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ABSTRACT

Quasipotentxal equations are constructed for the relativistic

scattering amplitude and the -wave function of two interacting partiolGS

with spin •§-. This is done with the help of specific oovariant extra-

polation of the scattering amplitude off-the-energy-momentum shell.

Suitable diagram techniques are developed. The quasipotential is

defined as a sum of "irreducible" diagrams. The free part of the

wave equation is spin independent and all features connected with spin

appear in the interaction (quasipotential). The spin structure of

the quasipotential is investigated.
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ON A EELATIVISTIC QUASIPOTEKTIAL EQUATION

IS THE' CASE OF PARTICLES vTITIi SPIN

I. INTRODUCTION

In quantum field theory the system of two interacting particles

can be described, in the framework of the relativistio invariant Bethe-

Salpeter formalism £"lj* However, as is well known, the Bethe-Salpeter

wave function has two time variables and hence cannot be interpreted in

the usual quantum'mechanical sense as the probability amplitude for

finding the system in a definite state. For this reason the question of

its normalization is not at all trivial; and,up to now, a complete

understanding of this feature has not been achieved.

Several years ago Logunov and Tavkhelidze developed the

quasipotential approach to the problem of the interaction of two

relativistic particles £~2_y. The wave function which they introduced

is a natural generalization of the non-relativistic one since it is a

function of.only one time variable and satisfies a Sohrodinger type

equation. For interacting scalar particles with equal masses in the

centre-of-mass system, the quasipotential equation in momentum space

can be written in the form:

The "quasipotential" V(p,i£;E ) (in general a complex quantity) can

be built according to £^2j .with the help of perturbation theory.

This can be done in two different ways either by using the two-time

Green funotion of the system or with the help of the scattering

amplitude on the mass shell. In the formalism of Logunov and Tavkhelidze

there is an equation of the Lippman~Sohwinger type for the off-the-enercy-

shell scattering amplitude:

^
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It is important to stress that the integration on the right-hand

sides of eqs . ( l . l ) and (1.2) is performed over a three-dimensional

manifold, while in the corresponding Bethe-Salpeter equations there

is integration over the four-dimensional momentum of the virtual

particle.

The quasipotential method can be successfully applied to

the solution of the problem of scattering and bound states for any

particles independently of their concrete nature /~3_/, H'^J- How-

ever, in the case of particles with spin, certain specific complications

arise in the construction of the quasipotential. They are conneoted

with the faot that the two-time, bare, free Green function 'for a

system of two spinor particles is a singular matrix. In Rof.

£~4_y this difficulty is avoided by projecting the quasipotential

equation onto the subspace of the spinors corresponding to positive

energies, the quasipotential being built with the help of the on-

mass-shell scattering amplitude. The problem of constructing the

quasipotential in the spinor case using the two-time Green function

has been discussed in detail in Ref. /~5_7".

The purpose of this work is the construction of quasi-

potential equations of the type (l.l) and (1.2) for the case of

particles with spin using a method whioh is not connected with the

usual Green function apparatus and the Bethe-Salpeter formalism.

In this method /~6_/, whioh is a covariant formulation of "old-

fashioned" perturbation theory, all the particles in the initial,

intermediate and final states are on the mass shell and have

positive energies; but, due to the presence of speoific spurions

(we will call them "quasiparticles"), the.total four-momentum of

the system is not conserved. It can be said that this approach is

an alternative to the usual Feynman perturbation theory. Indeed,

2 2
in the first case, we always have p =• m , p > 0; and, in general,

the four-momentum is not conserved;
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In the seoond case the four-moir.Qntum is conserved;

IE 4*-

but, in general, p =f m and P ^ 0«

In £lj% with the help of the diagram technique from

equations of the same type as (l.l) and (1.2) have been obtained:

and

7

The quasipotential VCp,"q;Eq) has been built with 'the help of special

kinds of irreducible diagrams (compare with the Bethe-Salpeter

formalism

In the following we shall show that a similar procedure

can be directly applied in the spinor case and we shall find the

corresponding analogues of eqs. (1.3) and (1.4).

Special attention will "be paid to the question of the spin

structure of the quasipotential (Sec. IV). For simplicity and to

avoid superfluous references to the soalar case_, in Sec. Ill we

shall formulate in detail the diagram teohnique /J>tTf* As a concrete

model of the interaction the pseiidoscalar coupling is chosen:



where one may consider that the 3pinor field f(x) describes nuoleons

and antinucleons with mass M, while y(x) corresponds to pseudoscalar

mesons with, mass m.

