles in the initial and final siates.
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TABLD T

Line Particle State | Factor in the
| ! matrix element
5
- -‘3/2.
.———q—_j-)_v nucleon i in S’E} U}) -—'a-)
: )
Y>> antinuclson in (Z'W) {)..“V(q()
| e ——— —
. [-—-——2‘ ]
. 3/L
k meson in _(_%:@__
2k
Q5%
N Q)72 g
._____.‘._f__. nucleon out —_— A ( /—é)
N2 %
B (2
————p antinucleon out . .U-(-t(—-.»)
N2 P,
%
2
fv-vw'v-\i(w. meson out (ZW)
N2 ko




Now the process (2.10) can be described by diagram a) in Fig. 1
where the spurion dotted lines, which carry the four-momenta
A%and A¥', are introduced so that the consexrvation law,

Ave - A“"‘ﬂ‘ﬁ‘k“o s can be satisfied at the vertex.

a) . | - b)

Fig. 1

In a similar manner we oonsiruct the diagram of the process (2.11)
(ses b)in Pig. 1),

In the x-répresentation as it follows from (2.10) and (2.11),
the dotted lines (we will call them quasiparticles), correspond- to
plane waves of the form e"‘hex . Therefore the operator H{Aw-A) .

can be interpreted also as an inieraction of the fields Y and ¢

with the plans wave,

When we iteraic eg. (2.4), operator terms of the form

P,Wf:hva));eo:
DY : L d o~ {o2; (2.12)
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appear. This must be reduced to normal form, We shall assume that the
Hamiltonians in (2.8) are numbered, with number one assigned to
E(A% ~ A%y), number two to H(A®q~ARy), etc., so that the number of
the last operator'ﬁ(haenqj"‘hqf) is n. Further, to each of the
operators i;,wp andt? is aszigned the number of the Hamiltonién to
which this operator belongs. Then, recognizing that the Hamiltonian
¥ is already speocified in normal form, we can state that when

Rn(Age_ ;A ) is reduced to normal form it is necessary to pair only
the operators with different numbers. In the case considered hers,
due to the.absence of chronmological ordering in R (A3e s A%}, the
pairings have the form:

r ‘—IH -~ K ~ ~
WF(C?) Ya (/‘?) = §{e "“’P\ Cne) l: e, Yt M2

) OBy Ly, YL -
S Y / ' / i 2 b (2.13)
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Vo S,.”\ Q/\ / \ \ i, \Vn> —;/ 2, '.:L‘—
P 9 = clpea ) Big) g, M, olg- M)z
&) \ (2-14)
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—— C&/D'Y‘(-’i'/}x S%O‘i qfr} ! 5)
rrln o oniy |\\ -~ ;'! L I 'w'\i "‘.f';“ ! \"‘ fM({'-\ . ¥ 2\ =
Nk Mk = CURS Ko,y el = (
(2.15)
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t is easy to see that the argument of the functions 5

™
-

and ﬁ@ is
the argument of those operaiors IP a.nd'!p which are at the right side
of the pairing, i.e., those which have a larger index number. The
last oiroumstance determines the rule for the orientation of the
lines in the graphical desoription of the pairings (2.13)-(2.15)
(Table IT).
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TABLE II

Line Particle Pairing !Factor in the
? matrix element
nucleon \?-( 1 —g;,(£3;\ i M
R K e | S
| &<
A @
inucle . * { V]
:}.:——L:_:‘_——"_._-:} antinucleon \Yd‘(/Pé) L\}% (QQ:? ). S%&\C‘/‘%)-—M)
§ <4
' OF
o L R
i

The reason why the first pairing in Table II is made

to ocorrespond  to the nucleon and the second to the antinucleon

is,fox

example, the exact correspondence of these pairings to the contribution

of thoe intermediate nucleon and antinucleon one-particle states, in

the unitarity condition.

