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Abstract

In this paper we consider an extension to the renewal or Sparre Andersen risk process by introduc-
ing a dependence structure between the claim sizes and the interclaim times through a Farlie-Gumbel-
Morgenstern copula proposed by Cossette et al. for the classical compound Poisson risk model [H. Cos-
sette, E. Marceau, F. Marri, Analysis of ruin measures for the classical compound Poisson risk model
with dependence, Scandinavian Actuarial Journal, 2010, 3, 221-245]. We consider that the inter-arrival
times follow the Erlang(n) distribution. By studying the roots of the generalized Lundberg equation, the
Laplace transform of the expected discounted penalty function is derived and a detailed analysis of the
Gerber - Shiu function is given when the initial surplus is zero. It is proved that this function satisfies a
defective renewal equation and its solution is given through the compound geometric tail representation
of the Laplace transform of the time to ruin. Explicit expressions for the discounted joint and marginal
distribution functions of the surplus prior to the time of ruin and the deficit at the time of ruin are derived.
Finally, for exponential claim sizes explicit expressions and numerical examples for the ruin probability
and the Laplace transform of the time to ruin are given.

Keywords: Gerber-Shiu discounted penalty function; dependence; Farlie-Gumbel-Morgenstern copula;
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1 Introduction

In the actuarial literature, a lot of attention is concentrated on the classical risk model in which claims
occur according to a Poisson process as well as on the renewal or Sparre Andersen risk model in which
claims occur more generally as a renewal process. Ruin probabilities and many other ruin measures such
as the marginal and the joint (defective or not) distributions of the time to ruin, the deficit at ruin and the
surplus prior to ruin have been extensively studied. A unified approach to study together these fundamental
ruin measures in just one function has been proposed by the Gerber and Shiu (1998) seminal paper, by
introducing the expected discounted penalty function for the classical risk model. For a detailed study of
these ruin measures we refer to Lin and Willmot (1999) and the references therein. Since then, many authors
have studied several renewal risk models with specific interclaim times. The Erlang distribution is one of
the most commonly used distributions in risk theory and queueing theory. Several results concerning the
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evaluation of the Gerber - Shiu function for renewal risk models have been obtained when the interclaim
times occur according to an Erlang process. See, for example, Dickson (1998), Dickson and Hipp (1998,
2001), Cheng and Tang (2003), Tsai and Sun (2004), Li and Garrido (2004), Sun (2005), Gerber and Shiu
(2005) and the references therein. In the study of these models, it is assumed that the claim sizes and
the interclaim times are mutually independent. Although this hypothesis indeed simplifies the study of
several ruin measures, it has been proved to be inappropriate and very restrictive in some real applications.
For example, in modelling damages due to natural catastrophic events (e.g. earthquakes) the intensity of
the catastrophe and the time elapsed since the last catastrophe are expected to be dependent. We refer to
Boudreault (2003) and Nikoloulopoulos and Karlis (2008) for such a dependence structure in an earthquake
context.

Recently, many authors have paid more and more attention to risk models with dependence between claim
sizes and interclaim times. The modelling of the dependence structure has led to several generalizations of
the classical risk model. Albrecher and Boxma (2004) extended the classical risk model by considering
that the interclaim time depends on the previous claim size and studied the ruin probability. A generaliza-
tion of this dependence structure is examined in Albrecher and Boxma (2005) who considered a Markov
- dependent risk model. Albrecher and Teugels (2006) considered several copulas in order to model the
dependence structure between the claim size and the interclaim time and studied the asymptotic behavior
of the ruin probability in both finite and infinite time. Boudreault et al. (2006) extended the classical risk
model by introducing a dependence structure where the distribution of the next claim size depends on the
time elapsed since the last claim and examined the Gerber - Shiu function. Meng et al. (2008) studied the
ruin probability for a risk model with a dependent setting where the time between the two claim occurrences
determines the distribution of the next claim. Cossette et al. (2008, 2010) considered the classical compound
Poisson risk process with a dependence structure based on the (generalized) Farlie - Gumbel - Morgenstern
copula and evaluated the Gerber - Shiu function. Badescu et al. (2009) using fluid flow techniques studied
the Gerber - Shiu function by modelling the dependence structure via bivariate phase - type distributions.
Ambagaspitiya (2009) by means of Wiener - Hopf factorization technique obtained the ruin probabilities for
two classes of bivariate distributions modelling the claim size and the interclaim time. Cheung at al. (2010)
studied the structural properties for a generalized Gerber - Shiu function by assuming a general dependence
structure for the renewal risk model. Albrecher et al. (2011) obtained explicit ruin formulas for models with
dependence among claims only or among interclaim times only via copula. Zhang and Yang (2011) studied
the Gerber - Shiu functions for a perturbed by diffusion compound Poisson risk model with dependence
structure between the claim size and the interclaim time based on the Farlie - Gumbel - Morgenstern copula.
Zhang et al. (2011) using a q-potential measure studied the Gerber - Shiu function for a perturbed by a jump
- diffusion process renewal risk model where the claim size and the interclaim time follow some bivariate
distribution. Woo (2011) considered a delayed renewal risk model with a general dependence structure and
investigated a generalized Gerber - Shiu function.

In this paper, we consider a renewal or Sparre Andersen risk process with dependence between the claim
size and the interclaim time, based on the Farlie - Gumbel - Morgenstern copula. We assume that the inter-
claim times are distributed according to an Erlang(n) distribution. Therefore our risk model is an extension
of the classical compound Poisson risk process proposed by Cossette et al. (2010). Therefore our risk
model is an extension of the classical compound Poisson risk process proposed by Cossette et al. (2010).
The choice of an Erlang(n) distribution is motivated by the fact that it is more general than the Exponential
distribution allowing a flexible modelling of the interarrival times. A further discussion why the proposed
Erlang(n) risk model is more appropriate than the Poisson arrival process is given in Subsection 8.1. The
rest of the paper is organized as follows. In Section 2, we describe the dependence structure of the proposed
model. We derive the generalized Lundberg equation and analyze its roots in Section 3. In Section 4 we
obtain the Laplace transform of the Gerber - Shiu function. The analysis of the Gerber - Shiu function with
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zero initial surplus is given in Section 5. The defective renewal equation for the Gerber - Shiu function, the
Laplace transform of the time to ruin and their solutions are obtained in Section 6. In Section 7, explicit
expressions for the discounted distributions of the surplus prior to ruin and the deficit at ruin are given.
Finally, explicit expressions and numerical results are given for exponential claims in Section 8.

2 The risk model and the dependence structure

For an insurance portfolio, we consider the surplus process {U(t), t ≥ 0} defined by U(t) = u+ ct−S(t),
where u = U(0) ≥ 0 is the initial surplus and c is the premium rate which is assumed to be a positive

constant. {S(t), t ≥ 0} is the total claim amount process defined by S(t) =
∑N(t)

i=1 Xi and
∑b

α = 0
if α > b. The random variable (r.v.) Xi represents the size of the i-th claim, and the r.v.’s {Xi}∞i=1 are
assumed to form a sequence of i.i.d. r.v.’s distributed as a generic r.v. X with probability density function
(p.d.f.) fX , cumulative distribution function (c.d.f.) FX(x) = 1 − FX(x) and Laplace transform (L.T.)
f̂X(s) =

∫∞
0 e−sxfX(x)dx. The claim number process {N(t), t ≥ 0} is a renewal process defined via a

sequence of i.i.d. interclaim times {Wi}∞i=1 withW1 the time of the first claim and Wi the time between the
(i-1)-th and the i-th claim for i ≥ 2. We assume that the r.v.’s {Wi}∞i=1 are distributed as a generic r.v. W
with p.d.f. fW , c.d.f. FW (t) = 1− FW (t) and L.T. f̂W (s) =

∫∞
0 e−stfW (t)dt.

In this paper we consider that the r.v. W has an Erlang(n) distribution with expectation n/λ, n ∈ N
+,

λ > 0 with p.d.f., c.d.f. and L.T. given by

fW (t) =
λn

(n− 1)!
tn−1e−λt, t ≥ 0 n ∈ N

+, (1)

FW (t) = 1− e−λt
n−1∑
i=0

(λt)i

i!
, and (2)

f̂W (s) = E[e−sW ] =

(
λ

λ+ s

)n

. (3)

As in Cossette et al. (2010), we assume that the pairs {(Xi,Wi)}∞i=1 form a sequence of i.i.d. random vectors
distributed as the generic random vector (X,W ), in which the components X and W may be dependent, so
that {cWi −Xi}∞i=1 is also a sequence of i.i.d. r.v.’s. The joint p.d.f. of (X,W ) is denoted by fX,W and the
joint c.d.f. is denoted by FX,W .

Motivated by Cossette et al. (2010), we use the Farlie - Gumbel - Morgenstern (FGM) copula to define the
joint distribution of (X,W ) and hence the dependence structure between the claim size and the interclaim
time. The FGM copula is defined by

CFGM
θ (u1, u2) = u1u2 + θu1u2 (1− u1) (1− u2) , (4)

with (u1, u2) ∈ [0, 1] × [0, 1] and −1 ≤ θ ≤ 1. The FGM copula allows positive and negative dependence,
and it also includes the independence copula for θ = 0. The FGM copula is often used in applications to
describe dependence structures due to its tractability and simplicity. For more on the FGM copula we refer to
Nelsen (2006) and for applications of this in risk theory, health insurance plans, financial risk management,
stochastic frontiers and a stereological context see Cossette et al. (2010) and the references therein.