II. DIAGRAM TE

Let

H(P)

be the four-dimensional Fourier-transform of the interaction

Hamiltonian (l.5)> and

S = I + i R (2.2)

lie the soattering matrix corresponding to this interaotion. Then

according to /j>tj/t

R a R(0 , 0) = H(^K,'Kti) , (2.3)

where the operator R( /\ ̂ e , ̂  î 1 ) ia determined from the equation *)

11 (2.4)

I t ia evident that from the very beginning, we could put >£'= 0

and use, instead of (2 .4) , the equation

(2 .4 ' )

However we will need the matrix H(/l>€»'Ax') for the analysis of

the T-invariance of the scat ter ing amplitude (Sec. IV), and th i s i s

why we shall make a l l further considerations on the basis of eq. (2 .4 ) .



Tho quantity "A » appearing in these formulae, is a four~vootor with

the property that

(2.5)

and in, l£$ and -^ are one-dimensional invariant parameters.

From (2.3) it follows that on the surface

which we shall call the energy-momentum shell, the matrix elements

of the operator R(X-3€»Ax') must be independent, of the direction of

A *) . [therefore the vector "X » with the properties (2.5), can bo

chosen in a completely arbitrary way, for example, as

X ~ P , (2.7)

where P is the total four-momentum of the system.

To first order in the ooupling oonstant we have

(2.8)

&

This faot is a oorollary from the looality of the operator H(x) /~6_/r;

[HW, H(̂ )] - 0



(the Fourier deoompositions of the operators "ty(x)f ij/(x) and '<f(x)

are siven in the Appendix-eq.s. (A.l), (A.5) ancl (A.6)). Sq. (2.8)

is the sum of eight normal products:

(2.9)

3y oaloulating matrix elements of (2.9) with normalized states

(for normalization of states see Appendiz - eqs. (A.9))» it can be seoi

that, for exanple, the operator

has a non-aero matrix element for the transition vacuum —, nucleon +

antinuoleon + mesoni



and the operator

gives a non-vanishing contribution to the amplitude for the process

nucleon + meson—»nucleoiis

Let us accept the following rules for the graphical

description of the particles in the initial and final states.
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TABLE: I

Line Particle State Factor in the

! matrix element

nucleon

antinucleon in

k meson

nuoleon out

antinuoleon out

meson out



How the process (2.10) can be described by diagram a) in Pig. 1

where the spurion dotted lines, whioh carry the four-momenta

"X^Cand "h'it'f are introduced so that the conservation law,

A>€- /\'i€.'-p,-'p-l<*0 , can he satisfied at the vertex.

Pig. 1

In a similar manner we construct the diagram of the process (2.1l)

(oeo h) in Pig. l ) .

In the x-represontation an it follows from (2.10) and (2.1l),

the dotted lines (we will call them quasiparticles), correspond to

plane waves of the form e'L . Therefore the operator H( A*St-

can be interpreted also as an interaction of the fields y/ and f

with the plane wave.

we iterate eq.. (2.4)> operator term's of the form

r

(2.12)
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appear. This oust be reduced to normal form. ¥G shall assume that the

Hamiltonians in (2.8) are numbered, with number one assigned to

H(Xx - ̂ "̂ i)> number two to HfA"^-?\^), etc., so that the number of

the last operator H( A5en_t — T^u') is n. Further, to each of the

operators 1}/ , ~\U and (J? is assigned the number of the Eamiltonian to

which this operator belongs. Then, recognizing that the Hamiltonian

!l is already speoified in normal form, wo can state that when

R (Ax »A"^') is reduced to normal form it is necessary to pair only

the operators with different numbers. In the case considered here,

due to the. absence of chronological ordering in R (A>£ , A x ' ) , the

pairings have the form:

(2.13)

o

(2.15)

It is easy to see that the argument of the functions i> and A is

the argument of those operators 1̂  and'W which are at the right side

of the pairing, i.e., those which have a larger index number. The

last oiroumstance determines the rule for the orientation of the

lines in the graphical description of the pairings (2.13)-(2.15)

(Table II).
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TABLE II

}•

'i

Line

• < , »

i

Particle

nuoleon

antinuoleon

meson

1

Pairing

:

;

;

Factor

matrix

s;.

in the

element

: * • «

The reason why the first pairing in Table II is made

to correspond • "to the nucleon and the second to the antinuoleon is_,for

example, the exact correspondence of these pairings to the contribution

of tho intermediate nucleon and antinucleon one-partiole states, in

the unitarity condition.