Beginning with the second-order terms in g

in the natrix element,

it can be seen from (2.12) that there also appear factors of the

form:
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which corresponds to a "virtual" quasiparticle with four-momertum A2,
going out from the vortex with number j and coming into a vertex ¢
with number j + 1. Graphically we shall describe such a quasiparticle

in the following way:

A .
——— - @>-¥é ————— 3
4 ,4: A
¢ ¢
Tig. 2

Wow, taking into account Tables I and II, we can formulate in a
general form the rules for constructing the mairix elements in this

formalism, These rules are as follows:

1) Draw the Feynman diagram (or a set of diagrams) correspond-
ing to the process considered and describe ithe fres nucleon znd anti-
nucleon states in accordance with Table I. HNumber arbitrarilj all
the vertices and orient every internal line in a direction from the

larger to the smaller number. Then, ¥ithout chanming the orientation,

change some of the single (nucloon) internal lines to double (anti-
nucleon ) lines in such a way that the nucleon charge is conserved

in every vertex. Assign to every internal line some momentum p.

2) Connect the first.vertex to the second, the second to the
third, the third to the fourth,etc., with dotted lines oriented in
the direction of increasing numbers; and to every such line assign
a four—mqmentum R?&} s Where J =‘1,2,..., n-1l isg the number of the
vertex which the given dotted line leaves. Then Join an incoming
external dotted line with momentum AR to the first vertex and an
outgoing external line with momentum A®' to the last vertex (with

number n ).

3) To each internal dotted line with four-momenium Raﬂi

assign a propagator (2. 16) and to every iniernal line of a physical
particle with momentum p assign one of the functions S‘'/(p,l),
S(+)(p ) or 13( )(p) in accordance with Table IT.

+ o g W A RS s i 4 o ah a1 aseen 4




Ly
4) Mo each vertex of the disgram assign a factor - i?%; )
JIT

and a four-dimensicnal & ~funciion that gives the conservation
of the total four-momenium of the incoming and outgoing particles

and quasiparticles.

5) Integrate between infinite limits over all variables Rj

and over all the independent momenta among the vecotors p.

6) Repeat the operations 1) to 5) for all n' numberings of
the vertices-of the given diagram; zdd together thc expressions obiained
and multiply the result by-TF s Where h is the nunber of per~
mutations of the exiternal veriices appearing in the diagram in a
symmetrical way and 6p is the well-known sign factor. connected with
the parity of the permutations of the external nucleon and anti-

nucleon lines (see, for instance / 8 7 *¥,

Let us illusirate this procedure with several examples.

*) 411 the matrices acting on spinor indices have to be ordered in
a sequence from left to right, in the order in which they are
met, if one nhoves along the apinor line passing the antinucleon
lines in the direction of their orientation and the nucleon-in

the direction opposite to their orientation.

*%) The sign factor connected with closed spinor loops does not

appear in the present diagram technique.

-
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1) Scattering of nucleons and antinucleons in second order.
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The matrix element corresponding to the diagrams a), b)y ¢) and 4)

in Fig. 3 has the form:
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If we choose ths vector A,in accordance with (2.7),*)1:0 be:

BB YurGe

/\—- —— - e . (2 -17)
W A\ 2.
\'«Cfﬂ 'HPQ ) (Q At O‘(:,}
after some simple calculations we obtain;
T
ol —
k 27 g v, (.,e ’P“)P’“lo‘yu%l736> -
: (2.18)
2

3 A

\./"m"—t + .-5]- (;a-:re')f -’-‘i(a{-& R’ + \Wn"-l-@?\: + 34- (se- 6{')?7 - 4%

g A ‘. :
Fom w7 )
2 X-TQ5?+?H—*E ‘ g.ung *omiy )
a1 i“ﬁ,r—»\\; «r(":-f”fq TV """‘ o (8
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* It is easy ‘o sec that, due to the conservation law of fthe four-—
*,r

momentum, the collinearity of the vectors A and JERE
SRR

, . . B+ 1 91t 92
automatically leads to a collinsarity between —t . gnd 2L 2
A .
{r‘f;iv- "i) \f(%‘sqz)l

In other words, with our choice of A, the four-velocity of the

system is conserved even off the shell, (2.6).
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where

t s (p - y)
s, = (2 +p,)° (2.29)
2

Sq= (0‘1 +C_L2

" and

g’e’-{-\[—é‘:; = é€+\[—§; . . (2.20)

It is evident that on the energy-momentum shell, (2.6),-the
formula (2.18) gives the same result as the Feynman technique.

