REFERENCE
international atomic energy agency

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

ON A RELATIVISTIC QUASIPOTENTIAL EQUATION IN THE CASE OF PARTICLES WITH SPIN

V. G. KADYSHEVSKY
AND
M. D. MATEEV

v:

-

V.G. Kadyshevsky *
and
M.D. Mateev ***

TRIESTE
September 1967

* To be submitted to Nuovo Cimento.
** On leave of absence from Joint Institute for Nuclear Researoh, Duona, USSR.
*** On leave of absence from University of Sofia, Bulgaria.

ABSTRACT

Quasipotential equations are constmucted for the reiativistic soattering amplitude and the wave function of two interacting partioles with spin $\frac{7}{2}$. This is done with the help of specific oovariant extrapolation of the scattering amplitude off-the-energy-momentum shell. Suitable diagram techniques are developed. The quasipotential is defined as a sum of "irreduciole" diagrams. The free part of the wave equation is spin independent and all features connected with spin appear in the interaction (quasipotential). The apin structure of the quasipotential is investigated.

INTRODUCTION

In quantum field theory the system of two interacting particles can be described in the framework of the relativistic invariant BetheSalpeter formalism [1]. However, as is well know, the Bethe-Salpeter wave function has two time variables and hence cannot be interpreted in the usual quantum mechanical sense as the probability amplitude for finding the system in a definite state. For this reason the question of its normalization is not at all trivial; and, up to now, a complete understanding of this feature has not been achieved.

Several years ago Logunov and Tavkhelidze developed the quasipotential approach to the problem of the interaction of two relativistic particles [2]. The wave function which they introduced is a natural generalization of the non -relativistic one since it is a function of only one time variable and satisfies a Schrodinger type equation. For interacting scalar particles with equal masses in the centre-of-mass system, the quasipotential equation in momentum space can be written in the form:

$$
\left(\vec{p}^{2}-\vec{q}^{2}\right) \Psi_{q}(\vec{p})=\frac{1}{4(2 \pi)^{3}} \frac{1}{\sqrt{\vec{p}^{2}+M^{2}}} \int V\left(\vec{p}, \vec{k} ; E_{q}\right) \Psi_{q}(\vec{k}) d \vec{k}_{(1.1)}
$$

The "quasipotential" $V\left(\vec{p}, \vec{k} ; \mathbb{E}_{q}\right)$ (in general a complex quantity) can be built acoording to $[2]$ with the help of perturbation theory. This can be done in two different ways either by using the two-time Green function of the system or with the help of the scattering amplitude on the mass shell. In the formalism of Logunov and Tavkhelidze there is an equation of the Lippman-Sohwinger type for the off-the-enercyshell soattering amplitude:

$$
\begin{equation*}
T(\overrightarrow{0}, \vec{q})=V\left(\vec{p}, \vec{q} ; E_{q}\right)+\frac{1}{4(2 \pi)^{3}}\left(V\left(\vec{p}, \vec{k} ; E_{q}\right) \frac{d \vec{k}}{\sqrt{\vec{k}+M^{2}}} \frac{T(\vec{k}, \vec{q})}{k^{2}-q^{2}-i \dot{z}}\right. \tag{1.2}
\end{equation*}
$$

It is important to stress that the integration on the right -hand sides of eqs. (1.1) and (1.2) is performed over a three-dimensional manifold, while in the corresponding Bethe-Salpeter equations there is integration over the four-dimenaional momentum of the virtual particle.

The quasipotential method can be successfully applied to the solution of the problem of scattering and bound states for any particles independently of their concrete nature $[3],[4]$. However, in the case of particles with spin, certain specific complications arise in the construction of the quasipotential. They are connected with the fact that the two-time, bare, free Green function for a system of two spinor particles is a singular matrix. In Ref. [4] this difficulty is avoided by projecting the quasipotential equation onto the subspace of the spinors corresponding to positive energies, the quasipotential being built with the help of the on-mass-shell scattering amplitude. The problem of constructing the quasipotential in the spinor case using the two-time Green function has been discussed in detail in Ref. [5].

The purpose of this work is the construction of quasipotential equations of the type (1.1) and (1.2) for the case of particles with spin using a method which is not connected with the usual Green function apparatus and the Bethe-Salpeter formalism. In this method [6], whioh is a covariant formulation of "oldfashioned" perturbation theory, all the particles in the initial, intermediate and final states are on the mass shell and have positive energies; but, due to the presence of specific spurions (we will call them "quasipartioles"), the total four-momentum of the system is not conserved. It can be said that this approach is an alternative to the usual Feynman perturbation theory. Indeed, in the first case, we always have $p^{2}=m^{2}, p_{0}>0$; and, in general, the four-momentum is not conserved;

$$
\sum p_{i}-\sum q_{k} \neq 0 .
$$

In the second case the four-momentum is conserved;

$$
\sum p_{i}-\sum q_{k}=0
$$

but, in general, $p^{2} \neq \mathrm{m}^{2}$ and $\mathrm{p}_{0} \gtrless 0$.
In [7], with the help of the diagram teoknique from $[6]$, equations of the same type as (1.1) and (1.2) have been obtained:

$$
\begin{equation*}
E_{p}\left(E_{p}-E_{q}\right) \Psi_{q}(\vec{p})=\frac{1}{(4 \pi)^{3}}\left(V\left(\vec{p} \vec{k} ; E_{q}\right) \frac{d \vec{k}}{\sqrt{\vec{k}^{2}+m^{2}}} U_{q}(\vec{k})\right. \tag{1.3}
\end{equation*}
$$

and

$$
\begin{align*}
& T(\vec{p}, q)=V\left(\vec{p}, \vec{q} ; E_{q}\right)+\frac{1}{(4 \pi)^{3}}\left(V\left(\vec{p}, \vec{k} ; E_{q}\right) \frac{2 \vec{k}}{\sqrt{k^{2}+m^{2}} \frac{T(\vec{p}, \vec{q})}{E_{k}\left(E_{k}-E_{0}-i \vec{b}\right)}}\right. \tag{1.4}\\
& \left(E_{q}=\sqrt{\vec{q}^{2}+M^{2}}, E_{k}=\sqrt{\vec{k}+m^{2}}\right) .
\end{align*}
$$

The quasipotential $V\left(\vec{p}, \vec{q} ; I_{q}\right)$ has been built with the help of special kinds of irreducible diagrams (compare with the Bethe-Salpeter formalism (1]).

In the following we shall show that a similar procedure can be directly applied in the spinor case and we shall find the corresponding analogues of eqs. (1.3) and (1.4).

Special attention will be paid to the question of the spin structure of the quasipotential (Sec. IV). For simplicity and to avoid superfluous references to the solar case, in Sec. III we shall formulate in detail the diagram technique $[6,7]$. As a concrete model of the interaction the pseudoscalar coupling is chosen:

$$
\begin{equation*}
H_{\text {int }}=g: \bar{\psi}(x) \gamma_{5} \psi(x) \varphi(x): \tag{1.5}
\end{equation*}
$$

where one may consider that the spinor field $\psi(x)$ describes nucleons and antinucleons with mass M, while $\varphi(x)$ corresponds to pseudoscalar mesons with mass m.
II. DIAGRAM DECGNIQUR

Let

$$
\begin{equation*}
\tilde{H}(p)=\int e^{-i p x} H(x) \alpha^{4} x \tag{2.1}
\end{equation*}
$$

be the four-dimensional Fourier-transform of the interaction Hamiltonian (2.5), and

$$
\begin{equation*}
S=I+i R \tag{2.2}
\end{equation*}
$$

be the scattering matrix corresponding to this interaction. Then according to $[6,7]$,

$$
\begin{equation*}
R=R(0,0)=\left.R\left(\lambda x, \lambda x^{\prime}\right)\right|_{x=x^{\prime}=0} \tag{2.3}
\end{equation*}
$$

where the operator $R\left(\lambda x, \lambda x x^{\prime}\right)$ is determined from the equation *)
$R\left(\lambda x, \lambda x^{\prime}\right)=-\tilde{H}\left(\lambda x-\lambda x^{\prime}\right)-\frac{1}{2 \pi} \int \tilde{H}\left(\lambda x-\lambda x_{1}\right) \frac{d x_{1}}{\partial x_{1}-i \varepsilon} R\left(\lambda x_{1}, \lambda x^{\prime}\right)$.
*) It is evident that from the very beginning, we could put $X^{\prime}=0$ and use, instead of (2.4), the equation
$R\left(\lambda x_{1}, 0\right)=-\tilde{H}(\lambda x)-\frac{1}{2 \pi}\left(\tilde{H}\left(\lambda x-\lambda x_{1}\right) \frac{d x_{1}}{x_{1}-i \varepsilon} R\left(\lambda x_{1}, O\right)\right.$.