Beginning -with the second-order terms in g in the xLj.trix element,

it can be seen from (2.12) that there also appear factors of tho

form:

(2.16)
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•which corresponds to a "virtual" quasiparticle with four-momentum

going out from the vortex with number j and coning into a vertex

with number j + 1. Graphically we shall describe such a quasiparticle

in the following ways

:. 2

Ivow, taking into account Tables I and II, we can formulate in a

general form the rules for constructing the matrix elements in this

formalism. These rules are as follows;

1) , Draw the Feynman diagram (or a.set of diagrams) correspond-

ing to the process considered and describe the free nucleon and anti-

nuoleon states in accordance with Table I. Number arbitrarily all

the vertices and orient every internal line in a direction from the

larger to the smaller number. Thon, without changing t3ic orientation,

change some of the single (nucloon) internal linos to double (anti-

nucleon) lines in such a way that the nucleon charge is conserved

in every vertex. Assign to every internal line some momentum p.

2) Connect the first.vertex to the second, the second to the

third, the third to the fourth,etc., with dotted lines oriented in

the direction of increasing numbers; and to every suoh line assign

a four-momentum AX; , where j » 1,2,..., n-1 is the number of the

vertex whioh the given dotted line leaves. Then join an incoming

external dotted line with momentum A x to the first vertex and an

outgoing external line with momentum A X' to the last vertex (with

number n). •

3) To eaoh internal dotted line with four-momentum Aae,
0

assign a propagator (2.16) and to every internal line of a physical

particle with momentum p assign one of the functions S (p»lO»

or A ^ ' f p ) in accordance with Table II.

at ' * - j * <|. ,r>..V " - * * * 1 * " 1 1



wc *)
4) To each vertex of the diagram assign a factor - i A

and a four-dimensional 6"-function that gives the conservation

of the total four-momentum of the inooming and outgoing particles

and quasiparticl.es.

5) Integrate between infinite limits over all variables je,

and over all the independent momenta among the vectors p.

6) Repeat the operations l ) to 5) for all n1. numberings of

the vertices of the given diagram; add together the expressions obtained
p

and multiply the result by -r— , where h is the nunber of per-

mutations of the external vertices appearing in the diagram in a

symmetrical way and 6 is the well-known sign factor,connected with

the parity of the permutations of the external nuoleon and anti-

nucleon lines (see, for instance £~&Jf **'.
Let us illustrate this procedure with several examples

*/ All the matrices acting on spinor indices have to be ordered in

a sequence from left to right, in the order in which they are

met, if one moves along the spinor line passing the antinucleon

lines in the direction of their orientation and the nucleon-in

the direction opposite to their orientation.

**) The sign factor connected with closed spinor loops does not

appear in the present diagram technique.
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1) Scattering of nucleons and antimaoleons in second order

h ?

a)

o)

iG. 3
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The matrix element corresponding to th© diagrams a), t>), c) and d)

in Pig. 3 has the form:

T -

Z*
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If we choose the vector A , in accordance -with (2.7),*'to .be:

after some simple calculations we obtain.;

(2.18)

2m, - • * - £ ,

*' It is easy to sec that, due to the conservation law of the four-

momentum, the collinearity of the vectors A and :_-.. ~_:g

automatically leads to a collinearity between -L*_" and p i =

In other words, with our choice of X , the four-velocity of the

system is conserved even off the sholl, (2.6).
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where

t - (p1 - q.j

(2.19)

and

(2.20)

It is evident that on the energy-momentum shell, (2.6), the

formula (2.18) gives the same result as the Feynman technique.

2) Some higher order graphs

i

o)
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s)
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It i s necessary -to emphasize that since the theory developed

here is equivalent to the usual one, the traditional "ultra-violet"

divergences appear as they should. But an essential feature of this

approach is thai; these divergences occur1 only in one-dimensional

"dispersion-like" integrals overse., which correspond to dotted lines

the other integrals obtained from products of Ŝ  + ' and A^

funotions are always convergent £~9j* Because of this the removal

of the divergences in the proposed scheme is connected with a sub-

traction procedure in the integrals over yt. f~l 7• Further, -we

shall always suppose that it has "been done in this way.