The bivariate c.d.f. of FX,W based on the FGM copula is defined by

FX,W (x, t) = CFGM
θ

(
FX(x), FW (t)

)
= FX(x)FW (t) + θFX(x)FX(x)FW (t)FW (t), x, t ∈ R

+.
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The p.d.f. associated to Eq. (4) is given by

cFGM
θ =

∂2

∂u1∂u2
CFGM
θ

= 1 + θ (1− 2u1) (1− 2u2) ,

and with this, the bivariate p.d.f. of (X,W ) is given by

fX,W (x, t) = cFGM
θ

(
FX(x), FW (t)

)
fX(x)fW (t)

= fX(x)fW (t) + θh(x)fW (t)
[
2FW (t)− 1

]
, x, t ∈ R

+, (5)

where h(x) = fX(x) [1− 2FX(x)] with L.T. ĥ(s) =
∫∞
0 e−sxh(x)dx. Using Eqs (1) and (2), Eq. (5) can

be written as

fX,W (x, t) = fX(x)
λn

(n− 1)!
tn−1e−λt + θh(x)

[
2

λn

(n− 1)!
tn−1

(n−1∑
i=0

(λt)i

i!

)
e−2λt

− λn

(n− 1)!
tn−1e−λt

]
, x, t ∈ R

+. (6)

In particular, from Eq. (6) the conditional p.d.f. of the claim size X is given by

fX|W (x|t) = fX(x) + θh(x)

[
2

(n−1∑
i=0

(λt)i

i!

)
e−λt − 1

]
, x, t ∈ R

+.

In the sequel we assume that θ �= 0, since otherwise our model reduces to the renewal risk model with
Erlang(n) interclaim times.

Let τ = inft≥0{t, U(t) < 0} be the time of ruin with τ = ∞ if U(t) ≥ 0 for all t ≥ 0 (i.e. ruin does not
occur) and ψ(u) = Pr(τ < ∞|U(0) = u) be the ultimate ruin probability. To guarantee that ruin will not
almost surely occur, the premium rate c is such that

E[cWi −Xi] > 0, i = 1, 2, · · · ,
providing a positive safety loading. This condition is equivalent to

c >
λ

n
E(X). (7)

The main goal of this paper is the evaluation of the expected discounted penalty function introduced by
Gerber and Shiu (1998) for the classical risk model and by Gerber and Shiu (2005) for the Sparre Andersen
or renewal risk model. This function includes many other ruin measures and is defined by

mδ(u) = E[e−δτw(U(τ−), |U(τ)|)I(τ <∞)|U(0) = u], u ≥ 0, (8)

where δ ≥ 0 is interpreted as the force of interest or the Laplace argument, U(τ−) is the surplus prior to
ruin, |U(τ)| is the deficit at ruin, w(x, y) is a non-negative bivariate function of 0 ≤ x, y < ∞ and I(A)
represents the indicator function of the event A. Note that when w(x, y) = 1 for all x, y ≥ 0, then mδ(u)
reduces to the L.T. of the time to ruin, denoted bymτ (u), i.e. mτ (u) = E[e−δτ I(τ <∞)|U(0) = u] and in
addition if δ = 0 the mδ(u) and hence mτ (u) becomes the ruin probability ψ(u) = E[I(τ < ∞)|U(0) =
u].
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3 Analysis of a generalized Lundberg equation

In this Section we introduce a generalized version of the Lundberg equation for the Erlang(n) risk process
with dependence based on a FGM copula, and then we analyze the number of its roots in the right-half
complex plane. These roots are needed to derive the defective renewal equation for the Gerber-Shiu function
mδ(u) as well as to evaluate several ruin quantities.

In order to derive Lundberg’s generalized equation, we consider the corresponding discrete-time process
embedded in the continuous-time surplus process {U(t); t ≥ 0}. Let V0 = 0 and Vk =

∑k
i=1Wi, k ≥ 1, be

the arrival time of the k-th claim. Define the discrete-time process by U0 = u and for k = 1, 2, · · · ,

Uk = U(Vk) = u+ cVk −
k∑

i=1

Xi = u+
k∑

i=1

(
cWi −Xi

)
,

to be the surplus immediately after the k-th claim. We seek a number s such that the process {e−δVk+sUk ; k =
0, 1, 2, · · · } is a martingale. This process is a martingale if and only if

E[e−δW es(cW−X)] = E[e(cs−δ)W e−sX ] = 1, (9)

which is called the generalized Lundberg equation associated with our risk model. Note that by Eq. (5), the
left-hand side of Eq. (9) can be written as

E

[
e−δW es(cW−X)

]
=

∫ ∞

0

∫ ∞

0
et(cs−δ)e−sxfX,W (x, t)dxdt

=

∫ ∞

0

∫ ∞

0
et(cs−δ)e−sx [fX(x)− θh(x)] fW (t)dxdt

+ 2θ

∫ ∞

0

∫ ∞

0
et(cs−δ)e−sxh(x)fW (t)FW (t)dxdt

=
[
f̂(s)− θĥ(s)

]
f̂W (δ − cs) + 2θĥ(s)

∫ ∞

0
e−t(δ−cs)fW (t)FW (t)dt. (10)

From Eqs (1) and (2) we have

∫ ∞

0
e−t(δ−cs)fW (t)FW (t)dt =

∫ ∞

0
e−t(δ−cs) λn

(n− 1)!
tn−1

(n−1∑
i=0

(λt)i

i!

)
e−2λtdt

=
λn

(n− 1)!

n−1∑
i=0

λi

i!

∫ ∞

0
e−t(δ+2λ−cs)tn+i−1dt

=
λn

(n− 1)!

n−1∑
i=0

λi

i!
· (n+ i− 1)!

(δ + 2λ− cs)n+i

= λn
n−1∑
i=0

(
n+ i− 1

i

)
λi

(δ + 2λ− cs)n+i
,

and thus using this and Eq. (3), Eq. (10) becomes

E[e−δW es(cW−X)] =
[
f̂X(s)− θĥ(s)

]( λ

δ + λ− cs

)n

+ 2θĥ(s)

n−1∑
i=0

(
n+ i− 1

i

)(
λ

δ + 2λ− cs

)n+i

.

5



Then, Lundberg’s generalized equation Eq. (9) reduces to

f̂X(s)

(
λ

δ + λ− cs

)n

+ θĥ(s)

[
2

n−1∑
i=0

(
n+ i− 1

i

)(
λ

δ + 2λ− cs

)n+i

−
(

λ

δ + λ− cs

)n
]
= 1. (11)

When n = 1, Eq. (11) simplifies to the Lundberg’s generalized equation (Eq. 16) of Cossete et al. (2010),
and it is shown that the Lundberg’s generalized equation has exactly two positive roots with Re(s) ≥ 0
when δ > 0 and θ �= 0.

Proposition 1. For δ > 0 and θ �= 0, Lundberg’s generalized equation in Eq. (11) has exactly 3n− 1 roots,
say ρ1(δ),ρ2(δ),· · · ,ρ3n−1(δ) in the right - half complex plane, i.e. withRe(ρi(δ)) > 0, i = 1, 2, · · · , 3n−1.

Proof. Since the generalized Lundberg equation (11) also becomes

λnf̂X(s) (δ + 2λ− cs)2n−1 + θλnĥ(s)

[
2
n−1∑
i=0

(
n+ i− 1

i

)
λi (δ + λ− cs)n (δ + 2λ− cs)n−i−1

− (δ + 2λ− cs)2n−1

]
= (δ + λ− cs)n (δ + 2λ− cs)2n−1 , (12)

it suffices to show that the above Eq. (12) has exactly 3n − 1 roots with positive real parts. Let r > 0
be a sufficiently large number, and denote by Cr the contour containing the imaginary axis running from
−ir to ir and a semicircle with radius r running clockwise from ir to −ir, i.e. Cr = {s ∈ C : |s| =
r,Re(s) ≥ 0, r > 0 is fixed }. We let r → ∞ and denote by C the limiting contour. To prove the result, we
apply Rouché’s theorem on the closed contour C . We distinguish two cases according to as Re(s) > 0 or
Re(s) = 0.

For s on the semicircle, i.e. for Re(s) > 0, we have |δ+λ−cs| → ∞ and |δ+2λ−cs| → ∞ as r → ∞,
and thus∣∣∣∣∣f̂X(s)

(
λ

δ + λ− cs

)n

+ θĥ(s)

[
2
n−1∑
i=0

(
n+ i− 1

i

)(
λ

δ + 2λ− cs

)n+i

−
(

λ

δ + λ− cs

)n
]∣∣∣∣∣

≤
∣∣∣f̂X(s)

∣∣∣ λn

|δ + λ− cs|n +
∣∣∣θĥ(s)∣∣∣ ∣∣∣∣∣

[
2
n−1∑
i=0

(
n+ i− 1

i

)(
λ

δ + 2λ− cs

)n+i

−
(

λ

δ + λ− cs

)n
]∣∣∣∣∣

≤
∣∣∣f̂X(s)

∣∣∣ λn

|δ + λ− cs|n +
∣∣∣θĥ(s)∣∣∣ [2 n−1∑

i=0

(
n+ i− 1

i

)
λn+i

|δ + 2λ− cs|n+i
+

λn

|δ + λ− cs|n
]
→ 0

on C , i.e. for r → ∞, and hence it holds that∣∣∣∣∣f̂X(s)

(
λ

δ + λ− cs

)n

+ θĥ(s)

[
2

n−1∑
i=0

(
n+ i− 1

i

)(
λ

δ + 2λ− cs

)n+i

−
(

λ

δ + λ− cs

)n
]∣∣∣∣∣ < 1,

(13)
on C .