However we will need the matrix $\bar{R}(\lambda \mu, \lambda \lambda)$ for the analysis of the T-invariance of the scattering amplitude (Sec. IV), and this is why we shall make all further considerations on the basis of eq. (2.4).

$$
-5-
$$

Tho quantity λ, appearing in these formulae, is a four-vootor with the property that

$$
\begin{equation*}
\lambda^{2}=1, \lambda_{0}>0 \tag{2.5}
\end{equation*}
$$

and $\mathscr{X}, \mathscr{H}_{1}$ and \mathscr{X}^{\prime} are one-dimensional invariant parameters.
From (2.3) it follows that on the surface

$$
\begin{equation*}
x=x^{\prime}=0 \tag{2.6}
\end{equation*}
$$

Which we shall call the energy-momentum shell, the matrix elements of the operator $R\left(\lambda, \lambda x^{\prime}\right)$ must be independent of the direction of $\lambda{ }^{*}$). Therefore the vector λ, with the properties (2.5), can be chosen in a completely arbitrary way, for example, as

$$
\begin{equation*}
\lambda \sim P, \tag{2.7}
\end{equation*}
$$

Where P is the total four-momentum of the system.
To first order in the ooupling constant we have

$$
\begin{align*}
& R_{1}\left(\lambda x, \lambda x^{\prime}\right)=-\tilde{H}\left(\lambda x-\lambda x^{\prime}\right)= \\
&=-\int e^{-i \lambda\left(x-x^{\prime}\right) x} \cdot \tag{2.8}\\
& g: \Psi(x) \psi(x) \varphi(x): d x=
\end{align*}
$$

$$
=-\frac{q}{\sqrt{2 \pi}} \int \delta\left(\lambda_{x-\lambda} x^{\prime}-p-q-k\right): \bar{\psi}(p) \psi(q) \varphi(k): d p d q, d k
$$

*) This fact is a corollary from the locality of the operator $H(x)[6]:$

$$
[H(x), H(y)]=0 \quad \text { for } \quad(x-y)^{2}<0
$$

(the Fourier decompositions of the operators $\vec{\psi}(x), \psi(x)$ and $\varphi(x)$ are given in the Appendix-eqs. (A.1), (A.5) and (A.5)). Eq. (2.8) is tho sum of eight normal products:

$$
\begin{align*}
& R_{1}(\lambda x-\lambda x)= \\
& =-g\left(e ^ { - \lambda (x - 2 e ^ { \lambda }) x } d x \left\{: \bar{\psi}(\hat{x}) \gamma_{5} \psi_{(x)}^{(+)} \varphi^{(t)}(x):+: \bar{\psi}(x) \gamma_{5}^{(-)} \psi^{(-)}(x) \varphi^{(t)}(x):+\right.\right. \\
& \left.+: \bar{\psi}^{(+)}(x) \gamma_{5} \psi^{(-)}\right)^{(+)}(x):+: \bar{\psi}^{(-)}(x) \gamma_{5} \psi^{(+)}(x) \varphi^{(+)}(x):+ \\
& +: \bar{\psi}^{(+)}(x) \gamma_{5} \psi^{(+)}(x)^{\varphi}(x):+i \bar{\psi}^{(-)}(x) \gamma_{5} \psi^{(-)}(x) \varphi^{(-)}(x):+ \tag{2.9}\\
& \left.+: \bar{\psi}^{(t)}(x) \gamma_{5} \psi^{(-)}(x) \varphi^{(-)}(x):+: \bar{\psi}^{(-)}(x) \gamma_{5} \psi^{(t)}(x) \varphi^{(-)}(x):\right\} \equiv \\
& \equiv \int e^{-i \lambda\left(x-x^{i}\right) x} d x \sum_{a=1}^{8} H_{a}(x)
\end{align*}
$$

By calculating matrix elements of (2.9) with normalized states (for normalization of states see Appendix - eqs. (A.9)), it can be seen that, for example, the operator

$$
0_{0} \int e^{-\lambda^{(}\left(\dot{a}-\partial e^{\prime}\right) x} H_{1}(x) d x=\int e^{-i \lambda\left(x-i x^{\prime}\right) x} d x: \psi(x) \psi_{5}^{(4)} \psi^{(i)}(x) \psi^{(+i)}(x):
$$

has a non-zero matrix element for the transition vacuum \rightarrow nucioon + antinucleon + meson:

$$
\begin{align*}
& \left\langle p_{1}, \mu_{1} ; p_{2}, \mu_{2} ; k\right| \int e^{-i \lambda\left(x-x^{\prime}\right) x} H_{1}(x) d x|0\rangle= \\
& =(2 \pi)^{q / 2} \frac{g}{\sqrt{2 \pi}} \delta\left(\lambda x-\lambda x^{1}-p_{1}-p_{2}-k\right) \frac{1}{\sqrt{2 p_{10} 2 p_{10} 2 k_{0}}} \tag{2.10}
\end{align*}
$$

- $\vec{u}^{\mu_{1}}\left(\vec{p}_{1}\right) \gamma_{5} v r^{\mu_{2}}\left(\dot{p}_{2}\right)$
and the operator

$$
\int e^{-\lambda\left(x-x^{\prime}\right) x} H_{7}(x) d x=g \int e^{-i \lambda\left(x-x^{\prime}\right) x}: \bar{\psi}^{(t)}(x) \gamma_{5} \psi^{(-)}(x) \varphi^{(-)}(x): d x
$$

gives a non-vanishing contribution to the amplitude for the process nucleon + meson \longrightarrow nucleon:

$$
\begin{align*}
& \langle p, \mu| \int e^{-i \lambda\left(x-x^{\prime}\right) x} H_{7}(x) d x|q, \nu ; k\rangle= \\
& =(2 \pi)^{q / 2} \cdot \frac{g}{\sqrt{2 \pi}} \delta\left(\lambda x-\lambda x^{\prime}-p+q+k\right) \frac{1}{\sqrt{2 p_{0} 2 q_{0} 2 k_{0}}} \tag{2:11}
\end{align*}
$$

- $\bar{u}^{\mu}(\vec{p}) \gamma_{5} u^{\nu}(\vec{q})$

Let us accept the following rules for the graphical description of the particles in the initial and final states.

Line	Partiole	State	Factor in the matrix element
$\ldots q^{\nu}$	nucleon	in	$\frac{(2 \pi)^{3 / 2}}{\sqrt{20_{0}}} u^{\nu}(\vec{q})$
$\underline{q, ~}$	antinucleon	in	$\frac{(2 \pi)^{3 / 2}}{\sqrt{2 q_{0}}} \bar{v}^{\nu}(\vec{q})$
monm	meson	in	$\frac{(2 \pi)^{3 / 2}}{\sqrt{2 k_{0}}}$
$\xrightarrow{p}{ }^{\mu}$	nuoleon	out	$\frac{(2 \pi)^{3 / 2}}{\sqrt{2 p_{0}}} \bar{u}^{\mu}(\vec{p})$
$\xrightarrow{\text { P, M }}$	antinucleon	out	$\frac{(2 \pi)^{3 / 2}}{\sqrt{2 p_{0}}} v^{\mu}(\vec{p})$
~~ぃ	meson	out	$\frac{(2 \pi)^{3 / 2}}{\sqrt{2 k_{0}}}$

-9-

Now the process (2.10) can be described by diagram a) in Fig. I where the spurion dotted lines, which oarry the fourmomenta $\lambda \gamma$ and λx^{\prime}, are introduced so that the conservation law, $\lambda x-\lambda x^{\prime}-p_{1}-p_{2}-k=0$, can be satisfied at the vertex.

a)

b)

Fig. 1

In a similar manner we construct the diagram of the process (2.11) (seo b) in Fig. 1).

In the x-representation as it follows from (2.10) and (2.11), the dotted lines (we will call them quasiparticies), correspond to plane waves of the form $e^{-i \lambda x x}$. Therefore the operator $\tilde{H}\left(\lambda x-\lambda x^{\prime \prime}\right)$ can be interproted also as an interaction of the fields ψ and φ with the plane wave.

When we iterate eq. (2.4), operator terms of the form

$$
\begin{align*}
& R_{n}\left(\lambda x_{1} \lambda x^{\prime}\right)= \\
& =\frac{(-1)^{n}}{(2 \pi)^{n-1}}\left(H^{\prime}\left(\lambda x_{1}-\lambda x_{1}\right) \frac{d x_{1}}{x_{1}-i \varepsilon} \cdots \frac{d x_{j-1}}{x_{j-1}-i \varepsilon} \widetilde{H}\left(\lambda x_{j-1}-\lambda x_{j}\right) \frac{d x_{j}}{x_{j}-i \varepsilon} \cdots\right. \tag{2.12}\\
& \cdots \frac{d x_{n-3}}{x_{n-1}-i \varepsilon} \widetilde{H}\left(\lambda x_{n-1}-\lambda x^{i}\right),
\end{align*}
$$

appear. This must be reduced to normal form. We shall assume that the Hamiltonians in (2.8) are numbered, with number one assigned to $\tilde{H}\left(\lambda x-\lambda x_{1}\right)$, number two to $\tilde{H}\left(\lambda x_{1}-\lambda x_{2}\right)$, etc., so that the number of the last operator $\widetilde{H}\left(\lambda x_{n-1}-\lambda x^{\prime}\right)$ is n. Further, to each of the operators $\bar{\psi}, \psi$ and φ is assigned the number of the Hamiltonian to which this operator belongs. Then, recognizing that the Hamiltonian II is already speoifiod in normal form, we can state that when $R_{n}\left(\lambda \mathscr{X}, \lambda \mathcal{X}^{\prime}\right)$ is reduced to normal form it is necessary to pair only the operators with different numbers. In the case considered here, due to the absence of chronological ordering in $R_{n}\left(\lambda x, \lambda x^{\prime}\right)$, the pairings have the form:

$$
\begin{align*}
& \underline{U}_{p}\left(q_{\gamma}\right) \bar{\psi}_{\alpha}(p)=S\left(q_{p}+p\right) \theta\left(p_{0}\right)\left(p^{\prime}+M\right)_{\beta \alpha}^{\prime} S\left(p^{2} M^{2}\right)= \\
& \equiv S(q+p) S_{3 \alpha}^{(+)}(p, M) \\
& \bar{\psi}_{x}(p)(q)=\bar{U}(p+q) \theta\left(q_{0}\right)(q-M)_{3 x} \bar{O}\left(q^{2}-M^{2}\right) \equiv \\
& \equiv \sigma\left(p+q_{i}\right) S_{\beta \alpha}^{(+)}\left(q,-v_{i}\right) \tag{2.14}
\end{align*}
$$

$$
\begin{align*}
Y(k) Q\left(k^{\prime}\right) & =\delta\left(k+k^{\prime}\right) G\left(k_{0}^{\prime}\right) \vec{c}\left(k^{\prime 2}-n^{2}\right) \equiv \tag{2.15}\\
& =\delta\left(k+k^{\prime}\right) \Delta^{(1)}\left(k^{\prime}\right)
\end{align*}
$$

It is easy to see that the argument of the functions $S^{(\dot{y}}$ and $\Delta^{\text {ty }}$ is the argument of those operators ψ and φ which are at the right aide of the pairing, ie., those which have a larger index number. The last oiroumstance determines the rule for the orientation of the lines in the graphical description of the pairings (2.13)-(2.15) (Table II).
-12-

Line	Particle	Pairing	Factor in the matrix element
$\stackrel{\sim}{r}$	nuoleon	$\underbrace{U_{\beta}\left(q_{i j}\right) \bar{U}_{\alpha}\left(p_{j}\right) ;}_{j^{\prime}<j}$	$S_{\beta \alpha^{\prime}}^{(t)}\left(p_{j}, M\right)$
\underline{j}	antinuoleon	$\bar{U}_{\alpha}\left(p_{i}\right) \psi_{\beta}\left(q_{i}{ }^{\prime}\right) ;$	$S_{3 \alpha}^{(t)}\left(q_{i,},-M\right)$
j^{\prime}	meson	$\underbrace{\varphi\left(k_{j}\right) \varphi\left(k_{j}\right)} ;$	$\Delta^{(t)}\left(k_{j}\right)$

The reason why the first pairing in Table II is made
to correspond to the nucleon and the second to the antinuoleon is, for example, the exact correspondence of these pairings to the contribution of the intermediate nucleon and antinuoleon one-particle states, in the unitarity conaition.