2) Some higher order graphs
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Tt is necessary to emphasize that since the theory developed
here is equivalent to the usual ons, the traditional 'ultra-violet”
divergences appear as they should. 3But an esseniial feature of this
approach is that these divergenoes pqcﬁr'only in one-dimensional
"digpersion-like" integrals over Mj’ which correspend to dotted lines.
‘A1l  the other integrals obtained from products of S(+) and z5(+)
funoctions are always convergent ZfQ;?. Because of this the removal
of the divergences in the proposéd gcheme is connected with a sube
traction procedure in the integrals over 'xﬁ ij;T. Further, ws

shall always suppose that it has been done in this way.

N
IIT. THE Q:U’ASIPO mmu .E.[C‘UA”IOJ

In this section We bhall cbtain, with the help of the preceding
diagram technique, an analogue of eq. (1.4) for the amplitude of the

elastic nucleon-antinucleon scatiering
¥ + N—X¥ + X (3.1)

and an analogue of edq. (1.3) for the wave function of the nucleon

antinucleon system.
First let us introduce some definitions.

1) We shallcall a diagram unconnected if it can be split

into paris which are not counected by physical pariicle lines. For

the opposite case we will call the diagram connected (for example, the
diagram b) in Fig. 4 is unconnected and all the others in the same

figure are connected).

2} Let us GhOOSe a definite time—direction, for instance from
right to left, and let ug correspondingly orient the free endsg of
the diggram desgcribing the process (3.1) off the energy-momentum
shell, (2.6). A connected diagram belonging to this class will de
called irreducible if it is impossible to separate it into two
conneoted subdiagrams, which are linked to each other by two spinor
llnes (a nucleon and an antinucleon), oriented from right to lef't,
and one dotted line oriented in the opposite direction. If such

=2 O




a soparatimcan be found, we will call the diagram reducible. For
examplo, all the diagrams in Fig. 1 and the &iagrams a), b), c), and
e) in Pig. 4 are irreducible, but the diagranms d) and £) are redusibie.
It is evident that all the connected diagrams ocan be built from ir-
reducible components. We will use this fact in writing the equation
for the scattering amplitude (compare this with the corresponding
procedure in the B-S forma.ism [1__7). |

Let

\/ C‘J‘m 8()‘“*'?4"?1 04~z N2 MV
\/ {4, V2,
V-(;quzpwlctw yi‘-a

; \
()ue,‘@.l,p,‘:m—thama&) =

(3.2)

@) 8(he's prrba 9= 0)

V 2?102}?1020‘”0 ZOLZ_O

—

AL V‘*ﬂ% B0 WL ) v G ()

be the matrix élement corresponding to the set of all irreducible
diagrams deseribing the process (3.1). (4ll the variables and indices

have the same meaning here as in the secona-orfer mairix element
(2.18).)

Let us aprec that we will draw V graphically as:
1% [ &
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Further, let

i

i

W)t (-raes Pat o~ Opr=Ga+ Aot ) -—\-- (e
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be the amplitude of the NN scattering off the shell, (2.6); i.e.,

the set of all connected diagrams corresponding to the process (3.1).

Then, taking into account the definition of irreducible diagranms,
we can write the following graphical equation:

Y‘\fﬁ: :\—K/ ‘ \k—ﬁ/"ﬁf\ |

’)'1
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which, according to the rules of our diagram teclnique, is equivalent

to the integral egquation
M4V

5( AP P m G %,*MC> T Mava (WHF«,’MW'U%FI/Q';