Let us define the random variable Z with probability density function given by gz(x) = 2fX(x)FX (x),
and thus h(x) = fX(x)− gz(x). Let also ĝz(s) =

∫∞
0 e−sxgz(x)dx and

d̂δ(s) = 2

n−1∑
i=0

(
n+ i− 1

i

)(
λ

δ + 2λ− cs

)n+i

−
(

λ

δ + λ− cs

)n

.
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For s on the imaginary axis, i.e., for Re(s) = 0, and for δ > 0, similar to Cossette et al. (2008), we have∣∣∣∣∣f̂X(s)

(
λ

δ + λ− cs

)n

+ θĥ(s)

[
2
n−1∑
i=0

(
n+ i− 1

i

)(
λ

δ + 2λ− cs

)n+i

−
(

λ

δ + λ− cs

)n
]∣∣∣∣∣

=

∣∣∣∣f̂X(s)

(
λ

δ + λ− cs

)n

+ θ
[
f̂X(s)− ĝz(s)

]
d̂δ(s)

∣∣∣∣
≤
∣∣∣∣f̂X(s)

(
λ

δ + λ− cs

)n∣∣∣∣+ ∣∣∣θ [f̂X(s)− ĝz(s)
]
d̂δ(s)

∣∣∣
=
∣∣∣f̂X(s)

∣∣∣ λn

|δ + λ− cs|n + |θ|
∣∣∣f̂X(s)− ĝz(s)

∣∣∣ ∣∣∣d̂δ(s)∣∣∣
≤ λn

|δ + λ− cs|n + |θ|
∣∣∣d̂δ(s)∣∣∣ ≤ ( λ

δ + λ

)n

+ |θ|
∣∣∣d̂δ(0)∣∣∣ ≤ ( λ

δ + λ

)n

+
∣∣∣d̂δ(0)∣∣∣ . (14)

For δ > 0, it holds d̂δ(0) > 0. Indeed,

d̂δ(0) = 2

n−1∑
i=0

(
n+ i− 1

i

)(
λ

δ + 2λ

)n+i

−
(

λ

δ + λ

)n

=
1

2n−1

n−1∑
i=0

(
n+ i− 1

i

)(
1

2

)i( 2λ

δ + 2λ

)n+i

−
(

λ

δ + λ

)n

≥ 1

2n−1

(
2λ

δ + 2λ

)n n−1∑
i=0

(
n+ i− 1

i

)(
1

2

)i

−
(

λ

δ + λ

)n

=

(
2λ

δ + 2λ

)n

−
(

λ

δ + λ

)n

> 0,

for δ > 0, n ≥ 1, where we use the well-known combinatorial identity

n∑
i=0

(
n+ i

i

)(
1

2

)i

= 2n, n ≥ 0. (15)

Therefore, for s on the imaginary axis, Eq. (14) becomes∣∣∣∣∣f̂X(s)

(
λ

δ + λ− cs

)n

+ θĥ(s)

[
2
n−1∑
i=0

(
n+ i− 1

i

)(
λ

δ + 2λ− cs

)n+i

−
(

λ

δ + λ− cs

)n
]∣∣∣∣∣

≤
(

λ

δ + λ

)n

+ d̂δ(0)

=

(
λ

δ + λ

)n

+ 2

n−1∑
i=0

(
n+ i− 1

i

)(
λ

δ + 2λ

)n+i

−
(

λ

δ + λ

)n
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= 2

(
λ

δ + 2λ

)n n−1∑
i=0

(
n+ i− 1

i

)(
λ

δ + 2λ

)i

< 2

(
λ

δ + 2λ

)n n−1∑
i=0

(
n+ i− 1

i

)(
1

2

)i

, (since λ/(δ + 2λ) < 1/2 for δ > 0)

= 2

(
λ

δ + 2λ

)n

2n−1, (from Eq. (15))

=

(
2λ

δ + 2λ

)n

< 1, for δ > 0.

Therefore, in each case we proved that∣∣∣∣∣f̂X(s)

(
λ

δ + λ− cs

)n

+ θĥ(s)

[
2

n−1∑
i=0

(
n+ i− 1

i

)(
λ

δ + 2λ− cs

)n+i

−
(

λ

δ + λ− cs

)n
]∣∣∣∣∣ < 1,

(16)
or equivalently∣∣∣∣λnf̂X(s) (δ + λ− cs)2n−1 + θλnĥ(s)

[
2

n−1∑
i=0

(
n+ i− 1

i

)
λi (δ + λ− cs)n (δ + 2λ− cs)n−i−1

− (δ + 2λ− cs)2n−1

]∣∣∣∣< ∣∣∣∣(δ + λ− cs)n (δ + 2λ− cs)2n−1

∣∣∣∣,
and thus by Rouché’s theorem, it follows that Eq. (12) has the same number of roots as the following
equation (δ + λ− cs)n (δ + 2λ− cs)2n−1 = 0 inside Cr. Since the latter equation has exactly 3n − 1
positive roots inside Cr, we deduce that Eq. (12) and equivalently Eq. (11) has exactly 3n − 1 roots, say
ρ1(δ), . . . , ρ3n−1(δ) with positive real parts. Finally we complete the proof by letting r → ∞.

In the sequel, for simplicity we write ρj for ρj(δ), j = 1, 2, · · · , 3n − 1, when δ > 0.
Remark. For δ = 0, the conditions to Rouché’s theorem are not satisfied, since∣∣∣∣∣f̂X(s)

(
λ

δ + λ− cs

)n

+ θĥ(s)

[
2
n−1∑
i=0

(
n+ i− 1

i

)(
λ

δ + 2λ− cs

)n+i

−
(

λ

δ + λ− cs

)n
]∣∣∣∣∣

=

∣∣∣∣∣1 + θ

[
2

(
1

2

)n n−1∑
i=0

(
n+ i− 1

i

)(
1

2

)i

− 1

]∣∣∣∣∣
=

∣∣∣∣∣1 + θ

[(
1

2

)n−1

2n−1 − 1

]∣∣∣∣∣ = 1,

for s = 0 due to Eq. (15). Also, this shows that a trivial root to Lundberg’s generalized equation (13) equals
zero for δ = 0. The importance of the case δ = 0 is due to the evaluation among others of several ruin
related quantities, such as the ruin probability, the defective joint distribution of the surplus prior to ruin and
the deficit at ruin, as well as their joint moments, being special cases of the Gerber - Shiu penalty function
at δ = 0.

Proposition 2. For δ = 0 and for θ �= 0, Lundberg’s generalized equation in (11) has exactly 3n − 2 roots
in the right-half plane with positive real parts and one root equal to zero.
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Proof. Let z = 1 − s
k and define Dk = {s : |z| = 1}, i.e. in terms of s the contour Dk is a circle

with origin at k and radius k. Similarly as in Proposition 1, we let k → ∞ and denote by D the lim-
iting contour. Using identical arguments as in the proof of Proposition 1, one can show that Eq. (13)
also holds on D (excluding s = 0 or equivalently z = 1) for δ = 0. Also note that the functions

λn
{
f̂X(s) (2λ− cs)2n−1 + θĥ(s)

[∑n−1
i=0

(n+i−1
i

)
λi(λ− cs)n(2λ− cs)n−i−1 − (2λ− cs)2n−1

]}
and

(λ − cs)n(2λ − cs)2n−1 are continuous on D. As in Cossette et al. (2010) in order to apply Theorem 1 of
Klimenok (2001), we must prove that

d

dz

{
1− f̂X(k − kz)

(
λ

λ− ck(1− z)

)n

− θĥ(k − kz)

[
2

n−1∑
i=0

(
n+ i− 1

i

)(
λ

2λ− c(k − kz)

)n+i

−
(

λ

λ− c(k − kz)

)n ]}∣∣∣∣
z=1

> 0.

The left-hand side of this relation is equal to

d

dz

{
1−E

[
e(k−kz)(cW−X)

]}∣∣∣∣
z=1

= kE [cW −X]

which is always positive under the security loading condition (see Eq. (7)).

Thus, from Klimenok (2001), we conclude that inside D, the number of roots of Eq. (12) and thus of Eq.
(11) is equal to 3n − 2, i.e. the number of roots of (λ − cs)n(2λ − cs)2n−1inside D minus 1. Finally we
have seen that a trivial root to Lundberg’s generalized equation (11) equals zero.

4 Laplace transform of mδ(u)

The main goal of this section is to derive the Laplace transform m̂δ(s) =
∫∞
0 e−sumδ(u)du of the Gerber-

Shiu expected discounted penalty function mδ(u) defined by Eq. (8). For u ≥ 0, we define the following
functions

γ1(u) =

∫ ∞

u
w(u, x − u)fX(x)dx, γ2(u) =

∫ ∞

u
w(u, x− u)h(x)dx (17)

σ1,δ(u) =

∫ u

0
mδ(u− x)fX(x)dx+ γ1(u), σ2,δ(u) =

∫ u

0
mδ(u− x)h(x)dx + γ2(u). (18)

By conditioning on the time and the amount of the first claim, and making use of Eq. (5) we have

mδ(u) =

∫ ∞

0
e−δt

{∫ u+ct

0
mδ(u+ ct− x)fX,W (x, t)dx

+

∫ ∞

u+ct
w(u+ ct, x− u− ct)fX,W (x, t)dx

}
dt

=

∫ ∞

0
e−δtfW (t)

[
σ1,δ(u+ ct)− θσ2,δ(u+ ct)

]
dt

+ 2θ

∫ ∞

0
e−δtfW (t)FW (t)σ2,δ(u+ ct)dt. (19)

Setting y = u+ ct, Eq. (19) yields

cmδ(u) =

∫ ∞

u
e−

δ(y−u)
c fW

(
y − u

c

)[
σ1,δ(y)− θσ2,δ(y)

]
dy

+ 2θ

∫ ∞

u
e−

δ(y−u)
c fW

(
y − u

c

)
FW

(
y − u

c

)
σ2,δ(y)dy,

9



from which by substituting fW (t) and FW (t) from Eq. (1) and Eq. (2), we obtain

cnmδ(u) =
λn

(n− 1)!

∫ ∞

u
e−

(δ+λ)(y−u)
c (y − u)n−1

[
σ1,δ(y)− θσ2,δ(y)

]
dy

+
2θλn

(n− 1)!

∫ ∞

u
e−

(δ+2λ)(y−u)
c (y − u)n−1

[n−1∑
i=0

λi

i!

(
y − u

c

)i ]
σ2,δ(y)dy.

Taking LTs gives

cnm̂δ(s) =
λn

(n− 1)!

∫ ∞

0
e−su

∫ ∞

u
e−

(δ+λ)(y−u)
c (y − u)n−1

[
σ1,δ(y)− θσ2,δ(y)

]
dydu

+
2θλn

(n− 1)!

∫ ∞

0
e−su

∫ ∞

u
e−

(δ+2λ)(y−u)
c (y − u)n−1

[n−1∑
i=0

λi

i!