Beginning with the second-order terms in g in the ratrix element, it can be seen from (2.12) that there also appear factors of the form:

$$
\begin{equation*}
g_{0}\left(x_{j}\right)=\frac{1}{2 \pi} \frac{1}{x_{j}-i \varepsilon}\left(j_{g}=1, \ldots, n-1\right) \tag{2.16}
\end{equation*}
$$

which corresponds to a "virtual" quasiparticle with four-momentum λx; going out from the vertex with number j and coming into a vertex with number $j+1$. Graphioally we shall doscribe such a quasiparticle in the following way:

$$
\text { Fis. } 2
$$

How, taking into acoount Tables I and II, we can formulate in a general form the rules for construating the matrix elements in this formalism. These rules are as follows:
1). Draw the Feynman diagram (or a, set of diagrams) corresponding to the process considered and describe the Pree nucleon and antinucleon states in accordance with Table I. Number arbitrarily all the vertices and orient every intemal line in a direction from the larger to the smaller number. Thon, without chancing the orientation, change some of the single (nucloon) intermal lines to double (antinucleon) lines in such a way that the nucleon charge is conserved in every vertex. Assign to every internal line some momentum p.
2) Connect the firstrvertex to the second, the second to the third, the third to the fourth, etc., with dotted lines oriented in the direction of increasing numbers; and to every such line assign a foux-momentum λx_{j}, where $j=1,2, \ldots, n-1$ is the number of the vertex which the given dotted line leaves. Then join an incoming extermal dotted line with momentum λx to the first vertex and an outgoing extemal line with momenturn λx^{\prime} to the last vortex (with number n).
3) To each intermal dotted line with four-momentum λx_{j} assign a propagator (2.16) and to every internal line of a physical particle with momentum p assign one of the functions $S^{(+)}(p, r)$, $s^{(+)}(p,-\mathbb{N})$ or $\Delta^{(+)}(p)$ in accordance with Table II.
4) To each vertex of the diagram assign a factor $-\frac{9 \gamma_{5}}{\sqrt{2 \pi}}$ and a four-dimensional δ-function that gives the conservation of the total four-momentum of the incoming and outsoing particles and quasiparticles.
5) Integrate between infinite limits over all variables \mathcal{L}_{j} and over all the independent momenta among the vectors p.
6) Repeat the operations 1) to 5) for all n! numberings of the vertioes of the given diagram; add together the expressions obtained and multiply the result by $\frac{\delta_{p}}{h}$, where h is the mumber of permutations of the oxtermal vertices appearing in the diagram in a synmetrical way and δ_{p} is the weil-known sign factor cornected with the parity of the permutations of the extemal nuoleon and antinucleon lines (see, for instance [8]**).

Let us illustrate this procedure with several examples.

[^0]1) Soatterinc of nucieons and antinucleons in second oxder.

c)

d)

Fig. 3

The matrix element corresponding to the diagrams a), b), c) and d) in Fig. 3 has the form:

$$
\begin{aligned}
& T_{2}= \\
& =\frac{(-1)(2 \pi)^{\frac{3}{2} \cdot 4}\left(-\frac{g}{\sqrt{2 \pi}}\right)^{2}}{\sqrt{2 p_{10} 2 p_{20} 2 q_{10} 2 q_{20}}} \bar{u}^{\mu_{1}}\left(\vec{p}_{1}\right) \gamma_{5} u^{\nu_{1}}\left(\vec{q}_{1}\right) \cdot \bar{v}^{v_{2}}\left(\vec{q}_{q_{2}}\right) \gamma_{5} v^{\mu_{2}}\left(\vec{p}_{3}\right) . \\
& \cdot \frac{1}{2 \pi} \int d^{4} k_{2} \frac{\dot{d} x_{1}}{x_{1}-i \varepsilon} \Delta^{(+)}\left(k_{2}\right)\left[\delta\left(\lambda x+q_{p_{1}}+k_{2}-p_{1}-\lambda x_{1}\right) \delta\left(\lambda x_{1}+q_{12}-k_{2}-p_{\lambda}-\lambda x^{\prime}\right)+\right. \\
& \left.+\delta\left(\lambda x+q_{2}+k_{2}-p_{2}-\lambda x_{1}\right) \delta\left(\lambda x_{1}+q_{1}-k_{2}-p_{1}-\lambda x^{\prime}\right)\right]+.
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \frac{1}{2 \pi} \int d^{4} k_{2} \frac{d^{\prime} x_{1}}{x_{1}-i \varepsilon} \Delta^{(+)}\left(k_{2}\right)\left[\delta\left(\lambda x+k_{2}-p_{1}-p_{2}-\lambda x_{1}\right) \delta\left(\lambda x_{1}+q_{1}+q_{2}-k_{2}-\lambda x^{\prime}\right)+\right. \\
& +\delta\left(\lambda x+q_{11}+q_{12}+k_{2}-\lambda x_{1} g_{0}\left(\lambda x x_{1}-p_{1}-p_{2}-k_{2}-\lambda x^{\prime}\right)\right] \equiv \\
& \equiv(2 \pi)^{4} \frac{\delta\left(\lambda x^{1}+p_{1}+p_{2}-q_{1}-q_{22}-\lambda x^{2}\right)}{\sqrt{2 p_{10} 2 p_{2} 2 q_{10} 2 q_{20}}}\left(T_{2}\right)_{p_{2}, \nu_{2}}^{\mu_{1}, \nu_{1}}\left(\lambda x, p_{1,1}, p_{2} \mid q_{1,}, q_{2,2}, \lambda x^{1}\right) .
\end{aligned}
$$

If we choose the vector λ, in accordance with (2.7), *) to be:

$$
\begin{equation*}
\lambda=\frac{p_{1}+p_{2}}{\sqrt{\left(p_{1}+p_{2}\right)^{2}}}=\frac{q_{1}+q_{2}}{\sqrt{\left(q_{1}+q_{12}\right)^{2}}} \tag{2.17}
\end{equation*}
$$

after some simple calculations we obtain:

$$
\begin{align*}
& \left(T_{2}\right)_{\mu_{2} \nu_{2}}^{\mu_{1} \nu_{1}}\left(x^{\prime}, p_{1}, p_{2} \mid q_{1}, q_{2}, x\right)= \\
& =-\frac{g^{2}}{\sqrt{m^{2}-t+\frac{1}{4}\left(x-x^{\prime}\right)^{2}}} \cdot \frac{1}{\frac{1}{2}\left(x+x^{1}\right)+\sqrt{m^{2}-t+\frac{4}{4}\left(x-x^{\prime}\right)^{2}}-i \varepsilon} . \\
& \text { - } \bar{u}^{\mu_{1}}\left(\vec{p}_{1}\right) \gamma_{5} u^{\nu_{1}}\left(\vec{q}_{1}\right) \cdot \bar{v}^{\gamma_{2}}\left(\vec{q}_{2}\right) \gamma_{5} v^{\mu_{2}}\left(\vec{p}_{2}\right) \div \\
& +\frac{g^{2}}{2 m}\left(\frac{1}{x^{1}+\sqrt{s_{p}}+m-i \varepsilon}+\frac{i}{x-\sqrt{s_{p}}+m-i \varepsilon}\right) . \\
& \bar{u}^{\mu_{1}}\left(\vec{p}_{1}\right) y_{5} v^{\mu_{2}}\left(\vec{p}_{2}\right) \cdot \bar{v}^{v_{4}}\left(\vec{q}_{2}\right) y_{5} u^{\nu_{1}}\left(\vec{q}_{\hat{y}}\right)
\end{align*}
$$

*, It is easy to sec that, due to the conservation law of the fourmomentum, the collinearity of the vectors λ and $\frac{t_{1}+p_{2}}{\sqrt{\left(k_{1}+t_{2}\right)^{2}}}$ automatioaliy leads to a collinearity between $\frac{p_{1}+p_{1}}{\sqrt{\left(p_{1}+p_{2}\right)^{2}}}$ and $\frac{q_{1}+q_{2}}{\sqrt{\left(q_{1}+q_{2}\right)^{2}}}$ In other words, with our choice of λ, the four-velocity of the system is conserved even off the shell, (2.6).
where

$$
\begin{align*}
& t=\left(p_{1}-q_{1}\right)^{2} \\
& s_{p}=\left(p_{1}+p_{2}\right)^{2} \tag{2.19}\\
& s_{q}=\left(q_{1}+q_{2}\right)^{2}
\end{align*}
$$

and

$$
\begin{equation*}
x^{\prime}+\sqrt{S_{p}}=x+\sqrt{S_{0}} \tag{2.20}
\end{equation*}
$$

It is evident that on the energy-momentum shell, (2.6), the formula (2.18) gives the same result as the Feynman technique.
2) Some higher order graphs

a)

b)

c)
-18-

It is necessary to emphasize that since the theory developed here is equivalent to the usual one, the traditional "ultra-violet" divergences appear as they should. But an essential feature of this approach is that these divergenoes occur only in one-dimensional "dispersion-like" intograls over \mathscr{H}_{j}, which correspond to dotted lines. All the other integrals obtained from products of $S^{(+)}$and $\Delta^{(+)}$ funotions are always convergent $[9]$. Because of this the removal of the divergences in the proposed scheme is connected with a subtraction procedure in the integrals over $x_{j}[7]$. Further, we shall always suppose that it has been done in this way.