=50t propuqugur (E::.\f,,im,w?m!m‘,%%} +

-+ ‘_—_ S AR+ 42, L( —1< A .)e " H'[ U — .
@TT) Q ( 'F“— mhe Y (/Pﬁ ’LCC\/D (3.5)
<>‘ l K oU‘}( S() .
41 2f2 PP AK*’ 1 ) 4,9 \-41, )
A(+) ’/ | \ (,"\-d\—\ N
. DK;SZ\KQ)EM) WS 8&*)\)&4-}-,{11—K1 Vﬁ“o'tfz*'j\'\"{-]}

- . | . Ny /o .\u -
’ l S’lF/\‘)dZXl ()“c“:k\ikLlA&)%’t)a‘/z) U F‘ <OV,,D ,”# ( )
If we use the completeness condition (eq. (A.IO) and drop the

common 6—func'tio;1, expressing the conservation law Py * Py -~ AR a
ql +qy - R'a&:, then this eguation can be written in the form

E“l‘:( M)I\ae)?ﬂf\hmi)%qa{z) __,V(h a1 (}\x 117.1 t}x}ﬁ‘)ﬂv"a{x N
+ Z (Svgzzl(hx )FHP;L )‘\“EI)M)\()@/"()S M)o\.l‘ ) (3.5)
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Under the condition

>\_ g+ Pr, _ ’\4‘1 -fr\r:?__ - Aa+a B

! A
NS \ 3.7

7 N N
Nt ) \(G% OGRS

{oompare with 2.17) we can introduce the standard invariant variables

2
s, = (py +D,)

2
gk = (kl * kz)

s = (g +q,)
(3.8)
= (Pl - ql)z

2

ke

2
e = (2 =)

etc. I% is easily seen that the quantities (3.7) are connecied
by relations of the form

ok 1 -~ —_ ,,'3\: 3.5
\%S!{Sa{ + Uzq{ * L/qu/ - L{‘\" 3 (3.9)

whiok, on the energy-momentum shell, reduce to the well-knowm

equality:

s + t + u = 4&2.

If we now integrate over k2 and ®q in {(3.6) the expression in

the curly brackets takes the form:




4 A
- J— (3.10)
(2n) \s, (ae‘+ \fgk.——\fsq’._.i,&) '

As mentioned above, the paramefer ' is an auxiliary quantity
facilitating the Tw-invariance analysis of ‘the theory. Tor practical
calculations it is gufficient to congider only the case 22'= 0., In

this case (3.10) is equal to

A A = G°(k) (3.11)
3 — = \r«
@w) E(\}Sk _\J?%_M) K ’ ‘

or, using (3.8), .

o y
G%<k>=th

Sy o+ tkﬂ/"" Wigq - LM% i (3.12)

t is clear that the quantity G:(k)éfiq'aﬂsh in eq. (3.6) plays
the role of a free Green function of the two—parjicle systen
considered, and V is the quasipotential. Let us mention here that,
in whe scalar.case, the free Green funciion is also given by
eg. (3.12) /1.7, The complete analogy between egq. (3.6), when
W' = 0, and the soalar equation (1.4) becomes obvious after going

to the centre-~of-mass system in (3.6). Introducing the notation

p1=“32=p

3 =-q=3 " (3.23)
1?1=-1'£2=E
Ep::\jw,gka %2 Lt E = G
25—




and taking into account the equalities

2 Eq + 5 =20
(3.14)

we will have, instead of (3.6) %&

,\u.‘v,‘ = > “ b Bd
e @) = VT, (B335 «

‘itv‘t (3.15)
z Q-\/-(M‘h Ny ‘ Q1V1<\<
(ﬂw qu >{?;KF FE(CK‘E ”@

Thus the qua51potent1al equation for the scattering amplitude
for the oase of spinor particles differs from the equation in the
scalar cage only by the appearance of a trivial summation over the
intermediate spinor indices., The free Green  function is the same

in both cases.