(
y − u

c

)i ]
σ2,δ(y)dydu

=
λn

(n− 1)!

∫ ∞

0
e−

(δ+λ)(y−u)
c

[
σ1,δ(y)− θσ2,δ(y)

]∫ y

0
(y − u)n−1e−(s− δ+λ

c
)ududy

+
2θλn

(n− 1)!

∫ ∞

0
e−

(δ+2λ)y
c σ2,δ(y)

n−1∑
i=0

λi

cii!

∫ y

0
(y − u)n−i−1e−(s−

δ+2λ
c )ududy. (20)

It can be easily proved (e.g., by induction) that the following equality holds for α > 0, k = 0, 1, 2, · · ·∫ y

0
(y − u)ke−αudu =

k∑
j=0

(−1)jj!

(
k

j

)
yk−j

αj+1
+ (−1)k+1 k!

αk+1
e−αy. (21)

Therefore, using Eq. (21), the relation (20) can be written in the form

cnm̂δ(s) = (−1)n
λn(

s− δ+λ
c

)n[σ̂1,δ(s)− θσ̂2,δ(s)

]

+ 2θλn
n−1∑
i=0

(−1)n+i

(
n+ i− 1

i

)
λi

ci
(
s− δ+2λ

c

)n+i σ̂2,δ(s) + B̂δ(s)

=
λn(

δ+λ
c − s

)n[σ̂1,δ(s)− θσ̂2,δ(s)

]

+ 2θλn
n−1∑
i=0

(
n+ i− 1

i

)
λi

ci
(
δ+2λ

c − s
)n+i

σ̂2,δ(s) + B̂δ(s), (22)

where

σ̂i,δ(s) =

∫ ∞

0
e−suσi,δ(u)du, i = 1, 2,

and

B̂δ(s) =
λn

(n− 1)!

n−1∑
j=0

(−1)j
j!
(n−1

j

)(
s− δ+λ

c

)j+1

∫ ∞

0
yn−1−je−

(δ+λ)y
c [σ1,δ(y)− θσ2,δ(y)] dy

+
2θλn

(n− 1)!

n−1∑
i=0

λi

cii!

n+i−1∑
j=0

(−1)j
j!
(
n+i−1

j

)
(
s− δ+2λ

c

)j+1

∫ ∞

0
yn+i−1−je−

(δ+2λ)y
c σ2,δ(y)dy.
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Let γ̂i(s) =
∫∞
0 e−suγi(u)du, i = 1, 2. Since from Eq. (18) it holds σ̂1,δ(s) = m̂δ(s)f̂X(s) + γ̂1(s) and

σ̂2,δ(s) = m̂δ(s)ĥ(s) + γ̂2(s), the above equation (22) reduces to

m̂δ(s)

{
cn − λn(

δ+λ
c − s

)n[f̂X(s)− θĥ(s)

]
−2θλn

n−1∑
i=0

(
n+ i− 1

i

)
λi

ci
(
δ+2λ

c − s
)n+i

ĥ(s)

}

=
λn(

δ+λ
c − s

)n[γ̂1(s)− θγ̂2(s)

]
+2θλn

n−1∑
i=0

(
n+ i− 1

i

)
λi

ci
(
δ+2λ

c − s
)n+i

γ̂2(s) + B̂δ(s). (23)

Now using Eq. (23) we give in the following theorem an expression for m̂δ(s).

Theorem 1. In the Erlang(n) risk process with a dependence structure based on the FGM copula, the
Laplace transform m̂δ(s) of the Gerber-Shiu discounted penalty function mδ(u), is given by

m̂δ(s) =
β̂1,δ(s) + β̂2,δ(s)

ĥ1,δ(s)− ĥ2,δ(s)
, (24)

where

ĥ1,δ(s) =

(
δ + λ

c
− s

)n(δ + 2λ

c
− s

)2n−1

, (25)

ĥ2,δ(s) =
λn

cn
f̂X(s)

(
δ + 2λ

c
− s

)2n−1

+ θ
λn

cn
ĥ(s)

[
2

(
δ + λ

c
− s

)n

×
n−1∑
i=0

λi

ci

(
n+ i− 1

i

)(
δ + 2λ

c
− s

)n−i−1

−
(
δ + 2λ

c
− s

)2n−1 ]
, (26)

β̂1,δ(s) =
λn

cn
γ̂1(s)

(
δ + 2λ

c
− s

)2n−1

+ θ
λn

cn
γ̂2(s)

[
2

(
δ + λ

c
− s

)n

×
n−1∑
i=0

λi

ci

(
n+ i− 1

i

)(
δ + 2λ

c
− s

)n−i−1

−
(
δ + 2λ

c
− s

)2n−1 ]
, (27)

and β̂2,δ(s) is a polynomial in s of degree 3n− 2 or less, given by

β̂2,δ(s) = −
3n−1∑
j=1

β̂1,δ(ρj)

3n−1∏
k=1,k �=j

s− ρk
ρj − ρk

.

Proof. Multiplying both sides of Eq. (23) by
(
δ+λ
c − s

)n (δ+2λ
c − s

)2n−1
/cn and then solving the resulting
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equation for m̂δ(s) we get immediately the Eq. (24), with

β̂2,δ(s) =
1

cn
ĥ1,δ(s)B̂δ(s)

= −
{

λn

cn(n − 1)!

n−1∑
j=0

j!

(
n− 1

j

)(
δ + λ

c
− s

)n−j−1(δ + 2λ

c
− s

)2n−1

μ̂j(
δ + λ

c
)

+
2θλn

cn(n− 1)!

n−1∑
i=0

λi

cii!

n+i−1∑
j=0

j!

(
n+ i− 1

j

)(
δ + λ

c
− s

)n(δ + 2λ

c
− s

)2n−j−2

δ̂i,j(
δ + 2λ

c
)

}

= −
{

λn

cn(n − 1)!

n−1∑
j=0

j!

(
n− 1

j

)(
δ + λ

c
− s

)n−j−1(δ + 2λ

c
− s

)2n−1

μ̂j(
δ + λ

c
)

+
2θλn

cn(n− 1)!

2n−2∑
j=0

⎛⎝ n−1∑
i=max(0,j+1−n)

λi

cii!
j!

(
n+ i− 1

j

)
δ̂i,j(

δ + 2λ

c
)

⎞⎠
(
δ + λ

c
− s

)n(δ + 2λ

c
− s

)2n−j−2}
,

which is a polynomial in s of degree 3n− 2 or less, where

μ̂j(
δ + λ

c
) =

∫ ∞

0
yn−1−je−

(δ+λ)y
c [σ1,δ(y)− θσ2,δ(y)] dy,

δ̂i,j(
δ + 2λ

c
) =

∫ ∞

0
yn+i−1−je−

(δ+2λ)y
c σ2,δ(y)dy.

It is easy to see that the Lundberg’s generalized equation (11) can also be written in the form ĥ1,δ(s) −
ĥ2,δ(s) = 0, which means that ρi’s, i = 1, 2, · · · , 3n − 1 are roots of the denominator in Eq. (24). Since
m̂δ(s) is analytic forRe(s) ≥ 0 this implies that ρi’s, i = 1, 2, · · · , 3n−1 are also roots of the numerator in
Eq. (24), and thus β̂2,δ(ρi) = −β̂1,δ(ρi), i = 1, 2, · · · , 3n − 1. Since β̂2,δ(s) is a polynomial in s of degree
3n-2, by the Lagrange interpolation formula at the 3n− 1 points ρ1, ρ2, · · · , ρ3n−1, we have

β̂2,δ(s) =

3n−1∑
j=1

β̂2,δ(ρj)

3n−1∏
k=1,k �=j

s− ρk
ρj − ρk

= −
3n−1∑
j=1

β̂1,δ(ρj)

3n−1∏
k=1,k �=j

s− ρk
ρj − ρk

,

and hence the proof is completed.

Note that for n = 1, our Theorem 1 is reduced to Proposition 6.1 of Cossette et al. (2010).

5 Analysis of the Gerber - Shiu penalty function when u = 0

In this section we examine some ruin quantities by considering the case of u = 0. The roots of the Lund-
berg’s generalized equation, studied in Section 3, play an important role in the rest of this paper. In what
follows, we only consider the case that the roots ρ1,ρ2,· · · ,ρ3n−1 are all distinct since the analysis of the
other case (which can be made in a similar manner) will not impose any technical obstacle, but the compu-
tational procedure will become more tedious and does not offer further insight except the complexity of the

12



results. By applying the initial value theorem, we get

mδ(0) = lim
s→∞ sm̂(s) = lim

s→∞

̂β1,δ(s)
s3n−2 − 1

s3n−2

∑3n−1
j=1 β̂1,δ(ρj)

∏3n−1
k=1,k �=j

s−ρk
ρj−ρk

̂h1,δ(s)

s3n−1 − ̂h2,δ(s)

s3n−1

=
− lims→∞ 1

s3n−2

∑3n−1
j=1 β̂1,δ(ρj)

∏3n−1
k=1,k �=j

s−ρk
ρj−ρk

(−1)3n−1

=
−∑3n−1

j=1 β̂1,δ(ρj)
∏3n−1

k=1,k �=j
1

ρj−ρk

(−1)3n−1

=

3n−1∑
j=1

β̂1,δ(ρj)∏3n−1
k=1,k �=j(ρk − ρj)

. (28)

If n = 1, then Eq. (28) simplifies to Corollary 6.1 in Cossette et al. (2010).
Let

b1,δ(s) =
λn

cn

(
δ + 2λ

c
− s

)2n−1

, (29)

and

b2,δ(s) = θ
λn

cn

[
2

(
δ + λ

c
− s

)n n−1∑
i=0

λi

ci

(
n+ i− 1

n− 1

)(
δ + 2λ

c
− s

)n−i−1

−
(
δ + 2λ

c
− s

)2n−1 ]
. (30)

Then from Eq. (27) we have

β̂1,δ(s) = b1,δ(s)γ̂1(s) + b2,δ(s)γ̂2(s). (31)