III. THE QUASIPOTMNTAL ROUATION

In this section we shall obtain, with the help of the preceding diagram technique, an analogue of eq. (1.4) for the amplitude of the elastic nucleon-antinucleon scattering

$$
\begin{equation*}
\mathrm{N}+\overline{\mathrm{N}} \longrightarrow \mathbb{N}+\overline{\mathrm{N}} \tag{3.1}
\end{equation*}
$$

and an analogue of eq. (1.3) for the wave function of the nucleonantinucleon system.

First let us introduco some definitions.

1) We shall cail a diagram uncomected if it can be split into parts which are not connected by physical particie innes. Fror the opposite case we will call the diagram connected (for example, the diagram h) in Fig. 4 is unconnected and all the others in the same figure are connected).
2) Let us choose a derinite time-direotion, for instance from right to left, and let us correspondingly orient the free ends of the diegram describing the process (3.1) off the energy-momentum shell, (2.6). A connected diagram belonging to this class will be called irreducible if it is impossible to separate it into two conneoted subdiagrams, which are linked to eack other by two spinor lines (a nucleon and an entinuclẹon), oriented from right to left, and one dotted line oriented in the opposite direction. If such
a soparationcan be found, we will call the diagram reducible. For examplo, all the diagrams in Fig. 1 and the diagrams a), b), c), and e) in Fig. 4 are irreducible, but the diagrams a) and f) are reducibie. It is evident that all the connected diagrams can be built from irreducible components. We will use this fact in vriting the equation for the scattering amplitude (compare this with the corresponding procedure in the B-S formainsm [I]).

Let
$V=\frac{(2 \pi)^{4} \delta\left(\lambda x^{1}+p_{1}+p_{2}-o_{11}-q_{22}-\lambda x_{2}\right)}{\sqrt{2 p_{10} 2 p_{20} 2 q_{10} 2 q_{20}}} V_{\mu_{2} \nu_{2}}^{\mu_{1} \nu_{1}}\left(\lambda x_{1} p_{1}, p_{2} \mid \lambda x_{11}, o_{11}, o_{12}\right)=$

$$
\begin{equation*}
=\frac{\left(2 \pi^{2} \delta\left(\lambda x^{4}-p_{1}+p_{2}-q_{1}-q_{2}-\lambda x\right)\right.}{\sqrt{2 p_{10} 2 p_{20} 2 q_{14} 2 q_{20}}} \tag{3.2}
\end{equation*}
$$

$$
\text { - } \bar{u}_{\alpha_{1}}^{\mu_{1}}\left(\vec{p}_{4}\right) \bar{v}_{\alpha_{2}}^{\nu_{2}}\left(\overrightarrow{q_{12}}\right) V_{\alpha_{1} \beta_{1} ; \alpha_{2} \beta_{2}}\left(\lambda \dot{x}, p_{1}, p_{2} \mid \lambda x^{\prime}, q_{1}, q_{2}\right) u_{\beta_{1}}^{\nu_{1}}\left(\vec{q}_{1}\right) v \beta_{\beta_{2}}^{\mu_{2}}\left(\vec{p}_{2}\right)
$$

be the matrix élement corresponding to the set of all irreducible diagrams describing the process (3.1). (All the variables and indices have the same meaning here as in the seconc-order matrix element (2.13).)
iet us acreo that we will draw V grapincaily as:

Further, let

$$
\begin{aligned}
& T= \\
& =\frac{(2 \pi)^{4} \delta\left(-\lambda x+p_{1}+p_{2}-q_{11}-q_{2}+\lambda x^{\prime}\right)}{\sqrt{2 p_{10} 2 p_{20} 2 q_{10} 2 q_{20}}} \prod_{\mu_{2} \nu_{2}}^{\mu_{1} \nu_{1}}\left(\lambda x, p_{1}, p_{2} \mid \lambda x^{\prime}, q_{1}, q_{2}\right)= \\
& =\frac{(2 \pi)^{y} \delta\left(-\lambda x+p_{1}+p_{2}-q_{11}-a_{42}+\lambda x^{\prime}\right)}{\sqrt{2 p_{10} 2 p_{20} 2 q_{10} 2 q_{120}}} . \\
& \cdot \bar{u}_{\alpha_{1}}^{\mu_{1}}\left(\vec{p}_{1}\right) \bar{v}_{\alpha_{2}}^{\mu_{2}}\left(\vec{q}_{2}\right) T_{\alpha_{1} \beta_{1} ; \alpha_{2} \beta_{2}}\left(\lambda x, p_{1}, p_{2} \mid \lambda \not x^{\prime}, q_{1}, q_{2}\right) u_{\beta_{1}}^{\nu_{1}}\left(\vec{q}_{1}\right) v_{\beta_{2}}^{\mu_{2}}\left(\vec{p}_{2}\right)
\end{aligned}
$$

be the amplitude of the NN scattering off the shell, (2.6); ie., the set of all connected diagrams corresponding to the process (3.1).

Then, taking into account the definition of irreducible diagrams, we can write the following graphical equation:

which, according to the rules of our diagram technique, is equivalent to the integral equation

$$
\begin{align*}
& \delta\left(-\lambda x+p_{1}+p_{2}-q_{1}-q_{2}+\lambda x^{\prime}\right) T{ }_{\mu_{2} \nu_{2}}^{\mu_{1}}\left(\lambda x, p_{1}, p_{2} \mid \lambda x^{1}, q_{1}, q_{2}\right)= \\
& =\delta\left(-\lambda x+p_{1}+p_{2}-q_{1}-q_{2}+\lambda x^{\prime}\right) V_{\mu_{2} \nu_{2}}^{\mu_{1} \nu_{1}}\left(\lambda x, p_{1}, p_{2} \mid \lambda x^{\prime}, q_{1}, q_{2}\right) \cdot+ \\
& +\frac{1}{(2 \pi)^{2}} \int \delta\left(-\lambda x+p_{1}+p_{2}-k_{1}-k_{2}+\lambda x_{1}\right) \bar{u}_{\alpha_{1}}^{\mu_{1}}\left(\vec{p}_{1}\right) \bar{v}_{\alpha_{2}}^{\nu_{2}}\left(\vec{q}_{2}\right) . \tag{3.5}\\
& \text { - } V_{\alpha_{1} y_{1}, \delta_{2} \beta_{2}}\left(\lambda x, p_{1}, p_{2} \mid \lambda x_{1}, k_{1}, k_{2}\right) d^{4} k_{1} a^{4} k_{2} \int_{\delta_{1} \delta_{1}}^{(+)}\left(k_{1}, M\right) . \\
& \cdot S_{\gamma_{2} \delta_{2}}^{(+)}\left(k_{2}-M\right) \frac{\lambda x_{1}}{2 \pi\left(x_{1}-i \delta\right)} \delta\left(-\lambda x_{1}+k_{1}+k_{2}-q_{1}-q_{12}+\lambda x^{\prime}\right) . \\
& \cdot T \delta_{1} \beta_{1} ; \alpha_{2} \gamma_{2}\left(\lambda x_{1}, k_{1}, k_{2} \mid \lambda x^{\prime}, q_{1}, q_{2}\right) u_{\beta_{1}}^{\nu_{1}}\left(\vec{q}_{1}\right) v_{\beta_{2}}^{\alpha_{2}}\left(\vec{p}_{2}\right)
\end{align*}
$$

If we use the completeness condition (eq. (A.10) and drop the common $\delta-f$ unction, expressing the conservation law $p_{1}+p_{2}-\lambda x=$ $q_{1}+q_{2}-\lambda x^{\prime}$, then this equation can be writer in the form:

$$
\begin{align*}
& \prod_{\mu_{2} \nu_{2}}^{\mu_{1} \nu_{1}}\left(\lambda, x, p_{1}, p_{2} \mid \lambda x e^{\prime}, q_{1}, q_{2}\right)=\sqrt{\mu_{2} \nu_{2}} \mu_{1} \nu_{1}\left(\lambda x, p_{1}, p_{2} \mid \lambda x^{\prime}, q_{1}, q_{12}\right)+ \\
& +\sum_{\varsigma_{1} g_{2}} \int V_{\mu_{2} \xi_{2}}^{\mu_{1} \varphi_{1}}\left(\lambda x, p_{1}, p_{2} \mid \lambda x_{1}, k_{1}, k_{2}\right) \theta\left(k_{1}^{0}\right) \delta\left(k_{1}^{2}-M^{2}\right) d^{4} k_{1} \text {. } \tag{3.6}\\
& \cdot\left\{\frac{1}{(2 \pi)^{3}} \frac{\theta\left(k_{2}^{0}\right) \delta\left(k_{2}^{2}-M^{2}\right)}{x_{1}-i_{2}} \tilde{\delta}\left(-\lambda x_{1}+k_{1}, k_{2}-q_{1}-0_{12}+\lambda x^{\prime}\right)\right\} a^{4} k_{2} a_{x_{1}} . \\
& =\left[\begin{array}{l}
\rho_{1} \nu_{1} \\
\rho_{2} \nu_{2}
\end{array}\left(\lambda x_{1}, k_{1}, k_{2} \mid \lambda x^{3}, q_{1}, \sigma_{i 2}\right) .\right.
\end{align*}
$$

Under the condition

$$
\begin{equation*}
\lambda=\frac{p_{1}+p_{2}}{\sqrt{\left(p_{1}+p_{2}\right)^{2}}}=\frac{k_{1}+k_{2}}{\sqrt{\left(k_{1}+k_{2}\right)^{2}}}=\frac{a_{11}+q_{2}}{\sqrt{\left(q_{1}+q_{2}\right)^{2}}} \tag{3.7}
\end{equation*}
$$