By repeating literally the reasoning from ZT7_7} it is easy to
ghow that, in the case of real guasipotvential, the Nif=~scattering
amplitude satisfies the relativistio two-particle unitarity oondition.
This faot rofleots one of the basic idocas of the quasipetential

approach /[ 2 7.
. - It is convenient in the following to substitute the spinor
amplitudes v and V appearing in egs. (3.2) and (3.4) with their

charge—con jugated spinors Lf_and u’ s, which correspond to antinucleons

® In terms of the variables of (3.13), we see directly that the

Greon function G°(k) has the correct non-relativistic limit:

4 f‘
A

r\').—"\
g K)o 3 >
Vet AE (B-E e 2 (2w (¥*-gr-i)




and, afterwards, to pass to the {two-component zpinorg g;, 99*,
K, x* whose components correspond to sgtates with a given helicity
(see Appandix). FPinally we obtain (ithe polarization indices

are omitted in the lefi-~hand side)

:ﬁl |

—— _ o
ud oy %AJ ZP.‘I. ’u' .U-[%:, *‘4 X‘t’,’b 4‘4;’44; ‘(fz,) kg, kgk,‘ I oy

-(3.16)

el

o4

V,

o <o WU U, = . . . . o
x 4?4) LF&' 478 “q X“’z. ""‘uk'li"m\'{lk(kxxkz

AL

(02)[5:: 41’2\3‘1-{ ') tLi,,K_-:fI)z_\)_

It is easy to see that, taking into account (3.16) and also tke
completeness of the system of functions ¢ and X , eq. (3.15)

can be rewritten in the form

2

(3.17)
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N
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¥
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Let us define now the wave function of the Nl-system, corresponding

to the centinuous spectrunm, as

u(j / ___‘1.\ .—_. ~__~__ (.., — \ 2- N _?_ \6 i \/ .

\r’) - 4y Nty .
(3.18)
A e (= =2\ @
Ky Ak k?’%) C Ak




Subatituting (3.18) into (3.17) will give

WP, = G SR T v, -
(3.19)
1 ; A ¥ |
+ (. i) o
EP(EP E :{.‘L) G‘ﬁ) \ \<1+M2 \/"’434)4’,,}3_(’?;%1E¢‘)\T} \K} &
Ep(Ep-Eq) Y, (B
(3.20)

B Vg (BT EY (O,

Tho equation obiained here, {3.20), is the analogue of the
Schrodingsr equation for the NN system *) and can be used to find
the wave function corresponding to the continuous spectrum, as well

as for the bound state problems. The guasipotential V, (p;E;Eq),

i9d13 iada
as stated before, is defined as the set of all irreducible

diagrams corresponding to the NN-scattering off the energy-momentunm
Shell, (2 .6)0 |

IV THE SPIN STRUCTURES OF THE QUASIPOTENTIAL

In the present section we will consider the problem of spin
structures which the quasipotential for the Nﬁ-system can have in

the general oase.

When %'# O, in the centre-~of-~-mass system, the guasipotential
1 ¥ 1 q

oan be written in the form of a 4 @ 4 matrix (compare with(3.20))

..\ )
% e wigh to point out the ocompleie analogy between (3.20) and (1.3).
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. , , -7 1'\42 -
\/*‘Akﬁ*’z\‘z(&&)? I\Ot)ov> (4.1)
(4:‘\»( = ’1)2,)

The matrix (4.1) must be invariant with respect to space rotations,
space reflections, oharge conjugation and time reversal. Let us
introduce:in the three-dimensional P-space a system of orthogonal

wit vectors, ¥
b= 2 (§+9)
™= Jﬂ/ﬂw(gx%)

m o= ./%, [(ﬁf?ﬂ)x(ﬁx@)}

The system (4.2) on the energy shell (EP = Eq) is transformed into
the familiar basis:

(4.2)

Kt >

o= 5 B+

\ e

- & FxD (4.3)
n

= 1. >
m e = (3 -q)

Lot us write, with the help of the Pauli matrices, z basis in the

space of the 4 @ 4 matrices to which the operator(4.l)belongs:

H 3 (2‘) l

*® The guantities ¥, , N, and N are normalization factors,i.e.,

for example,l, = g+ ), etc.