Let also

bij =
bi,δ(ρj)∏3n−1

k=1k �=j(ρk − ρj)
, (32)

for i = 1, 2 and j = 1, 2, ..., 3n − 1. Then Eq. (28), using Eqs (31) and (32), is written as

mδ(0) =

3n−1∑
j=1

b1,δ(ρj)γ̂1(ρj) + b2,δ(ρj)γ̂2(ρj)∏3n−1
k=1k �=j(ρk − ρj)

=

2∑
i=1

3n−1∑
j=1

bi,j γ̂i(ρj). (33)

Since (see Eq. (17)) γ1(x) =
∫∞
x w(x, y − x)fX(y)dy =

∫∞
0 w(x, y)fX(x + y)dy we have that γ̂1(s) =∫∞

0 e−sxγ1(x)dx =
∫∞
0

∫∞
0 e−sxw(x, y)fX(x+y)dydx and similarly that γ̂2(s) =

∫∞
0

∫∞
0 e−sxw(x, y)h(x

+y)dydx. Therefore from Eq. (33) we obtain

mδ(0) =

∫ ∞

0

∫ ∞

0
w(x, y)

[
fX(x+ y)

3n−1∑
j=1

b1,je
−ρjx + h(x+ y)

3n−1∑
j=1

b2,je
−ρjx

]
dydx. (34)

Let f(x, y, t|0) be the joint defective probability density function of the surplus prior to ruin (x), the deficit
at ruin (y) and the time of ruin (t) given U(0) = 0, and fδ(x, y|0) be the discounted (marginal if δ → 0)
probability density function of the surplus prior to ruin and the deficit at ruin given U(0) = 0. Then we have

fδ(x, y|0) =
∫ ∞

0
e−δtf(x, y, t|0)dt.
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From Eq. (16) of Cheung et al. (2010) and for u = 0, it follows that

mδ(0) =

∫ ∞

0

∫ ∞

0

∫ ∞

0
e−δtw(x, y)f(x, y, t|0)dtdydx =

∫ ∞

0

∫ ∞

0
w(x, y)fδ(x, y|0)dydx, (35)

which combined with Eq. (34) yields

fδ(x, y|0) = fX(x+ y)

3n−1∑
j=1

b1,je
−ρjx + h(x+ y)

3n−1∑
j=1

b2,je
−ρjx. (36)

In the sequel, we need to introduce the well-known Dickson-Hipp operator Tr of a real-valued integrable
function g defined as

Trg(x) =

∫ ∞

x
e−r(y−x)g(y)dy, x ≥ 0, r ∈ C,

where r has a non-negative real part, i.e. Re(r) ≥ 0. Some useful properties of the operator Tr needed in
the paper are listed below:

1. Trg(0) =

∫ ∞

0
e−ryg(y)dy = ĝ(r), r ∈ C.

2. Tr1Tr2g(x) = Tr2Tr1g(x) =
Tr1g(x)− Tr2g(x)

r2 − r1
, x ≥ 0, r1 �= r2 ∈ C.

3. (T̂rg)(s) = Trĝ(s) = TsTrg(0) =
ĝ(s)− ĝ(r)

r − s
, r �= s ∈ C.

4. If r1, r2, · · · , rm are distinct complex numbers and πm(s) =
m∏
i=1

(s− ri), then

Tr1 · · · Trmg(x) = (−1)m
m∑
i=1

Trig(x)

π′
m(ri)

, x ≥ 0, (37)

and the corresponding Laplace Transform is

TsTr1 · · ·Trmg(0) = (−1)m

[
ĝ(s)

πm(s)
−

m∑
i=1

ĝ(ri)

(s − ri)π
′
m(ri)

]
, s ∈ C. (38)

Further properties of this operator can be found in Li and Garrido (2004) and the references therein.

Let f1,δ(x|0) =
∫∞
0 fδ(x, y|0)dy be the discounted (marginal if δ → 0) probability density function of

the surplus prior to ruin and f2,δ(y|0) =
∫∞
0 fδ(x, y|0)dx be the discounted (marginal if δ → 0) probability

density function of the deficit at ruin given U(0) = 0. Since∫ ∞

0
h(x+ y)dy =

∫ ∞

x
h(y)dy =

∫ ∞

x
fX(y)

[
1− 2FX(y)

]
dy = −FX(x)F̄X(x),

from Eq. (36) we get

f1,δ(x|0) =

∫ ∞

0
fδ(x, y|0)dy = F̄X(x)

[3n−1∑
j=1

b1,je
−ρjx − FX(x)

3n−1∑
j=1

b2,je
−ρjx

]
,
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and

f2,δ(y|0) =

∫ ∞

0
fδ(x, y|0)dx

=
3n−1∑
j=1

b1,j

∫ ∞

0
e−ρjxfX(x+ y)dx+

3n−1∑
j=1

b2,j

∫ ∞

0
e−ρjxh(x+ y)dx

=
3n−1∑
j=1

b1,jTρjfX(y) +
3n−1∑
j=1

b2,jTρjh(y).

The LT of f2,δ(y|0) is given by

f̂2,δ(s) =

∫ ∞

0
e−syf2,δ(y|0)dy = Tsf2,δ(0|0)

=

3n−1∑
j=1

b1,jTsTρjfX(0) +

3n−1∑
j=1

b2,jTsTρjh(0)

=
3n−1∑
j=1

b1,j f̂X(ρj) + b2,jĥ(ρj)

s− ρj
− f̂X(s)

3n−1∑
j=1

b1,j
s− ρj

− ĥ(s)
3n−1∑
j=1

b2,j
s− ρj

. (39)

Using Eqs (25), (29) and (30) it follows that ĥ2,δ(s) = b1,δ(s)f̂X(s) + b2,δ(s)ĥ(s), and thus for j =
1, · · · , 3n − 1 it holds

b1,j f̂X(ρj) + b2,jĥ(ρj) =
b1,δ(ρj)f̂X(ρj) + b2,δ(ρj)ĥ(ρj)∏3n−1

k=1k �=j(ρk − ρj)
=

ĥ2,δ(ρj)∏3n−1
k=1 k �=j(ρk − ρj)

=
ĥ1,δ(ρj)∏3n−1

k=1 k �=j(ρk − ρj)
,

and hence from Eqs (25) and (39) we have that

f̂2,δ(s) =
3n−1∑
j=1

(δ + λ− cρj)
n (δ + 2λ− cρj)

2n−1

c3n−1(s− ρj)
∏3n−1

k=1 k �=j(ρk − ρj)
− f̂(s)

3n−1∑
j=1

b1,j
s− ρj

− ĥ(s)
3n−1∑
j=1

b2,j
s− ρj

. (40)

Using a similar argument from interpolation theory as in Li and Garrido (2005, see their Eqs (17) and (18)),
it can be easily proved that the following identities hold

3n−1∑
j=1

(δ + λ− cρj)
n (δ + 2λ− cρj)

2n−1

c3n−1(s− ρj)
∏3n−1

k=1 k �=j(ρk − ρj)
= 1−(δ + λ− cs)n (δ + 2λ− cs)2n−1

c3n−1
∏3n−1

i=1 (ρi − s)
, (41)

3n−1∑
j=1

b1,j
s− ρj

=
3n−1∑
j=1

b1,δ(ρj)

(s− ρj)
∏3n−1

k=1,k �=j(ρk − ρj)
=

3n−1∑
j=1

λn (δ + 2λ− cρj)
2n−1

c3n−1(s− ρj)
∏3n−1

k=1,k �=j(ρk − ρj)

= −λ
n (δ + 2λ− cs)2n−1

c3n−1
∏3n−1

i=1 (ρi − s)
, (42)
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and

3n−1∑
j=1

b2,j
s− ρj

=

3n−1∑
j=1

b2,δ(ρj)

(s− ρj)
∏3n−1

k=1,k �=j(ρk − ρj)

=
3n−1∑
j=1

θλn
[
2 (δ + λ− cρj)

n∑n−1
i=0

(n+i−1
n−1

)
λi (δ + 2λ− cρj)

n−i−1 − (δ + 2λ− cρj)
2n−1

]
c3n−1(s− ρj)

∏3n−1
k=1 k �=j(ρk − ρj)

= −
θλn
[
2 (δ + λ− cs)n

∑n−1
i=0

(
n+i−1
n−1

)
λi (δ + 2λ− cs)n−i−1 − (δ + 2λ− cs)2n−1

]
c3n−1

∏3n−1
i=1 (ρi − s)

. (43)

Therefore, Eq. (40) becomes

f̂2,δ(s) = 1− 1

c3n−1
∏3n−1

i=1 (ρi − s)

{
(δ + λ− cs)n(δ + 2λ− cs)2n−1 − λn(δ + 2λ− cs)2n−1f̂(s)

− θλn
[
2(δ + λ− cs)n

n−1∑
i=0

(
n+ i− 1

n− 1

)
λi(δ + 2λ− cs)n−i−1 − (δ + 2λ− cs)2n−1

]
ĥ(s)

}
,

i.e., the LT of f2,δ(y|0) reduces to

f̂2,δ(s) = 1− ĥ1,δ(s)− ĥ2,δ(s)∏3n−1
i=1 (ρi − s)

. (44)

Setting w(x, y) = 1, Eq. (35) implies that the LT of the time of ruin mτ given U(0) = 0, is

mτ (0) = E

[
e−δτ I(τ <∞)|U(0) = 0

]
=

∫ ∞

0

∫ ∞

0
fδ(x, y|0)dydx

=

∫ ∞

0
f2,δ(y|0)dy = lim

s→0
f̂2,δ(s) = 1− ĥ1,δ(0)− ĥ2,δ(0)

ρ1ρ2...ρ3n−1

= 1−
(δ + 2λ)2n−1

[
(δ + λ)n − λn

]
c3n−1

∏3n−1
i=1 ρi

, (45)

since f̂(0) = 1, ĥ(0) = 0. Also from Eq. (45) it follows that mτ (0) < 1 due to δ > 0.
Now for the ruin probability ψ(0) given the initial surplus U(0) = 0, we have