\

I I I . THE QEJASIPOTSEfriiL EQUATION

In this section we shall obtain, with the help of the preceding

diagram technique, an analogue of eq.. (1.4) for the amplitude of the

elastic nucleon-antinucleon scattering

(3.1)

and an analogue of eq. (1.3) for the wave function of the nucleon-

antinucleon system.

First let us introduce some definitions.

1) ¥e shall call a diagram unconnected if it can be split

into parts which are not connected by physical particle lines. For

the opposite case we will call the diagram connected (for example, the

diagram h) in Fig. 4 is unconnected and all the others in the same

figure are connected).

2) Let us choose a definite time-direction, for instance from

right to left, and let us correspondingly orient the free ends of

the diagram describing the process (3.l) off the energy-momentum

shell, (2.6). A conneoted diagram belonging to this class will "be

called irreducible, if it is impossible to separate it into two

conneoted subdiagrams, which are linked to each other by two spinor

lines (a nucleon and an antinucleon), oriented from right to left,

and one dotted line oriented in the opposite direction. If such

- 2 0 -



a poparaticn can be found, we will call the diagram reducible. For

exair.plo, all the diagrams in Fig. 1 and the diagrams a), b), c), and

e)' in Fig. 4 are irreducible, but the diagrams d) and f) are reducible.

It is evident that all the connected diagrams can be built from ir-

reducible components. We -will use this fact in writing the equation

for the scattering amplitude (compare this with the corresponding

procedure in the B-S formalism

Let

If

(3.2)

) v 5( A ,-^^ ae)

be the matrix element corresponding to the set of all irreducible

diagrams describing the process (3.1). (All the -variables and indices

have the same meaning here as in the second-order matrix element

(2.18).)

Let us agree that we will draw V graphically as;

(3.3)
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Further, let

1

\

•t

"be the amplitude of the M scattering off the shell, (2.6); i.e.,

the set of all connected diagrams corresponding to the process (3.1).

Then, taking into account the definition of irreducible diagrams,

we can write the following graphical equation:

-22-



which, according to the rules of our diagram technique, is equivalent

to the integral equation

J (**f?l X^'ch V) 'V)

(3.5)

k, M ) .

If we use the completeness condition (eq. (A.10) and drop the

common 6-function, expressing the conservation law p- + p ? -

q, + q2 - A at', then this equation can be written in the form:

^ '" y) z
^
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Under the condition

(ooffipare -with 2.17} we can introduce the standard invariant variables

P 2 ) 2

(3.8)

etc. It is easily seen that the quantities (3.7) are connected

by relations of,the form

•whioh, on the energy-momenttun shell, reduce to the well-known

equality:

2

S + t + u = ig

If we now integrate over k2 and ^ in (3.6) the expression in

the curly brackets takes th© fonn:

0 '•



A

As mentioned above, the parameter -je' is an auxiliary quantity

facilitating the 2-invariance analysis of the theory. For practical

calculations it is sufficient to consider only the case X1 => 0. In

this case (3.10) is equal to

or, using (3.8), .

J -
(2*f c . x , -, i , M * • •' (3.12)

It is olear that the quantity G°(k)<$ i 1<5p(5- in oq. (3.6) plays

the role of a free Green function of the two-particle systerc

considered, and V is the quasipotential. Let us mention here that,

in the scalar,case, the free Green function is also given by

eq. (3.12) f^lj* The complete analogy between eq. (3.6), when

"K1 => 0, and the scalar equation (1.4) "becomes obvious after going

to the centre-of-mass system in (3.6). Introducing the notation

' (3.13)

1
 =

 2
 =

E - \ J ] 3 2 + M 2 , E . « \ | k 2 + K 2 , E = J q 2 +
P A- q



and talcing into account the equalities

2 E + U = 2 S

^ P (3.14)

2 E k + <* - 2 E p + ^ ,

ve will have, instead of (3.6)

"T" t̂ v< /-*

(3.15)

Thus the quasipotential equation for the scattering amplitude

for the oase of spinor particles differs from the equation in the

scalar case only "by the appearance of a trivial summation over the

intermediate spinor indices. The free Green function is the same

in hoth oases.

By repeating literally the reasoning from /~7_7", it is easy to

show that, in the oase of real quabipotsntial, th-e Iftf-coatterxng

amplitude satisfies the relativictio two-particle unitarity condition.