26—




Here tho index (i) corresponds to the spin space of the nucleon
(2) to the spin space of the antinucleon.
Reaszoning in the usual manner, we conclude That the requirement

of invariance, with Tespect to space rotations and reflections, allows

oniy quasipotential with the following ziructure;

P Ay : N woe s
TR T 7@ T \ | AE© % AT g
\’ = \"." R -+ \J] L@ ’VL‘ @ + L (Y PR reed K
4 - & 4
7 > =z
1) e 0.2 —r{) . —(2)
-+ \/’—f V".G'(‘)\ZD ‘CU’O + \,/5 eV @ W + .
(4.5)
-» = -5 f’ ‘"’>"")
520 o 7w LV, e @ @A
+ VQ SERMECASTASIEE S € Wit
4
+ T Y B U ,
wnore Vo, .es 78 are, in general, complex scalar funeitions of
the veciors P, © , and the paramciers € and w' . Taking into
accounts the comservaticn law,
22+ ® =28+ ®
D q
we can write thoas functions in the foxm
V (“ﬁca, E + E [} '}e + 'A'e- [ E e )
X P q b q
(4£.6)

The invariance of the thecry with respect 1o charge conjugation
in the case of the lil-system means simply a symmetry of the potential
(4.4) with respect to permutation of the indices (1) and (2). TFrom
this it follows that

~

—




Vv, =Ty
(4.7)

V., =7V

6 7
and therefore (4.5) takes the form

/ z - @\
Vo V1% 1% V(1% 5eo , mewel”)

-

PV mEOEREO + V, (30 159 . (4:8)

- -
_ P R R =L I
+ \/5 ’?;L.-Q:'@)@“‘SL‘E‘"Q) + \/QKQ‘.U‘L)@) T+ g *(3'92@9 .

Let us consider now the condition implied by the T-invariance.
It is easy to show that the weak {Wigner) time reversal T, leads
to the following transformation of the matrix slements of the
operator R(A ¢ , A¥'); '

- Ry

NPT NCHET \ R(XaQ)Xaﬁ' \5;4)071 )a(zﬁ"z g T

(4.9)
e S BT ) | IR -2 .y |
IQQU")_G:I)"Q/Z)#G_.Z) \R\XX)XA{)\_/\Pq)—'oﬁ,l)__/(jl)_g‘l)-'> 9

where o34 &y 5 ... are the values of the helicities of the nucleons
and antinucleons and ¥

¥ Daking into account (4.9) and (4.10), it can bo said that, uader
time reversal, the quasiparticle in the "initial state" turns in-
to aquasiparticle in the "final state'" with a change in sign

of its three-momentum,.

Let us also note that, if the vecto’x\‘ A is ‘chosen in accordance
with (3.7), the transformation A — A in (4.9) is autonatically
parformed.

~31-
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‘1
P
g
(=]
!
Ty
AN

(4.10)

The quasipotential transforms similarly to (4.9); and this is
the reason why, in the case of time-reversal invariance of the theory,
a new restriction appsars: +the quasipotential must not be changed under

the simultaneocus transformations

—_

- = N —»
P—==9 v - =P
h=>-T, , -0 {4.11)

2 —s 'y a > e

With the help of (4.2) it is easy to verify that, under the

transformation (4.11),

Y -
{ -7
p g
W - (4.12)
From (4.12) and (4.11) we find that the term
0G0 @ w7 L T [T (4.13)

s odd with respect to time~reversal, while the other siruciures in

~~

4.8) do not change wnder this transformation. Hence the quantity

Vg(3.9 B, + By % + ¥, B ~E ) nust be an odd function of its last

P
arpunment and Vl’ V2, V3, V4 and V5, gorrespondingly, must be even

m

fuactions of E_ - E , Dvidently, on the shell, Z_ =2 ,
b q b

ool the potontial contains only five indepentent spin-struciures.
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Tnese results are in complete agreement with those of the
authors of /10 10/ and /1] 11/, where the structure of the nucleon-nucleon

potential in the non-relativistic case has deen analysed (see also ZTJT)