(compare with 2.17) we can introduce the standard invariant variables

$$
\begin{align*}
& s_{p}=\left(p_{1}+p_{2}\right)^{2} \\
& s_{k}=\left(k_{1}+k_{2}\right)^{2} \\
& s_{q}=\left(q_{1}+q_{2}\right)^{2} \\
& t_{p q}=\left(p_{1}-q_{1}\right)^{2} \tag{3.8}\\
& u_{p q}=\left(p_{2}-q_{1}\right)^{2} \\
& t_{p k}=\left(p_{1}-k_{1}\right)^{2}
\end{align*}
$$

etc. It is easily seen that the quantities (3.7) are connected by relations of the form

$$
\begin{equation*}
\sqrt{s_{x} S_{q}}+t_{k q}+u_{k q}=4 m^{2} \tag{3.9}
\end{equation*}
$$

which, on the energy-momentum shell, reduce to the well-known equality:

$$
s+t+u=4 x^{2}
$$

If we now integrate over k_{2} and x_{1} in (3.6) the expression in the curly brackets takes the form:

$$
\begin{equation*}
\frac{1}{\left(2 \pi s^{3}\right.} \frac{1}{\sqrt{s_{k}}\left(x^{\prime}+\sqrt{s_{k}}-\sqrt{s_{k}}-i \varepsilon\right)} \tag{3.10}
\end{equation*}
$$

As mentioned above, the parameter \mathcal{H}^{\prime} is an auxiliary quantity facilitating the r-invariance analysis of the theory. For practical calculations it is sufficient to consider only the case $x^{\prime}=0$. In this case (3.10) is equal to

$$
\begin{equation*}
\frac{1}{(2 \pi)^{3}} \frac{1}{\sqrt{s_{k}}\left(\sqrt{s_{k}}-\sqrt{s_{q}}-i \varepsilon\right)} \equiv G_{q}^{0}(k) \tag{3.11}
\end{equation*}
$$

or, using (3.8),

$$
\begin{equation*}
G_{q}^{0}(k)=\frac{1}{(2 \pi)^{3}} \frac{1}{S_{k}+t_{k q}+u_{k q}-4 M^{2}-i \varepsilon} \tag{3.12}
\end{equation*}
$$

It is clear that the quantity $G_{q}^{O}(k) \delta^{\rho_{1} \sigma_{2}} \delta_{\rho_{2} \sigma_{2}}$ in eq. (3.6) plays the role of a free Green function of the two-partjole system considered, and V is the quasipotential. Let us mention here that, in the scalar case, the free Green function is also given by eq. (3.12) $[7]$. The complete analogy between eq. (3.6), when $x^{\prime}=0$, and the scalar equation (1.4) becomes obvious after going to the centre-of-mass system in (3.6). Introducing the notation

$$
\begin{align*}
\vec{p}_{1} & =-\vec{p}_{2}=\vec{p} \\
\vec{q}_{1} & =-\vec{q}_{2}=\vec{q} \tag{3.13}\\
\vec{k}_{1} & =-\vec{k}_{2}=\vec{k} \\
E_{p}=\sqrt{\vec{p}^{2}+M^{2}}, \quad E_{k} & =\sqrt{\vec{k}^{2}+N_{2}^{2}}, E_{q}=\sqrt{\vec{q}^{2}+\mathbb{N}^{2}}
\end{align*}
$$

and taking into account the equalities

$$
\begin{align*}
& 2 \mathrm{E}_{\mathrm{q}}+x=2 \mathbb{E}_{\mathrm{p}} \tag{3.14}\\
& 2 \mathrm{E}_{\mathrm{k}}+x=2 \mathrm{E}_{\mathrm{p}}+x_{1},
\end{align*}
$$

พe will have, instead of (3.6) *),

$$
\begin{align*}
& T{ }_{\mu_{2} \nu_{2}}^{\mu_{1} \nu_{1}}(\vec{p}, \vec{q})=V{ }_{\mu_{2} \nu_{2}}^{\mu_{1} \nu_{1}}\left(\vec{p}, \vec{q} ; E_{q}\right)+ \\
& +\frac{1}{(4 \pi)^{3}} \sum_{\rho_{1} \rho_{2}}\left(V^{\mu_{1} \xi_{1}}\left(\overrightarrow{\mu_{2} \varphi_{2}}, \vec{k} ; E_{q}\right) \frac{d \vec{k}}{\sqrt{k^{2}+M^{2}}} \frac{T_{p_{2} \nu_{1} \nu_{2}}^{E_{k}\left(E_{k}-E_{q}-i k\right)}}{}\right. \tag{3.15}
\end{align*}
$$

Thus the quasipotential equation for the scettering amplitude for the oase of spinor partioles differs from the equation in the scalar case only by the appearanoe of a trivial summation over the intermediate spinor indices. The free Green function is the same in both oases.

By repeating literally the reasoning from $[7]$, it is easy to show that, in the case of real quasipotontial, the Nij-soattering amplitude satisfies the relativistio two-particle unitarity oondition. This faot rofleots ono of the bacic idcas of the quasipotontial approach $[2]$.

It is convenient in the following to substitute the spinor amplitudes v and \vec{v} appearing in eqs. (3.2) and (3.4) with their charge-conjugated spinors u^{c} and \bar{u}^{c}, which correspond to antinucleons
*) In terms of the variabies of (3.13), we see direotly that the Greon function $G^{\circ}(k)$ has the oorrect non-relativistio limit:

$$
G_{q}(k)=\frac{1}{(2 \pi)^{3} 4 E_{k}\left(E_{x}-E_{c}-i \varepsilon\right)} \rightarrow \frac{1}{2(2 \pi)^{3}\left(\vec{k}^{2}-\vec{q}^{2}-i \varepsilon\right)}
$$

and, afterwards, to pass to the two -component spinors φ, φ^{*}, X, X^{*} whose components correspond to states with a given helicity (see Appendix). Finally we obtain (the polarization indices are omitted in the left-hend side)

$$
\begin{gather*}
\bar{u}_{\alpha_{1}} \bar{v}_{\alpha_{2}} T_{\alpha_{1} \beta_{1} ; \alpha_{2} \beta_{2}} u_{\beta_{1}} v_{\beta_{2}}=\varphi_{i_{1}}^{+} X_{i_{2}}^{+} t_{i_{1}, k_{1} ; i_{2}, k_{2}} \varphi_{k_{1}} \chi_{i_{2}} \\
\bar{u}_{\alpha_{1}} \bar{v}_{\alpha_{2}} V_{\alpha_{1} \beta_{1} ; \alpha_{2} \beta_{2}} u_{\beta_{1}} v_{\beta_{2}}=\varphi_{i_{1}}^{+} X_{i_{2}}^{+} V_{i_{1}, k_{1} ; i_{2}, k_{2}} \varphi_{k_{1}} X_{k_{2}} \tag{3.16}\\
(\alpha, \beta=1,2,3,4 ; i, k=1,2) .
\end{gather*}
$$

It is easy to see that, taking into account (3.16) and also the completeness of the system of functions φ and X, eq. (3.25) can be rewritten in the form

$$
\begin{align*}
& t_{i_{1} k_{1} ; i_{2} k_{2}}(\vec{p}, \vec{q}) \varphi_{k_{1}} X_{k_{2}}=V_{i_{1} k_{4} ; i_{2} k_{2}}\left(\vec{p}, \vec{q} ; E_{q}\right) \varphi_{k_{1}} X_{k_{2}}+ \tag{3.17}
\end{align*}
$$

Let us define now the wave function of the NTN-system, corresponding to the continuous spectrum, as

$$
\begin{align*}
& \operatorname{T}_{q}(\vec{p})_{i_{1} i_{2}}=\frac{(2 \pi)^{3}}{M(\vec{p}-\vec{q}) \sqrt{p^{2}+M^{2}} \varphi_{i_{1}} \lambda_{i_{2}}+} \tag{3.18}\\
& +\frac{1}{8 M E_{p}\left(E_{p}-E_{q}-i \varepsilon\right)} t_{i_{1} k_{1} ; i_{2} k_{2}\left(\vec{p}, \overrightarrow{o_{1}}\right) Q_{k_{1}} V_{1} k_{2}}
\end{align*}
$$

Substituting (3.18) into (3.17) will give

$$
\psi_{q}(\vec{p})_{i_{1} i_{2}}=\frac{(2 \pi)^{3}}{M} \delta\left(\vec{p}-\overrightarrow{q_{q}}\right) \sqrt{\vec{p}^{2}+M^{2}} \varphi_{i_{1}} Y_{i_{2}}+
$$

$$
+\frac{1}{E_{p}\left(E_{p}-E_{q}-i \varepsilon\right)} \frac{1}{(4 \pi)^{3}} \int \frac{d \vec{k}}{\sqrt{k^{2}+M^{2}}} V_{i_{1} j_{1} ; i_{2} j_{2}}\left(\vec{p}, \vec{q} ; E_{q}\right) \Psi_{q}(\vec{k})_{j_{1} j_{2}}
$$ or

$$
\begin{aligned}
E_{p}\left(E_{p}-E_{q}\right) & \psi_{q}(\vec{p})_{i_{1} i_{2}}= \\
& =\frac{1}{(4 \pi)^{3}} \int \frac{2 \vec{k}}{\sqrt{k^{2}+M^{2}}} V_{i_{1} j_{1} ; i_{2} j_{2}}\left(\vec{p}, \vec{k} ; E_{q}\right) \psi_{q}(\vec{k})_{j_{1 j 2}}
\end{aligned}
$$

The equation obtained here, (3.20), is the analogue of the Schröalnger equation for the $N \bar{N}$ system ${ }^{*}$) and can be used to find the wave function corresponding to the continuous spectrum, as well
 as stated before, is defined as the set of all irreducible diagrams corresponding to the $N \overline{\mathrm{~V}}$-scattering of f the energy momentum shell, (2.6).