This faot rofleots one of the "basio idoas of the quasipotontial

approach

It is convenient in the following to substitute the spinor

amplitudes v and v appearing in eqs. (3.2) and (3.4) with their

charge-conjugated spinors uc and "u0 , which correspond to antinucleons

*) In terms of the variables of (3.13), ve see direotly that the

Greon funotion G (k) has the oorrect non-rolativistio limit:

r
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and, afterwards, to pass to the two-component spinors (p , Cp'At

X » If* whose components correspond to states with a given helicity

(see Appendix). Finally we obtain (the polarization indices

are omitted in the left-hand side)

T, • L . .' 1. U? V,

(3.16)

It is easy to see that, taking into account (3.16) and also the

completeness of the system of functions ^ and X » eq. (3*15)

can be rewritten in the form

(3.17)

Let us define now the wave function of the M-system, corresponding

to the continuous spectrum, as

(3.18)

A
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Substituting (3.18) into (3.17) will give

(3.19)

or

(3.20)

The equation obtained here, (3.20), is the aiialogae of the

Schrodinger equation for the JOT system */ and can be used to find

the wave function corresponding to the continuous speotrum, as well

as for the bound state problems. The quasipotential V. . • • . . ("p,k;E ),

as stated before, is defined as the set of al l irroduoible

diagrams corresponding to the M-scattering off the energy-momentum

shell, (2.6),

IV THE SPIN STRUCTURES OF THE QUASIPOTENTIAL

In the present section we will consider the problem of spin

structures which the quasipotential for the M-aystem can have in

the general oase.

When lit.' j* 0, in the oentre-of-mass system, the quasipotfintial

oan DO written in the form of a 4 ® 4 matrix (compare with(3.20))

*J We wish to point out the oomple.te analogy between (3.20) and (1.3).

-28-



(4.1)

The matrix (4«l) must be invariant with respect to space rotations,

space reflections, charge conjugation and time reversal. Let us

introduce in the three-dimensional p*-space a system of orthogonal

unit vectors, ̂

• * _ _ 4

(4.2)

\

The system (4.2) on the energy shell (S = 3 ) is transformed into

the familiar basis:

I- - 4- c?+t)

1
[Jx J) (4.3)

n'

m1 • - "iT "(p -*?)

Let us write,, with the help of the Pauli matrices, a basis in the

space of the 4 © 4 matrices to which the operat or (4.1) belongs:

(4-4)

The quantities U. , LT and Uf are normalization factors^ i .e

for example,lL » jp̂  + ^J

-29-



Here the index (l) corresponds to the spin space of the nucleon

and (2) to the spin space of the antinucleon.

Reasoning in the usual manner, we conclude that the requirement

of invarianoe, with respect to space rotations and reflections, allows

only quasipotential with the following cructure;

Y - \ tzf - V, 1

"•ihoro Vn , ... , 7n are, in general, complex scalar functions of

tho vectors p* , "q , and the paraccters *X and 'irtv . Taking into

accouix the conservation law,

23 + x' 3 2E -r

we can write these functions in the form

(4-6)

i = 1,2, ... , 3 •

The invariance of the theory with respect to charge conjugation

in the case of the M-system means simply a symmetry of the potential

(4.4) with respect to permutation of the indices (l) and (2). Ifron

this it follows that

-30-



(4.7)

and therefore (4.5) takes the form

+ V3 ̂ ? < a < & £ ^ t- V,

"5 v

Let us consider now the condition implied by the T-invariance

It is easy to show that the weak (¥igner) timo reversal T leads

to the following transformation of the matrix elements of the

operator R(/\-jt , "X X') :

(4.9)

whore 0^,0^, ... are the values of the holicitios of the nucleons

and antinuoleons and *)

Talcing into account (4-9) and (4.10), it can bo said that, under

time reversal, the quasiparticle in the "initial state" turns in-

to aquasiparticle in the "final state" with a change in sign

of its three-momentum.

Let us also note that, if the vector A is chosen in accordance

with (3.7)» the transformation A —» A in (4.9) is automatically

performed.
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X - ' "A "
>N

(4.10)

The quasipotential transforms similarly to (4.9) ; and th is i s

the reason why, in the case of time-reversal invariance of the theory,

a new res t r ic t ion appears: the • quasipotential must not be changed undei

the simultaneous transformations

- * - % >

(4.11)

With the help of (4-2) it is easy to verify that, under tho

transformation (4.1l)>

->

(4.12)

Prom (4.12) and_(4.1l) we find that the term

T®$>t-T® (4.13)

i s odd -with respect to time-reversal, while the other structures in

(4-8) do not change under th i s transformation. Hence the quantity

V^(p.*af E + E , " i e + a t l , E - E ). must "be an odd function of i t s las t

arsumont and V-, V_, V,, V. and V,-, correspondingly, must he even

functions of E - E . Evidently, on the shel l , 3 = 3 ,

6 6

he potential contains only five independent spin-structures.