For illustirative purposes we now salculate the quasipotential to
second order in g. It is evident that here we can use formula (2. 18),
as the only irreducible diagrams of second order are the clagrams
aj, b), c) and d) in Pig. 3. After some simple calcoulations, we Tind
the following expressions for the quantities Vi from (4.8). (The index (2)

shows that quantities of second order are conaiderel.),

o ol
3+l
Vva_ @) - A+
A - \/'6 = - %\/ ’\'}Paavo P \ %
¥+ 32 S
‘ — -;-W'L\ (/\Da-i’@vo}

\"2 Y,

Y
lr A ] ) 3
o N (p-ad e Moer™) 23, RV
! | NN 2T Y Gy
"Y‘n—bl,q"t' Ii_\dc ®’) k 7 -l-vm —lea ¥ =t i
(4.14)
\
2’ / /g ,l| \\;\f
\ - o 2T NS S e e g
\/L'.)" o ,’Vm I—fp “q: - ,»_,'3(} _%\‘.Ap.,H i)\a,_,p+M) \ PQ.LM ow.;.M/' . \/ (2} L
5 4 s 3! o W !
1 f\ al M 1 2 i_ &t’}'{-\ b
P““ {%*q&*“‘* ( z ¥ \[m - Tpq, + 17_) J

N n g —

. A\ e 4 . 1 I/
A QN ( f‘)o+ @(D-r-z ; 'L POTM)(G C+P’) P g, | iL ‘P @Vz’{f?'%)zj &;‘Po -

(GM)aﬁa / 4 uisgrse
\P k m— Pq/‘i" (*"’ )&‘) 1 T ?\‘I’W\ i, L(},{—}Q;)k,

1 ‘l"

W

. (2 .
oo functvilion V% ) is obv1ously an*-sywwetr ¢ with respect to the

?
transformation p — Qs while V\ZJ ’ \2) s V( 2) V€2) and VKE)
0 2 3 4 i 5

are invariant wnder this transfomnation.

In the Ligher order terms of the perturbation series the T-odd
structure appears as well. IFor cxample, the irreducible diagram shown

(4,

in Fig. 4g gives the following contribution in V6




_ __{__ q Qq % 0:\\\7(1-1 .‘.‘;\.;’{2-___ ___%\__.jc—’-}-—- A(_F)
QZﬁ)s 4 j?" ° Wamal Hy=AL ¥z—4T

| A(*J<>~aa—>~e€4~kac3-kx3+% 4 q/l_{_k) A—: (Mc,‘—%x—c%— \4) | ( )
| - (4.15)

J

{(+) y . > —E f‘é’ —N 7 7?\(—9;-—» |
i ()\xa-)\x: ..)?1-\<) ,[\a-. )\ 'WJ‘*QO-U A~/

where A is determined by eq. (3.7), A(E)(P} = 5’(170) 6(p2 - Mg),

—_ P
and the vectors & and © are egual to

-——‘p -
LI 2
= ~ 3 -
Yo (ot ) (4.26)
- 7 s

[ k/P > '
1L = /‘P-—\(
’P“(’F&""M)

It is easy to verify that, under the transformation (4.11)-(4.12),
ihe expression {4.15) changes sign.

To conclude this section we write the spin structures of the

quasipotential (3.2) in & Lorentz covariant form:

V - F« 1m® @ +Fz(l;/—@)®' 1&1 . 1@)@ %(z)) -

o ! W 20 i . A / e .
¥ ~—\\’/f ®§1 . .q\t_{lfsm j@(\sg@iﬁ J i+
v FowWey® 4 b ‘ 5D \l-lfl)\"‘: oy V\W@ u,iz;:l

3l




-t = —é(pl + Q‘l)
(4.18)
X o= (e, + ay)
Tre quantities P, (i = 1,2, ..., §) are invariant functions of the
type '
P.o= ' ! & - N { . M
Py Fi(tp BENE ® + Sy sg) (4.19)
The first five

spin-structures in (4.7) are T-even, and so their
coefficients F must be even funciions of
function F6 is

the last argument The
maltiplied by a T-odd structure and hence it must be
an odd function of g ~ Sq- Cbviously F6 = O when s_ = g

p. Tq’
Tre decomposition (4.17) can be obtained using the well-known
reasoning describved, for instance, in £i§7
convenient to choo