THE SPIN STRUCTURES OF THE QUASIPOTENTIAL
In the present section we will consider the problem of spin structures which the quasipotential for the \bar{N}-system can have in the general ouse.

When $x^{\prime} \neq 0$, in the centrem-mass system, the quasipotential can io written in the form of a $4 \geqslant 4$ matrix (compare with (3.20))
*) We wish to point out the complete analogy between (3.20) and (1.3).

$$
\begin{gathered}
V_{i_{1} k_{1} ; i_{2} k_{2}}\left(x, \vec{p} \mid x, \overrightarrow{q_{v}}\right) \\
(i, k=1,2)
\end{gathered}
$$

The matrix (4.1) must be invariant with respect to space rotations, space reflections, charge conjugation and time reversed. Let us introduce in the three-dimensional $\overrightarrow{\mathrm{p}}$-space a. system of orthogonal unit vectors, *

$$
\begin{align*}
\vec{l} & =\frac{1}{N_{l}}(\vec{p}+\vec{q}) \tag{4.2}\\
\vec{n} & =\frac{1}{N_{n}}(\vec{p} \times \vec{q}) \\
\vec{m} & =\frac{1}{N_{m}}\left[(\vec{p}+\vec{q}) \times\left(\vec{p} \times \overrightarrow{q_{1}}\right)\right]
\end{align*}
$$

The system (4.2) on the energy shell $\left(E_{p}=F_{q}\right)$ is transformed into the familiar basis:

$$
\begin{aligned}
& \overrightarrow{l^{\prime}}=\frac{1}{N_{l}}(\vec{p}+\vec{q}) \\
& \vec{n}^{\prime}=\frac{1}{N_{n}}(\vec{p} \times \vec{q}) \\
& \vec{m}=\frac{1}{N_{I}}(\vec{p}-\vec{q})
\end{aligned}
$$

Let us write, with the help of the Pauli matrices, a basis in the space of the 404 matrices to which the operator (4.1) belongs:

$$
\begin{gathered}
I^{(1)} \otimes I^{(2)}, I^{(1)} \otimes \sigma_{r}^{(2)}, \sigma_{r}^{(1)} \otimes I^{(2)}, \sigma_{r}^{(1)} \otimes \sigma_{s}^{(2)} \\
(r, s=1,2,3)
\end{gathered}
$$

*) The quantities $N_{\boldsymbol{L}}, N_{n}$ and N_{m} are normalization factors, ie., for example, $N_{l}=|\vec{p}+\vec{q}|$, etc.

Fere the index (I) corresponds to the spin space of the nucleon and (2) to the spin space of the antinucleon.

Reasoning in the usual manner, we conclude that the requirement of invariance, with respect to space rotations and reflections, allows only quasipotential with the following zavoturo:

$$
\begin{aligned}
V & =V_{1}-T^{-(2)}+V_{2} \overrightarrow{1}^{(1)} \otimes \vec{n} \cdot \vec{\sigma}^{(2)}+V_{3} \vec{n}^{(1)} \times \vec{\sigma} \cdot \vec{\sigma} \cdot(2)+ \\
& +V_{4} \overrightarrow{l_{0}} \cdot \vec{\sigma}^{(1)} \otimes \vec{l} \cdot \vec{\sigma}^{(2)}+V_{5} \vec{m} \cdot \vec{\sigma}^{(1)} \otimes \vec{m} \cdot \vec{\sigma}^{(2)}+ \\
& +V_{6} \vec{l} \cdot \vec{\sigma}^{(1)} \otimes \vec{l} \cdot \vec{\sigma}^{(2)}+V_{7} \vec{m} \cdot \vec{\sigma}^{(1)} \otimes \vec{l} \cdot \vec{\sigma}^{(2)}+ \\
& +V_{8} \vec{n} \cdot \vec{\sigma}^{(1)} \otimes I^{(2)}
\end{aligned}
$$

Whore V_{1}, \ldots, 78 are, in general, complex scalar functions of the vectors $\overrightarrow{\mathfrak{Y}}, \overrightarrow{c_{2}}$, and the parameters x and x^{\prime}. raking into account the conservation law,

$$
2 D_{p}+x^{\prime}=2 \sum_{q}+x
$$

we can write these functions in the form

$$
\begin{array}{r}
V_{i}\left(\vec{?} \cdot \vec{q}, \mathbb{D}_{p}+\mathbb{E}_{q}, x+x^{\prime}, \mathbb{E}_{p}-\mathbb{E}_{q}\right) \tag{4.6}\\
i=i, 2, \ldots, 8 .
\end{array}
$$

The invariance of the theory with respect to charge con jugation in the case of the $\overline{M N}$-system means simply a symmetry of the potential (4.4) with respect to permutation of the indices (I) and (2). From this it follows that

$$
\begin{align*}
& V_{2}=V_{8} \tag{4.7}\\
& V_{6}=V_{7}
\end{align*}
$$

and therefore (4.5) takes the form

$$
\begin{aligned}
& V=V_{1} I^{(1)} \otimes I^{(2)}+V_{2}\left(I^{(1)} \otimes \vec{n} \cdot \vec{\sigma}^{\prime \prime}(2)+\vec{n} \cdot \vec{\sigma}^{(0)} \otimes I^{(2)}\right)+ \\
& +V_{3} \vec{n} \cdot \vec{\sigma}^{(1)} \otimes \vec{n} \cdot \vec{\sigma}^{(2)}+V_{4} \vec{l} \cdot \vec{\sigma}^{(1)} \otimes \vec{l} \cdot \vec{\sigma}^{(2)}+ \\
& +V_{5} \vec{m} \cdot \vec{\sigma}(1) \otimes \vec{m} \cdot \vec{\sigma}^{(2)}+V_{6}\left(\vec{l} \cdot \vec{\sigma}^{(1)} \otimes \vec{m} \cdot{ }^{(2)}+\vec{m}^{(1)} \cdot \vec{\sigma}^{(1)} \otimes \vec{l} \cdot \vec{\sigma}^{(2)}\right) .
\end{aligned}
$$

Let us consider now the condition implied by the T-invariance. It is easy to show that the weak (Wigner) time reversal ow leads to the following transformation of the matrix elements of the operator $R\left(\lambda x, \lambda x^{\prime}\right)$:

$$
\left\langle\vec{p}_{1}, \sigma_{1} ; \vec{p}_{2}, \sigma_{2} ; \cdots\right| R\left(\lambda \dot{ }, \lambda \dot{c}^{\prime}\right)\left|\vec{q}_{1}, \sigma_{1}, \vec{q}_{2}, \sigma_{2} ; \ldots\right\rangle \xrightarrow{T_{w}}
$$

$\rightarrow\left\langle-\vec{q}_{1},-\sigma_{1} ;-\overrightarrow{q_{12}},-\sigma_{2} ; \quad\right| R\left(\hat{\lambda} x^{\prime}, \hat{\lambda} x\right)\left|-\vec{p}_{1},-\sigma_{1} ;-\vec{p}_{2},-\sigma_{2} ; \cdots\right\rangle$,
where $\sigma_{1}, \sigma_{2}, \ldots$ are the values of the felicities of the nucleons and antinucleons and *)

[^1]\[

$$
\begin{equation*}
A=\left(A_{0},-M_{1}\right) \tag{4.10}
\end{equation*}
$$

\]

The quasipotential transforms similarly to (4.9); and this is the reason why, in the case of time-reversal invariance of the theory, a new restriction appears: the quasipotential must not be changed under the simultaneous transformations

$$
\begin{array}{ll}
\vec{p} \rightarrow-\vec{q}, & \vec{q} \rightarrow-\vec{p} \\
\sigma_{1} \rightarrow-\sigma_{2}, & \sigma_{2} \rightarrow-\sigma_{1} \tag{4.11}\\
x \rightarrow x^{\prime}, & x^{\prime} \rightarrow x
\end{array}
$$

With the help of (4.2) it is easy to verify that, under the transformation (4.11),

$$
\begin{align*}
& \vec{l} \rightarrow-\vec{l} \\
& \vec{n} \rightarrow-\vec{m} \\
& \vec{m} \rightarrow \vec{m} \tag{4.12}
\end{align*}
$$

From (4.12) and, (4.11) we find the the term

$$
\begin{equation*}
\vec{l} \cdot \vec{\sigma}^{(1)} \otimes \vec{m} \cdot \vec{\sigma}^{(2)}+\overrightarrow{r_{n}} \cdot \vec{\sigma}(\hat{l} \cdot \vec{\sigma}(0) \tag{4.13}
\end{equation*}
$$

is odd with respect to time -reversal, while the other structures in (4.8) do not chance under this transformation. Hence the quantity $V_{\sigma}\left(\vec{p} \cdot \vec{q}, E_{p}+E_{q}, \mathcal{X}+\mathcal{X}^{\prime}, E_{p}-\mathbb{E}_{q}\right)$, must be an odd function of its last axcmument and $V_{2}, V_{2}, V_{3}, V_{4}$ and V_{5}, correspondingly, must be even functions of $E_{p}-E_{q}$. Evidently, on the shell, $E_{p}=P_{q}$,

$$
v_{6}=-v_{6}=0
$$

and the potential contains only five independent spin-structures.

These results are in complete agreement with those of the authors of [10] and [1]], where the structure of the nucleon-nucleon potential in the non-relativistic case has been analysed (see also [12]).