ψ(0) = lim
δ→0+

E

[
e−δτ I(τ <∞)|U(0) = u

]

= 1− lim
δ→0+

(δ + 2λ)2n−1

[
(δ + λ)n − λn

]
c3n−1

∏3n−1
i=1 ρi

= 1− n22n−1λ3n−2

c3n−1ρ
′
1(0)ρ

∗(0)
,

where ρ∗(0) =
∏3n−1

i=2 ρi(0) and ρ
′
1(0) =

d
dδρ1(δ)

∣∣∣∣
δ→0+

. In order to find the quantity ρ
′
1(0), we shall use

the fact that ρ1(δ) is a root of the denominator of Eq. (24). Thus we have ĥ1(ρ1(δ)) = ĥ2(ρ1(δ)) from
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which by differentiating w.r.t. δ and then letting δ → 0+, we get that

n22n−1λ3n−2[1− cρ′1(0)] + (2n − 1)22n−2λ3n−2[1− cρ′1(0)]

= (2n − 1)22n−2λ3n−2 + 22n−1λ3n−1

[
ρ
′
1(0)f̂

′
(0) − θρ

′
1(0)ĥ

′
(0)

]
+ θ2nλ3n−1ρ

′
1(0)ĥ

′
(0)

n−1∑
i=0

(
n+ i− 1

n− 1

)(
1

2

)i

,

and since f̂
′
(0) = −E(X), the above relation with the help of Eq. (15) finally yields that

ρ′1(0) =
n

nc− λE(X)
=

E(W )

cE(W )− E(X)
,

which is always positive due to the positive loading condition (see Eq. (7)). Therefore it holds that

ψ(0) = 1−
22n−1λ3n−2

[
nc− λE(X)

]
c3n−1ρ∗(0)

< 1.

6 Defective Renewal Equation

Gerber and Shiu (2005) and Li and Garrido (2005) show that the defective renewal equation approach of
Gerber and Shiu (1998) in the classical compound Poisson risk model, can be extended to the ordinary
renewal risk process. Using similar arguments, i.e. by conditioning on the first drop in the surplus below
its initial level u ≥ 0 and whether ruin occurs on the first claim or not, Cheung et al. (2010) obtained an
integral equation (see their Eq. (15)) for the generalized expected discounted penalty function including the
surplus prior to ruin, the deficit at ruin, the minimum surplus before ruin time and the surplus immediately
after the second last claim before ruin occurs. Therefore by taking w(x, y, z, υ) = w(x, y) in Eqs (15) and
(12) of Cheung et al. (2010) we obtain that mδ(u) satisfies the following integral equation

mδ(u) =

∫ u

0
mδ(u− y)

{∫ ∞

0
fδ(x, y|0)dx

}
dy +Gδ(u)

=

∫ u

0
mδ(u− y)f2,δ(y|0)dy +Gδ(u), u ≥ 0. (46)

where f2,δ(y|0) is given by Eq. (39) and

Gδ(u) =

∫ ∞

u

∫ ∞

0
w(x+ u, y − u)fδ(x, y|0)dxdy

=

∫ ∞

0

∫ ∞

u
w(s, t)fδ(s− u, t+ u|0)dsdt. (47)

Since
∫∞
0 f2,δ(y|0)dy = mτ (0) < 1 (from Eq. (45)), Eq. (46) is a defective renewal equation. In the

sequel, at first we give an alternative expression for f2,δ(y|0). From Eq. (25), ĥ1,δ(s) is a polynomial of
degree 3n− 1 in s. Using the Lagrange interpolating formula for ĥ1,δ(s) (which is a polynomial that passes
through the 3n points (0, ĥ1,δ(0)), (ρj , ĥ1,δ(ρj)), j = 1, · · · , 3n − 1), we get that

ĥ1,δ(s) = ĥ1,δ(0)

3n−1∏
k=1

s− ρk
(−ρk) + s

3n−1∑
j=1

ĥ1,δ(ρj)

ρj

3n−1∏
k=1,k �=j

s− ρk
ρj − ρk

.
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Using Eq. (38) and similar arguments as in the page 15 of Cossette et al. (2010), the aforementioned relation
implies that

ĥ1,δ(s)− ĥ2,δ(s) = π3n−1(s)

[
ĥ1,δ(0)

π3n−1(0)
−

3n−1∑
j=1

ĥ2,δ(ρj)

(−ρj)π′
3n−1(ρj)

+
3n−1∑
j=1

ĥ2,δ(ρj)

(s− ρj)π
′
3n−1(ρj)

− ĥ2,δ(s)

π3n−1(s)

]
,

(48)
where π3n−1(s) =

∏3n−1
i=1 (s − ρi). Since ĥ2,δ(ρj) = ĥ1,δ(ρj), j = 1, 2, · · · , 3n − 1, from Eqs (25) and

(41) for s = 0, we have that

ĥ1,δ(0)

τ(0)
+

3n−1∑
j=1

ĥ2,δ(ρj)

ρjτ
′(ρj)

=

(
δ+λ
c

)n(
δ+2λ

c

)2n−1

∏3n−1
i=1 (−ρi)

+
3n−1∑
j=1

(
δ+λ
c − ρj

)n(
δ+2λ

c − ρj

)2n−1

ρj
∏3n−1

k=1,k �=j(ρj − ρk)

=
(δ + λ)n(δ + 2λ)2n−1

c3n−1
∏3n−1

i=1 (−ρi)
+ (−1)3n−1

{
1− (δ + λ)n(δ + 2λ)2n−1

c3n−1
∏3n−1

i=1 ρi

}
= (−1)3n−1.

Therefore Eq. (48) becomes

ĥ1,δ(s)− ĥ2,δ(s) = (−1)3n−1π3n−1(s)

[
1− TsTρ1 · · ·Tρ3n−1h2,δ(0)

]
. (49)

Furthermore from Eqs (44) and (49) we obtain that

f̂2,δ(s) = 1− ĥ1,δ(s)− ĥ2,δ(s)∏3n−1
i=1 (ρi − s)

= 1−
(−1)3n−1π3n−1(s)

[
1− TsTρ1 · · ·Tρ3n−1h2,δ(0)

]
(−1)3n−1π3n−1(s)

= TsTρ1 · · ·Tρ3n−1h2,δ(0), (50)

and thus by inverting this we get the following alternative expression for f2,δ(y|0),

f2,δ(y|0) = Tρ1 · · ·Tρ3n−1h2,δ(y),

18



which can be easily computed using Eq. (37) from the fourth property of the Dickson - Hipp operator. Also
from Eqs (47) and (36) we have that

Gδ(u) =

∫ ∞

0

∫ ∞

u
w(s, t)

[
fX(s+ t)

3n−1∑
j=1

b1,je
−ρj(s−u) + h(s+ t)

3n−1∑
j=1

b2,je
−ρj(s−u)

]
dsdt

=

3n−1∑
j=1

b1,j

∫ ∞

u
e−ρj(s−u)

∫ ∞

0
w(s, t)fX(s+ t)dtds

+

3n−1∑
j=1

b2,j

∫ ∞

u
e−ρj(s−u)

∫ ∞

0
w(s, t)h(s + t)dtds

=

3n−1∑
j=1

b1,j

∫ ∞

u
e−ρj(s−u)γ1(s)ds+

3n−1∑
j=1

b2,j

∫ ∞

u
e−ρj(s−u)γ2(s)ds

=
2∑

i=1

3n−1∑
j=1

bi,jTρjγi(u). (51)

Now we shall give an alternative expression for the function Gδ(u). From Eq. (51) it follows that

Ĝδ(s) =

∫ ∞

0
e−suGδ(u)du = TsGδ(0) =

2∑
i=1

3n−1∑
j=1

bi,jTsTρjγi(0)

=

3n−1∑
j=1

b1,j γ̂1(ρj) + b2,j γ̂2(ρj)

(s− ρj)
− γ̂1(s)

3n−1∑
j=1

b1,j
s− ρj

− γ̂2(s)

3n−1∑
j=1

b2,j
s− ρj

=

3n−1∑
j=1

b1,δ(ρj)γ̂1(ρj) + b2,δ(ρj)γ̂2(ρj)

(s− ρj)
∏3n−1

k=1,k �=j(ρk − ρj)
− γ̂1(s)

3n−1∑
j=1

b1,j
s− ρj

− γ̂2(s)

3n−1∑
j=1

b2,j
s− ρj

,

where we use Eq. (32). Now from Eqs (31), (42) and (43) we get that

Ĝδ(s) =
3n−1∑
j=1

β̂1,δ(ρj)

(s− ρj)
∏3n−1

k=1,k �=j(ρk − ρj)
+
λn(δ + 2λ− cs)2n−1

c3n−1
∏3n−1

i=1 (ρi − s)

+ θ

λn
[
2(δ + λ− cs)n

∑n−1
i=0

(n+i−1
n−i

)
λi(δ + 2λ− cs)n−i−1 − (δ + 2λ− cs)2n−1

]
c3n−1

∏3n−1
i=1 (ρi − s)

γ̂2(s)

=

3n−1∑
j=1

β̂1,δ(ρj)

(s− ρj)
∏3n−1

k=1,k �=j(ρk − ρj)
+
b1,δ(s)γ̂1(s) + b2,δ(s)γ̂2(s)∏3n−1

i=1 (ρi − s)

=
3n−1∑
j=1

β̂1,δ(ρj)

(s− ρj)
∏3n−1

k=1,k �=j(ρk − ρj)
+

β̂1,δ(s)∏3n−1
i=1 (ρi − s)

= (−1)3n−1

[
β̂1,δ(s)

τ(s)
−

3n−1∑
j=1

β̂1,δ(ρj)

(s − ρj)τ
′(ρj)

]
= TsTρ1 ...Tρ3n−1β1,δ(0), (52)
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where the last equality follows from Eq. (38) for the Disckson-Hipp operator. Thus, by inverting Eq. (52)
we also get the following alternative expression for Gδ(u),

Gδ(u) = Tρ1 ...Tρ3n−1β1,δ(u),

which again can be easily computed using Eq. (37) from the fourth property of the Disckson - Hipp operator.
Therefore from Eq. (46) and recalling that

∫∞
0 f2,δ(y|0)dy = mτ (0) < 1, we get the following proposition.