In our case it is

the veoctor basis in the four-dimen
p~space in ithe form:

sional
L= 2(py + agy )

K= 52, + Ay )

M 2u 2,u
¥ - xa LooM ( (4.20)
Al'{ = /UUCIG' - 10 C' CP

r

£ = E o~ L M N *
iy MV 0T =y P o
V. CONCLUSION

Ag alrecady mentioned, the quasipotential eguations we
have obitained ffor the NI =

ystem are completely analomous %o
corresponding scalar equaticas (1.3) and (1.4). In both cases
free Green function is the same and all the sgpecific featur
intreduced by the spin

tures
appear only in the structure of the quasi-
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potential. Therefore, the situation here is the same as in the none
relativistic odse where the free Haniltorian is a scalar in the spin

space and only the interaction terms are spin dependent.

In connection with this fact, it is tempiing to try to apply
our approach to z relativistic formulation of the higher symmotries,
for instance SU(6), where the invariance of the free equations with
raspect to proper spin transformations is highly desiredbls. Then,
one of the interesting questions ﬁhich can arise is: whai mustrbe
the form of the inijbia.l interaction Hamiltonian H(x)_in order that
the quasi=potential built up from H(x) by using our procedurs would

be approximately SU(6) invariani?
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APPENDIX

In this part of fthe paper, information about the symbols,

notations and normalizations used above. is collected.

I. Hetric

gel!

-q

Pg = P q ~

II. Field eguations, Fourier decompositions and quantization

1) ZPseudoscalar field

(@3- W) €= 0 5wt

rd

\%(‘a)emxot"k _

Y (%) =

Gy

L¥ -Akx —9 (A l)

4 ‘ i I< g -

= __..? . o (k) R g o\ r(' J | .
C‘_'ﬂ') ) \Q @W)/z_ \J—“z lK (‘()

& -
AN %O(X)

where

1
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~5F
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N
|
[t}
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/‘r\%\
I\ ’
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>

(4.2)
b) Pairing of two (P—operators:
sl s ol LN oA S 4\L+”‘rré,<’\
N LK) YlL4) = ol krk) 4 LK) )=
(4’;.-3)
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whers

- . AT, , f=> ==y
‘i%r(%% Oy \oj/>j+= g(‘"gkqfov -

b) Pairings of iwo spinor operators

Y ()T, = S ) oo (M) =
? ’ o o (4.7)
- g("v*f’) 9(/59°>(7‘;5+ M Gﬁ(‘/p”‘—.wj

(4.8)

25 (p o) M) 5674,

whore ‘
CP(/P\) = \\/ﬂ(—/@ X"’

¢) Normalizatica and orthogonality relations and completeness
conditiong for the spinors u and v

(4.9)
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(=12 T qf - \fz d 'FO\
- =N/ K e (A.IO)
US(OT/) u_fé\a‘i) = Cﬁ/"‘v‘/\‘«ﬁc{ \
(u(:'l,)?. : E 7
where
T/ T U0 A SN e
U(3) = vy, wig)= iy

d) Explicit form of W and V in terms of two-component

unantities -
e [ )
’Uv(%)“-’ %O*M > xe | (4.11)
c\/o-rM /
— -
/ T e \g
( )"\l%w’\ 9™ (4.12)
s
-3
1 Y .\“s gi \ ' . :
where i =, (P and §= / are the spin wave functions
\ 2/ gz _ '
normalized to wnity.
e) Charge~coniusated spinors
-
wt = LCUF (4.13)
— Ol ke
e = v (C ) |
o 2 - \\\

il

. / ¢
] 0’3_ ,' C o -~ oG
+oNg :
C \ﬂo\él \ [ ....; o O {
. o




The wave functions uw®(q) can algo be written in the form:

¢ — A
-7 H
'VVKAO:D = Va%+M A
( S (4.14)
.._-——w-“-'“\}/
\ QH‘T‘ o FAY
]‘, L

/ T
A= \\§+ O}J . (4.15)
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