For illustrative purposes we now calculate the quasipotential to second order in g. It is evident that here we can use formula (2.18), as the only irreducible diagrams of second order are the diagrams a), b), c) and d) in Pig. 3. After some simple calculations, we find the following expressions for the quantities V_{i} from (4.3). (The index (2) shows that quantities of second order are considered.),

$$
\begin{aligned}
& V_{1}^{(2)}=V_{3}^{(2)}=-g^{2} 2 p_{0} q_{0} \frac{1+\frac{x^{2}+e^{1}}{2 m}}{\left(\frac{x+x^{1}}{2}+m\right)^{2}-\left(p_{0}+q_{1}\right)^{2}} \\
& V_{2}^{(2)}=0
\end{aligned}
$$

$$
\left.V_{4}^{(2)}=g^{2}\left\{\frac{N_{2}^{2}\left(p_{0}-o_{0}\right)^{2}\left[\left(p_{0}+M\right)\left(o_{p}+M\right)-\vec{p} a_{v}\right]}{\sqrt{m^{2}-t_{p q}+\frac{1}{4}\left(x-x^{2}\right)^{2}}\left(\frac{x+x^{1}}{2}+\sqrt{m^{2}-t_{p q}+\frac{(o-x)^{2}}{4}}\right.}\right)-V_{1}^{(2)}\right\}
$$

$$
\begin{equation*}
V_{5}^{(2)}=g^{2}\left\{\frac{N_{m}^{2}\left[\dot{p}^{2} \vec{q}^{2}-(\vec{p} \cdot \vec{q})^{2}\right]^{2}(p+M)\left(q_{0}+M\right)\left(\frac{1}{p_{0}+M}+\frac{1}{q_{p}+M}\right)^{2}}{\left(m^{2}-t_{p q}+\frac{1}{4}\left(x-x^{\prime}\right)^{2}\right.}\left(\frac{x+x}{2}+\sqrt{m^{2}-t_{p q}+\frac{\left(x-x^{2}\right)^{2}}{4}}\right)+V_{1}^{(2)}\right\} \tag{4.14}
\end{equation*}
$$

Wa Function $V_{6}^{(2)}$ is obviously antisymmetric with respect to the transformation $p_{0} \rightarrow q_{0}$, while $V_{2}^{(2)}, V_{2}^{(2)}, V_{3}^{(2)}, V_{4}^{(2)}$ and $V_{5}^{(2)}$ are invariant under this transformation.

In the higher order terms of the perturbation series the rod structure appears as well. For example, the irreducible diagram show in Fi . 4 a) gives the following contribution in $\mathrm{V}_{6}^{(4)}$:

$$
\begin{align*}
& -\frac{1}{(2 \pi)^{3}} 4 g^{4} p_{0} q_{0} \int \frac{d x_{1}}{x_{1}-i \varepsilon} \frac{d x_{2}}{x_{2}-i \varepsilon} \frac{d x_{3}}{x_{3}-i \varepsilon} \Delta^{(+)}(k) . \\
& \Delta^{(t)}\left(\lambda x-\lambda x_{1}-\lambda x_{3}-\lambda x_{3}+q_{1}+q_{2}+k\right) \Delta_{M}^{(+)}\left(\lambda x_{1}-\lambda x-q_{1}-k\right) \tag{4.15}\\
& \cdot \Delta_{M}^{(+)}\left(\lambda x_{3}-\lambda x^{\prime}-p_{1}-k\right) \cdot[(\vec{a} \cdot \vec{l})(\vec{b} \cdot \vec{m})+(\vec{b} \cdot \vec{l})(\vec{a} \cdot \vec{m})]
\end{align*}
$$

where λ is determined by eq. (3.7), $\Delta \underset{\mathbb{H}}{(+)}(p)=\theta\left(p_{0}\right) \delta\left(p^{2}-\mathbb{u}^{2}\right)$, and the vectors \vec{a} and \vec{b} are equal to

$$
\begin{aligned}
& \vec{a}=\frac{\vec{k} \cdot \vec{q}}{q_{0}\left(q_{0}+M\right)} \overrightarrow{o_{v}}-\vec{k} \\
& \vec{b}=\frac{\vec{k} \cdot \vec{p}}{p_{0}\left(p_{0}+M\right)} \cdot \vec{p}-\vec{k}
\end{aligned}
$$

It is easy to verify that, under the transformation (4.11)-(4.12), the expression (4.15) changes sign.

To conclude this section we write the spin structures of the quasipotential (3.2) in a Lorentz covariant form:

$$
\begin{aligned}
V & =F_{1} I^{(1)} \otimes I^{(2)}+F_{2}\left(Y^{(1)} \otimes I^{(2)}+I^{(1)} \otimes M^{(2)}\right)+ \\
& \left.\left.+F_{2} M^{(1)} \otimes Y^{(2)}\right)+F_{4}\left[\left(y_{5} M^{(1)}\right) \otimes\left(\gamma_{5} \otimes\right)^{(2)}\right)\right]+ \\
& +F_{5} \gamma_{5}^{(1)} \otimes \gamma_{5}^{(2)}+F_{6}\left[y_{5}^{(1)} \otimes\left(y_{5} V^{(2)}\right)+\left(y_{5} /^{(1)}\right) \otimes y_{5}^{(2)}\right]
\end{aligned}
$$

where

$$
\begin{align*}
& I=\frac{1}{2}\left(p_{1}+q_{1}\right) \tag{4.18}\\
& \mathbb{N}=\frac{1}{2}\left(p_{2}+q_{2}\right)
\end{align*}
$$

The quantities $F_{i}(i=I, 2, \ldots, 6)$ are invariant functions of the type

$$
\begin{equation*}
\vec{F}_{i}=F_{i}\left(t_{p q}, s_{p}^{+s_{q}}, x+x^{\prime}, s_{p}-s_{q}\right) \tag{4.19}
\end{equation*}
$$

The first five spin-structures in (4.7) are T-even, and so their coefficients F must be even functions of the last argunent. Dre function F_{6} is multiplied by a T-odd structure and hence it must be an odd function of $s_{p}-s_{q}$. Obviously $F_{G}=0$ when $s_{p}=s_{q}$.

The decomposition (4.17) can be obtained using tine well-known reasoning described, for instance, in $[3]$. In our case it is convenient to choose the vector basis in the four-dimensional p-space in the form:

$$
\begin{aligned}
& L_{\mu}=\frac{1}{2}\left(p_{1 \mu}+q_{I \mu}\right) \\
& V_{\mu}=\frac{1}{2}\left(p_{2 \mu}+q_{2 \mu}\right) \\
& N_{\mu}=\frac{1}{2} \varepsilon_{\mu \nu \rho \sigma} L_{v} M_{\rho}\left(q_{i \sigma}-q_{2 \sigma}+p_{i \sigma}-p_{N S}\right)(4.20) \\
& K_{\mu}=\varepsilon_{\mu \nu \rho \sigma} L_{\nu} M_{\rho} N_{\sigma} .
\end{aligned}
$$

V. CONCLESEOT

As already mentioned, the quasipotential equations we havo obtained for the Na systom are completely analogous to tho corresponding scalar equations (1.3) and (1.4). In botin cases the free Green function is the same and all the specific foaturee introduced by the spin appear only in the structure of the quasi-

$$
-35-
$$

potential. Therefore, the situation here is the same as in the nonrelativistio oase where the free Familtonian is a scalar in the spin space and only the interaction terms are spin dependent.

In connection with this fact, it is tempting to try to apply our approach to a relativistic formuiation of the higher symmotries, for instance $\mathbb{S U}(6)$, where the invariance of the free equations with respeot to proper spin transformations is highly desirable. Then, one of the interesting questions which can arise is: whet must be the form of the initial intereotion Hamiltonian H(x) in order that the quasi-potential built up from $H(x)$ by usins our procedure woula bs approximately SU(6) invariant?

AOKNOWLEDGLENTS

The authors are grateful to Professors Abdus Salam and P. Budini and the IARA for the hospitality extended to them at the International Centre for Theoretical Physics, Trieste. The authors are indebted to Drs. R. Rąozka and P. Winternitz for kelpful discussions.

One of the authors (V.G.K.) would like to express his sincere gratitude to Professors N N. Bogolubov, R.V. Faustov, R.N. Ryndin and A. N. Tavkholidze for stimulating discussions on the problem.

APPENDIX

In this part of the paper, information about the symbols, notations and normalizations used above. is collected.
I. Metric

$$
\mathrm{pq}=p_{0} q_{0}-\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}
$$

II Field equations, Fourier decompositions and quantization

1) Pseudoscalar field

$$
\begin{aligned}
& \text { a) } \quad\left(\square-m^{2}\right) \varphi(x)=0 \quad ; \quad \varphi=\varphi^{+} \\
& \varphi(x)=\frac{1}{(2 \pi)^{3 / 2}} \int \varphi(k) e^{i k x} d^{y} k=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(2 \pi)^{1 / 2}}\left(e^{i k x} \frac{d \vec{k}}{\sqrt{2 k_{0}}} \alpha^{+}(\vec{k})+\frac{1}{(2 \pi)^{3 / 2}} e^{-i k x} \frac{d \vec{k}}{\sqrt{2 k_{0}}} \alpha(\vec{k})=\right. \\
& =e^{(+)}(x)+e^{(-)}(x)
\end{aligned}
$$

where

$$
\begin{equation*}
[\alpha(\vec{k}), \alpha(\vec{k})]=\bar{\delta}(\vec{k}-\vec{k}) \tag{A,2}
\end{equation*}
$$

B) Pairing of two P -operators

$$
\begin{align*}
\varphi(x) \varphi(x) & =\delta\left(k+k^{\prime}\right) A^{+\prime}\left(x^{\prime}\right)= \\
& =\delta\left(k+k^{\prime}\right) \theta\left(k_{0}^{\prime}\right) \delta\left(k^{\prime 2}-m^{2}\right) \tag{A.3}
\end{align*}
$$