- 3 2 -



These results are in complete agreement with those of the

authors of /lOf and /Tlf, where the'structure of the nucleon-nucleon

potential in the non-relativistic case has heon analysed (see also [l2f).

' For illustrative purposes we now calculate the quasipotantial to

second order in g. It is evident that here we can use formula (2.18),

as the only irreducible diagrams of second order are the diagrams

a), b), c) and d) in Fig. 3- After some simple calculations, we find

the following expressions for the quantities V.̂  from (4-3). (The index (2)

shovs that quantities of second order are considered.),

+

5 !

(4.14)

J

)
' i

^2 )
';>'io function V")- ' is obviously antisymmetric with respect to tho

6 f) () () () ()
formation i> —> q . while V^

•*• o o 1

9
and

(2)
^J

are invariant under this transformation.

In the higher order terms of the perturbation series the T-odd

structure appears as well. For example, the irreducible diagram shown

in Fig. 4a) gives the following contribution in Y\ j;
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(4.15)-

where X i s d,etexjnined lay eg.. (3 .7) , A V ( p )
IE

and. the vectors "a and To are equal to

(4.16)

It is easy to verify that, under the transformation (4.1l)-(4.12),

th© expression (4.15) changes sign'.

To conclude this section we write the spin structures of the

quasipotential (3.2) in a Lorentz oovariant form:

V = r̂  I © 1 + K, VljL © i + 1 (9 If1 J T

.... . .. _ (4.17)
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•whore

(4.13)

The quantities S1. (i = 1*2, ... , 6) are invariant functions of the

type

'?iio first five spin-structures in (4*7) are T-even, and so their

coefficients F must "be even functions of the. last argument. The

function JV is multiplied by a T-odd structure and hence it must "be

an odd function of s - s . Obviously JFV = 0 when s = s .

P I o P q.

The decomposition (4»17) can be obtained using the well-known

reasoning described, for instance, in j/pjJT. In our case i t is

convenient to choose the vector basis in the four-dimensional

p-space in the form;

V

V

p
er I~ v i 1p

V . CONCLUSION

A3 already mentioned, the quasipotential equations we

have obtained Tor the 1€7 system are completely analogous to the

corresponding scalar equations (1.3) and (I.4). In both cases the

free Green function is the same and all the specific featurec

introduced by the spin appear only in the structure of the quasi-
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potential. Therefore, the situation here is the same as in the non—

relativistio oase where the free Hamiltonian is a scalar in the spin

space and only the interaction terms are spin dependent.

Ih connection "with, this fact, it is tempting to try to apply

our approach to a relativistio formulation of the higher syinraotries,

for instance SU(6), where the invariance of the free equations with

respect to proper spin transformations is highly desirable. Then,

one Of the interesting questions which can arise is: what must "be

the form of the initial interaction Hamiltonisr. H(x) in order that

the quasi-potential built up from H(x) "by using our procedure would

"be approximately SU(6) invariant?
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In this part of the paper, information about the symbols,

notations and. normaliaations used above, is collected.

I. Metric

Pi a V01Q ~ p."?

II. Field equations, Fourier decompositions and quantization

1) Pseudosoalar field

X l C X

-A:

where

8 k'k')OU-kJ . (A.2)

b) Pairing of two y>-operators

(A.3)

- 3 7 -



2) S^inor field

where

\

- 3 3 -



where

-t-

"b) Pairings of two spinor operators'

whore

(1.7)

(A.8)

M« A*-

c) formalizatiGn and orthogonality relations and completeness

conditions for the spinors -j, and v
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•where

d) Explicit form of -u and V in terras of tvro-QQtiaponent

quantities

-1

where W =,; ,„ j and 5 = 1 are the spin wave functions

normalized to unity.

Q) Cha.pg6--oon,;tu.£ated spinors

I o o o • - ** \
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•Tho wavo functions uc(q.) can also be written in tha

A

(A.14)

who re
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