Proposition 3. The Gerber-Shiu discounted penalty function mδ(u) admits a defective renewal equation

mδ(u) =

∫ u

0
mδ(u− y)f2,δ(y|0)dy +Gδ(u), u ≥ 0 (53)

where

f2,δ(y|0) = Tρ1 · · ·Tρ3n−1h2,δ(y),

and

Gδ(u) = Tρ1 ...Tρ3n−1β1,δ(u).

Furthermore, Eq. (53) admits the following alternative representation

mδ(u) =
1

1 + κδ

∫ u

0
mδ(u− y)θδ(y)dy +

1

1 + κδ
Λδ(u), u ≥ 0 (54)

where κδ is defined such that

1

1 + κδ
= T0Tρ1 ...Tρ3n−1h2,δ(0) = mτ (0).

In addition we have
Λδ(u) = (1 + κδ)Gδ(u), (55)

and
θδ(y) = (1 + κδ)f2,δ(y|0),

which is a proper density function.

The next result shows that the Laplace transform of the time to ruinmτ (u) (and hence the ruin probability
ψ(u)) is the tail of a compound geometric distribution.

Proposition 4. The Laplace transform of the time to ruin mτ (u) satisfies the defective renewal equation

mτ (u) =

∫ u

0
mτ (u− y)f2,δ(y|0)dy +

∫ ∞

u
f2,δ(y|0)dy

=
1

1 + κδ

∫ u

0
mτ (u− y)θδ(y)dy +

1

1 + κδ
Θδ(u), u ≥ 0, (56)

which has the following compound geometric representation:

mτ (u) =
κδ

1 + κδ

∞∑
j=1

(
1

1 + κδ

)j

Θ
∗j
δ (u) u ≥ 0,

where Θδ(u) =
∫∞
u θδ(y)dy and Θ

∗j
δ (u) is the j-fold convolution of the survival distribution Θδ(u).
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Proof. For w(x1, x2) = 1, Eq (17) gives that γ1(u) = T0f(u) and γ2(u) = T0h(u) and thus from Eq. (51)
we obtain

Gδ(u) =

3n−1∑
j=1

b1,jTρjT0fX(u) +

3n−1∑
j=1

b2,jTρjT0h(u).

Therefore using this and Eq. (39) it follows that

Gδ(u) = T0f2,δ(u|0) =
∫ ∞

u
f2,δ(y|0)dy,

and hence the result follows directly from Proposition 3.

An explicit solution of the defective renewal equation (54) can be derived directly by applying Theorem
2.1 of Lin and Willmot (1999).

Proposition 5. The solution mδ(u) to Eq. (54) may be written as

mδ(u) = − 1

κδ

∫ u

0
mτ (u− x)dΛδ(x) +

1

κδ
Λδ(u)− 1

κδ
Λδ(0)mτ (u). (57)

7 Discounted distributions of U(τ−) and |U(τ)|
In this section, we derive the discounted joint and marginal distributions of the surplus prior to ruin U(τ−)
and the deficit at ruin |U(τ)| from the expected discounted penalty function using Proposition 5.

At first, we derive the discounted joint distribution function, say Fδ(x, y|u), of U(τ−) and |U(τ)| given
U(0) = 0, which can be obtained from mδ(u) by letting w(x1, x2) = I(x1 ≤ x, x2 ≤ y), for any fixed x
and y.

As in Lin and Wilmott (1999), Tsai and Sun (2004) and Tsai (2005) we define the distribution functions
Γi,j(y) = 1− Γi,j(y), i = 1, 2, j = 1, 2, · · · , 3n − 1, as follows

Γ1,j(y) =

∫ y
0 TρjfX(t)dt

E1,j
, Γ2,j(y) =

∫ y
0 Tρjh(t)dt

E2,j
, (58)

where

E1,j =

∫ ∞

0
TρjfX(t)dt, E2,j =

∫ ∞

0
Tρjh(t)dt.

Since F (x) is a survival function, from Eq. (2.19) in Lin and Willmot (1999) (see also Eq. (1) in Tsai
(2005)) it follows that

Γ1,j(y) =

∫∞
y e−ρj(x−y)FX(x)dx

E1,j
, j = 1, 2, · · · , 3n − 1.

Now, let H(y) =
∫∞
y h(t)dt. Then

Γ2,j(y) =
H(y)− eρjy

∫∞
y e−ρjxh(x)dx

ρjE2,j

=
eρjy limx→+∞ e−ρjxH(x) + ρj

∫∞
y e−ρj(x−y)H(x)dx

ρjE2,j

=

∫∞
y e−ρj(x−y)H(x)dx

E2,j
, j = 1, 2, · · · , 3n− 1,
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since H(x) = −FX(x)FX(x) and thus limx→∞ e−ρjxH(x) = 0 for j = 1, 2, · · · , 3n − 1. Furthermore,
from Eqs (39) and (58) we have that

Θδ(y) =

∫ ∞

y
θδ(t)dt = (1 + κδ)

∫ ∞

y
f2,δ(t|0)dt

= (1 + κδ)

[3n−1∑
j=1

b1,j

∫ ∞

y
TρjfX(t)dt+

3n−1∑
j=1

b2,j

∫ ∞

y
Tρjh(t)dt

]

= (1 + κδ)
2∑

i=1

3n−1∑
j=1

bi,jEi,jΓi,j(y)

=
2∑

i=1

3n−1∑
j=1

wi,jΓi,j(y) (59)

where
wi,j = (1 + κδ)bi,jEi,j i = 1, 2 and j = 1, · · · , 3n− 1.

Note that
∑2

i=1

∑3n−1
j=1 wi,j = (1+κδ)

∫∞
0 f2,δ(t|0)dt = (1+κδ)mτ (0) = 1, and thus Θδ(y) is a weighted

distribution function.

Now, let w(x1, x2) = I(x1 ≤ x, x2 ≤ y), for any fixed x and y. Then

w(x1, x2 − x1) =

{
1, if x1 ≤ x, x2 ≤ x1 + y
0, otherwise,

and

γ1(x1) =

∫ ∞

x1

w(x1, x2 − x1)fX(x2)dx2 =

{ ∫ x1+y
x1

fX(x2)dx2, if x1 ≤ x

0, if x1 > x.

Since, Tρjγ1(u) =
∫∞
u e−ρj(x1−u)γ1(x1)dx1 it follows that Tρjγ1(u) = 0 if 0 < x ≤ u for j = 1, · · · , 3n−

1, and if 0 ≤ u < x, then for j = 1, · · · , 3n− 1 we have

Tρjγ1(u) =

∫ x

u
e−ρj(x1−u)γ1(x1)dx1 =

∫ x

u
e−ρj(x1−u)

∫ x1+y

x1

fX(x2)dx2dx1

=

∫ x

u
e−ρj(x1−u)

[
FX(x1)− FX(x1 + y)

]
dx1

=

∫ x

u
e−ρj(x1−u)FX(x1)dx1 −

∫ x+y

u+y
e−ρj(z−u−y)FX(z)dz

=

∫ ∞

u
e−ρj(x1−u)FX(x1)dx1 −

∫ ∞

x
e−ρj(x1−u)FX(x1)dx1

−
∫ ∞

u+y
e−ρj(z−u−y)FX(z)dz +

∫ ∞

x+y
e−ρj(z−u−y)FX(z)dz

= E1,jΓ1,j(u)− e−ρj(x−u)

∫ ∞

x
e−ρj(x1−x)FX(x1)dx1

− E1,jΓ1,j(u+ y) + e−ρj(x−u)

∫ ∞

x+y
e−ρj(z−x−y)FX(z)dz

= E1,jΓ1,j(u)− e−ρj(x−u)E1,jΓ1,j(x)− E1,jΓ1,j(u+ y) + e−ρj(x−u)E1,jΓ1,j(x+ y)

= E1,j

[
Γ1,j(u)− Γ1,j(u+ y)

]− E1,je
−ρj(x−u)

[
Γ1,j(x)− Γ1,j(x+ y)

]
,
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and similarly for j = 1, · · · , 3n− 1 we obtain that Tρjγ2(u) = 0 if 0 < x ≤ u and

Tρjγ2(u) = E2,j

[
Γ2,j(u)− Γ2,j(u+ y)

]−E2,je
−ρj(x−u)

[
Γ2,j(x)− Γ2,j(x+ y)

]
,

for j = 1, · · · , 3n− 1 if 0 ≤ u < x.

Therefore from Eqs (51) and (55) it follows that

Λδ(u) = (1 + κδ)Gδ(u) = (1 + κδ)

2∑
i=1

3n−1∑
j=1

bi,jTρjγi(u)

=

2∑
i=1

3n−1∑
j=1

wij

{
Γi,j(u)− Γi,j(u+ y)− e−ρj(x−u)

[
Γi,j(x)− Γi,j(x+ y)

]}
,

and thus using Eq. (59) we obtain

Λδ(u) = Θδ(u)−Θδ(u+ y)−
2∑

i=1

3n−1∑
j=1

wi,je
−ρj(x−u)

[
Γi,j(x)− Γi,j(x+ y)

]
, (60)

and for u > 0,

dΛδ(u) = dΘδ(u+ y)− dΘδ(u)−
2∑

i=1

3n−1∑
j=1

wi,jρje
−ρj(x−u)

[
Γi,j(x)− Γi,j(x+ y)

]
du. (61)

Since for w(x1, x2) = I(x1 ≤ x, x2 ≤ y), Eq. (57) becomes

Fδ(x, y|u) =
⎧⎨⎩

− 1
κδ

∫ u
0 mτ (u− t)dΛδ(t) +

1
κδ
Λδ(u)− 1

κδ
Λδ(0)mτ (u), 0 ≤ u < x

− 1
κδ

∫ x
0 mτ (u− t)dΛδ(t)− 1

κδ
Λδ(0)mτ (u), 0 < x ≤ u,

by replacing Λδ(u) and dΛδ(u) by Eqs (60) and (61) respectively, and using Eq. (56) we easily get the
following Proposition giving the discounted joint distribution function of U(τ−) and |U(τ)| (from which by
setting u = 0 we get Fδ(x, y|0) using Eq. (56) and mτ (0) = 1/(1 + κδ)).