2) Spinor ficice
a) $\left(i \frac{\partial}{\partial x}-M\right) Y(x)=O$,
where $\quad \frac{\partial}{\partial x} \equiv \gamma^{0} \frac{\partial}{\partial x^{0}}-\vec{\gamma} \cdot \frac{\partial}{\partial \vec{x}}$,
$y_{0}=\left(\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right) ; \quad \vec{\gamma}=\left(\begin{array}{cc}0 & \vec{\sigma} \\ \vec{\sigma} & 0\end{array}\right) ; \quad \gamma_{5}=-i\left(\begin{array}{ll}0 & \vec{i} \\ \vec{O} & 0\end{array}\right) ;$

$$
\begin{align*}
\psi(x) & =\frac{1}{(2 \pi)^{3 / 2}} \int e^{i q x} \psi(q) d^{Y} q= \\
& =\frac{1}{(2 \pi)^{3 / 2}} \sum_{\nu=1,2} \int \frac{d \vec{q}}{\sqrt{2 q_{0}}} e^{i q x} b_{\nu}^{+}(\vec{q}) v^{\nu}(\vec{q})+ \tag{A.5}\\
& +\frac{1}{(2 \pi)^{3 / 2}} \sum_{\nu=1,2} \int \frac{d \vec{q}^{2}}{\sqrt{2 q_{0}}} e^{-i q x} a_{\nu}(\vec{q}) u^{\nu}(\vec{q}) \equiv \\
& \equiv \psi^{(+)}(x)+\psi^{(-)}(x)
\end{align*}
$$

$$
\begin{gather*}
\bar{\Psi}(x)=\psi^{+}(x) \gamma^{0}=\frac{1}{(2 \pi)^{3 / 2}} \int e^{i p x} \psi^{+}(-p) \gamma^{0} d p= \\
=\frac{1}{(2 \pi)^{3 / 2}} \sum_{\nu=1,2} \int \frac{d \vec{p}}{\sqrt{2 p_{0}}} e^{i p x} a_{\nu}^{+}(\vec{p}) \vec{u}^{\nu}(\vec{p})+ \tag{4.6}\\
+\frac{1}{(2 \pi)^{3 / 2}} \sum_{\nu=1,2} \int \frac{\alpha \vec{p}}{\sqrt{2 p_{0}}} e^{-i p x} b_{\nu}(\vec{p}) \bar{v}^{\nu}(\vec{p}) \equiv \\
\equiv \bar{\psi}^{(+)}(x)+\bar{\Psi}^{(-)}(x)
\end{gather*}
$$

where

$$
\begin{aligned}
& \left\{a_{\mu}(\overrightarrow{0}), a_{v}^{+}\left(\overrightarrow{q_{v}^{\prime}}\right)\right\}_{+}=\delta_{\mu \nu}, \vec{\delta}\left(\overrightarrow{0}-\overrightarrow{b_{i}}\right) \\
& \left\{\hat{b}_{\mu}\left(\overrightarrow{a_{i}}\right), b_{\nu}\left(\overrightarrow{a_{j}}\right)\right\}_{+}=\delta_{\mu \nu} \delta\left(\overrightarrow{o_{i}}-\vec{a}\right) \text {. }
\end{aligned}
$$

b) Pairings of two spinor operators

$$
\begin{aligned}
\psi_{p}(q) U_{\alpha}(p) & =\delta(q+p) S_{p \alpha}^{(q)}(p, M)= \\
& =\delta(q+p) \theta\left(p^{0}\right)(p+M)_{p \alpha} \delta\left(p^{2}-M^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
\bar{\psi}_{\alpha}(p) \psi_{\beta}(q)=C_{i}(p+q) S_{\beta \alpha}^{(+)}(q,-M)= \tag{A.8}
\end{equation*}
$$

$$
=\delta(p+0) \theta\left(q^{0}\right)(q-M)_{\beta \alpha} \delta\left(q^{2}-M^{2}\right)
$$

Whore

$$
\bar{\psi}(p) \equiv \psi^{+}(-p) \gamma^{u}
$$

c) Normalization and orthogonality relations enc completeness conditions for the spinors u and v

$$
\begin{align*}
& \bar{u}_{\alpha}^{\mu}(\vec{q}) u_{\alpha}^{\nu}\left(\overrightarrow{q_{j}}\right)=2 M \delta \mu^{\mu} \tag{A.9}\\
& \bar{v}_{\alpha}^{\mu}(\vec{q}) v_{\alpha}^{\nu}(\vec{a})=-2 M \delta \mu^{\nu}
\end{align*}
$$

$$
\begin{align*}
& \sum_{\mu=1,2} \vec{u}_{\alpha}^{\mu}(\vec{q}) u_{\beta}^{\mu}(\vec{q})=\left(q_{V}^{\prime}+M\right)_{\beta \alpha} \\
& \sum_{\mu=1,2} v_{\alpha}^{\mu}(\vec{q}) \vec{v}_{\beta}^{\mu}(\vec{q})=\left(q_{V}-v_{\beta \alpha}^{\prime}\right. \tag{A.10}
\end{align*}
$$

where

$$
\vec{v}(\vec{q})=v(\vec{q}) \gamma^{0} ; \quad \vec{u}(\vec{q})=u(\overrightarrow{\vec{q}} ;)^{\circ}
$$

a) Explicit form of u and v in terms of two-component quantities

$$
\begin{align*}
& u(\vec{q})=\sqrt{q_{0}+M}\binom{\varphi}{\frac{\vec{\sigma} \cdot \vec{q}}{q_{0}+M} \varphi} \tag{A.II}\\
& v(\vec{q})=\sqrt{q_{0}+M}\binom{\frac{\vec{\sigma} \cdot \vec{q}}{q_{0}+M} \zeta}{\zeta} \tag{A.12}
\end{align*}
$$

where $p=\binom{\varphi_{1}}{\varphi_{2}}$ and $\xi=\binom{\xi_{1}}{\xi_{2}}$ are the spin wave functions normalized to unity.
e) Charge -con fugated spinors

$$
\begin{align*}
& u^{c}=C \vec{v}^{T} \tag{A.13}\\
& \bar{u}^{c}=v^{T}\left(C^{T}\right)^{-1} \\
& C=\gamma_{0} \gamma_{2}=\left(\begin{array}{cc}
0 & \sigma_{2} \\
\sigma_{2} & 0
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right)
\end{align*}
$$

Tho wave functions ${ }^{c}{ }^{c}\binom{q}{q}$ can also be written in the form:

$$
\left.u^{c}\left(\overrightarrow{o_{1}}\right)=\sqrt{a^{0}+M}: \begin{array}{c}
\hat{a} \tag{A.14}\\
\\
\left.\frac{a_{0}+i}{a_{1}}\right)
\end{array}\right)
$$

whore

$$
\begin{equation*}
X=\left(\xi^{+} \sigma_{2}\right)^{\top} \tag{A.15}
\end{equation*}
$$

1) E. SALPATIR and H. Bemtit Fhys. Rev. 32, 309 (1951); M. Gill-man and F. LOM, Phys. Rev. 84, 350 (1951)
2) A.A. LOGUNOV and A.N. TAVKhbilides, Nuovo Cimento 29, 380 (1963).
3) A.A. LOGUNOV, A.N. TAVKIELIDZE, I.T. YODOROV and O.A. KHRUSTALEV, ITuovo Cimento 30, 134 (1963);
A.A. LOCGNOV, A.N. TAVKHELIDEE and O.A. KHEJSPRLEV, Phys. Lettors 4, 325 (1963);
B.A. ARBUZOV, A.A. LOCHNOV, A.N. TAVKHELIDZA, B.N. FAUSTOV and A.T. FIIIPPOV, Soviet Phys.-JEMP 17, 948 (I963);
D.A. ARBUZOV, A.A. LOCUNOV, A.T. FILIPPOV and O.A. KHRUSTAIEV, Soviet Phys. $-J E M P$ 19, 861 (1964);
NGUYEN VAN-HIEU and RA. FAUSTOV, Nuci. Phys. 53, 337 (1964);
A.T. FILIPPOV, Phys. Letters 2, 78 (1964).

Reviews on the theory and apprications of the quasipotential method in quantum field theory can be found in:
Proceedings of the Intemational Winter School for Theoratical Physics, Voi. II, Dubna (1964) (see the lootures of A.N. TAVKIELIDZE, A.T. FILIPPOV and R.N. FAUSTOV), and
A.N. TAVKEELIDZE, Lectures on Quasipotential Rothod in Piola Theory, Tata Institute of Fundarnental Research, Bombay (1904).
4) R.N. PAUSNOV, Dubna preprintP-1572 (1964).
5) GN. DESIMIROV and D. STOYANOV, Dubna preprint P-1658 (1964); G. DESINIROV and M. MATEEV, Nuol. Phys. B2, 218 (1967).
6) V.G. KADYSEEVSKY, Soviet Phys.-JETP 19, 443 (1964); V.G. KADYSHeVSKY, Soviet Phys .-TMP 19, 597 (1964); V.a. KADYSEEVSKY, Soviet Phys.-Doklady 10, 46 (1965).
7) V.G. KADYSHEVSKI, IMF-Kiev preprint 770.7 (1967) (to be pablished).
8) A.I. AKHIEZER and V.B. BERESTETSKIx, "Quantum Blectrodynamics", Interscience Publishers, New Yorls (1965).
9) $N . N$. BOGOLUBOV and D.V. SHIRKOV,"Introduction to the Theory of Quantized Fields", Interscience Publishers, New York (1959).
10) I. PUZIKOV, R. FYNDIN and Ja. STORODINSKİI, Soviet Phys.-JITP 5, 489 (1957).
11) S. OKURO and R.B. MARSTAK, AMn. Phys. (ivy) 4, 166 (1958).
12) P. WINTERNITZ and F. IDHAR, Duiona Preprint P-2426 (1965).
13) N.L. GOLDBERGER, Y. NAMBG and R. ODTH, Ann. Phys. (NY) 2,226 (1957).
\qquad

Available from the Office of the Scientific Information and Documentation Officer, International Centre for Theoretical Physics, Piazza Oberdan 6, TRIESTE, Italy

[^0]: *) All the matrices acting on spinor indices have to be ordered in a sequence from left to right, in the order in which they are met, if one moves along the spinor line passing the antinuoleon lines in the direction of their orientation and the nucleon in the direction opposite to their orientation.
 **) The sigm factor conneoted with closed spinor loops doos not appear in the present diagram technique.

[^1]: *) Taking into account (4.9) and (4.10), it can bo said that, under time reversal, the quasiparticle in the "initial state" turns into aquasiparticle in the "final state" with a change in sign of its three-momentum.

 Let us also note that, if the vector λ is chosen in accordance with (3.7), the transformation $\lambda \rightarrow \hat{\lambda}$ in (4.9) is automatically performed.