Proposition 6. Let Ψj(u) = mτ (u) + ρj
∫ u
0 e

ρjtmτ (u − t)dt, j = 1, 2, · · · , 3n − 1. Then the discounted
joint distribution function of U(τ−) and |U(τ)| is given by

Fδ(x, y)|u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1+κδ
κδ

[mτ (u)−mτ (u+ y)]− 1
κδ
Θδ(y)mτ (u) +

1
κδ

∫ y
0 mτ (u+ y − t)dΘδ(t)

+ 1
κδ

∑2
i=1

∑3n−1
j=1 wi,je

−ρjx
[
Γi,j(x)− Γi,j(x+ y)

]
×
[
Ψj(u)− e−ρju

]
, 0 ≤ u < x,

1
κδ

∫ x
0 mτ (u− t)[dΘδ(t)− dΘδ(y + t)]− 1

κδ
Θδ(y)mτ (u)

+ 1
κδ

∑2
i=1

∑3n−1
j=1 wi,je

−ρjx

[
Γi,j(x)− Γi,j(x+ y)

]
×
{
Ψj(u) + eρjx

[
mτ (u− x)−Ψj(u− x)

]}
, 0 < x ≤ u,

with

Fδ(x, y|0) = 1

1 + κδ

⎧⎨⎩Θδ(y)−
2∑

i=1

3n−1∑
j=1

wi,je
−ρjx

[
Γi,j(x)− Γi,j(x+ y)

]⎫⎬⎭ .
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The marginal discounted distribution functions F1,δ(x|u) of U(τ−) and F2,δ(y|u) of |U(τ)| given U(0) =
u, can be derived immediately by letting y → ∞ and x→ ∞ respectively.

The discounted joint probability density functions fδ(x, y|u) of U(τ−) and |U(τ)| given U(0) = u, can
be obtained directly from

fδ(x, y)|u) = ∂2Fδ(x, y|u)
∂x∂y

,

and is given by the following

Proposition 7. The discounted joint probability density function fδ(x, y|u) of U(τ−) and |U(τ)| can be
written as

fδ(x, y|u) =
{

1+κδ
κδ

∑3n−1
j=1 [b1,jfX(x+ y) + b2,jh(x+ y)] e−ρjx [eρju −Ψj(u)] , 0 ≤ u < x

1+κδ
κδ

∑3n−1
j=1 [b1,jfX(x+ y) + b2,jh(x+ y)] [Ψj(u− x)− e−ρjxΨj(u)] , 0 < x ≤ u,

with

fδ(x, y|0) =
3n−1∑
j=1

[b1,jf(x+ y) + b2,jh(x+ y)] e−ρjx.

The marginal discounted probability density function f1,δ(x|u) of U(τ−) given U(0) = u is obtained
immediately from f1,δ(x|u) =

∫∞
0 fδ(x, y|u)dy and is given by the following

Proposition 8. The discounted probability density function fδ(x|u) of U(τ−) can be written as

f1,δ(x|u) =
{

1+κδ
κδ

∑3n−1
j=1 [b1,j − b2,jFX(x)]FX(x)e−ρjx [eρju −Ψj(u)] , 0 ≤ u < x

1+κδ
κδ

∑3n−1
j=1 [b1,j − b2,jFX(x)]FX(x) [Ψj(u− x)− e−ρjxΨj(u)] , 0 < x ≤ u,

with

f1,δ(x|0) =
3n−1∑
j=1

[b1,j − b2,jFX(x)]FX(x)e−ρjx.

The marginal discounted probability density function f2,δ(y|u) of |U(τ)| is given by f2,δ(y|u) =
∫∞
0 fδ(

x, y|u)dx. When δ → 0 in all the aforementioned Propositions we get the joint and marginal distribution
functions and probability density functions of U(τ−) and |U(τ)|.

8 Explicit Results for exponentially distributed claims

In this section, we assume that the r.v. X representing the individual claim amount, follows an exponential
distribution with parameter α > 0, i.e. fX(x) = αe−αx, x > 0, with f̂X(s) = α

α+s . From the Propositions
in Section 7, it is clear that the discounted joint and marginal distributions of U(τ−) and |U(τ)| can be
evaluated explicitly whenever the function mτ (u) is known. Therefore, at first we will find an explicit
expression for mτ (u) for exponentially distributed claims. Taking Laplace transforms in both sides of the
first equation in Proposition 4, we get that

m̂τ (s) =
mτ (0) − f̂2,δ(s)

s[1− f̂2,δ(s)]
=

1− f̂2,δ(s)− [1−mτ (0)]

s[1− f̂2,δ(s)]
(62)
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From Eqs (49) and (50) we have that

ĥ1,δ(s)− ĥ2,δ(s) = [1− f̂2,δ(s)]

3n−1∏
i=1

(ρi − s)

and thus Eq. (62) becomes

m̂τ (s) =
ĥ1,δ(s)− ĥ2,δ(s)− [1−mτ (0)]

∏3n−1
i=1 (ρi − s)

s[ĥ1,δ(s)− ĥ2,δ(s)]
. (63)

Now, for fX(x) = αe−αx, from Eqs (25), (26) we easily obtain that

ĥ1,δ(s)− ĥ2,δ(s) =
Q3n+1,δ(s)

c3n−1(α+ s)(2α + s)
, (64)

where

Q3n+1,δ(s) = (α+ s)(2α + s)(δ + λ− cs)n(δ + 2λ− cs)2n−1 − αλn(2α + s)(δ + 2λ− cs)2n−1

− θαλns

[
2(δ + λ− cs)n

n−1∑
i=0

(
n+ i− 1

i

)
λi(δ + 2λ− cs)n−i−1

− (δ + 2λ− cs)2n−1

]
.

Note that Q3n+1,δ(s) is a polynomial of degree 3n+ 1 with leading coefficient (−c)3n−1 and therefore the
equation Q3n+1,δ(s) = 0 has 3n+ 1 roots in the complex plane. Since ĥ1,δ(s)− ĥ2,δ(s) = 0 is Lundberg’s
generalized equation, it follows from Proposition 1 and Eq. (64) that the equation Q3n+1,δ(s) = 0 has
3n − 1 roots ρ1, · · · , ρ3n−1 with positive real part and two roots say −Ri = −Ri(δ), with Re(Ri) > 0,
i = 1, 2. Therefore we can rewrite Q3n+1,δ(s) as

Q3n+1,δ(s) = (−c)3n−1(s+R1)(s+R2)
3n−1∏
i=1

(s − ρi)

= c3n−1(s+R1)(s+R2)
3n−1∏
i=1

(ρi − s). (65)

So, from Eqs (65), and (64), Eq. (63) yields

m̂τ (s) =

∏2
j=1(s+Rj)− [1−mτ (0)](α + s)(2α+ s)

s
∏2

j=1(s+Rj)
(66)

Since m̂τ (s) <∞ for s ≥ 0, the numerator in Eq. (66) must be zero for s = 0, i.e.

1−mτ (0) =
R1R2

2α2

and hence Eq. (66) becomes

m̂τ (s) =

(
1− R1R2

2α2

)
s+R1 +R2 − 3R1R2

2α

(s+R1)(s+R2)
.
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Assuming that R1, R2 are distinct, using partial fractions yields

m̂τ (s) =

2∑
j=1

ζj,δ
s+Rj

,

where

ζ1,δ =
R2

R2 −R1

(
1− 3R1

2α
+
R1

2

2α2

)
ζ2,δ =

R1

R2 −R1

(
1− 3R2

2α
+
R2

2

2α2

)
.

Inverting the above Laplace transform gives

mτ (u) = ζ1,δe
−R1u + ζ2,δe

−R2u, u ≥ 0, (67)

and the ruin probability ψ(u) is easily obtained by letting δ → 0.

In order to find the discounted joint and marginal distributions of U(τ−) and |U(τ)| from Propositions of
the previous section, we need to find Ψj(u) as defined in Proposition 6. From Eq. (67), these functions can
be written for j = 1, 2, · · · , 3n − 1, as

Ψj(u) =
ζ1,δR1

R1 + ρj
e−R1u +

ζ2,δR2

R2 + ρj
e−R2u +

(
ζ1,δ

R1 + ρj
+

ζ2,δ
R2 + ρj

)
ρje

ρju.

For example, by Proposition 7, the discounted joint probability density function of U(τ−) and |U(τ)| is
given by

fδ(x, y)|u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2α3

R1R2
e−α(x+y)

∑3n−1
j=1

[
b1,j − b2,j(1− 2e−α(x+y))

]
×
[
(α+ρj)(2α+ρj )R1R2

2α2 e−ρj(x−u) −∑2
i=1

ζi,δRi

Ri+ρj
e(−Riu+ρjx)

]
, 0 ≤ u < x

2α3

R1R2
e−α(x+y)

∑3n−1
j=1

[
b1,j − b2,j(1− 2e−α(x+y))

]
×∑2

i=1
ζi,δRi

Ri+ρj
e−Riu

[
eRix − e−ρjx

]
, 0 < x ≤ u

Similarly, since we can easily obtain the other discounted (and non - discounted by letting δ → 0) joint and
marginal distributions of U(τ−) and |U(τ)|, the details are omitted.

8.1 Numerical illustration

In this subsection, using a particular model, we illustrate why we consider the extension from the Poisson
arrival process to Erlang(n) interarrival claim times as well as we indicate the impact of the dependence
parameter θ on the ruin probability and the Laplace transform of the ruin time.

8.1.1 Why Erlang(n) arrivals?

The answer to this question for the independent case, i.e. for θ = 0, was explained in details by De Vylder
and Goovaerts (1998) in the discussions of the paper of Dickson (1998). The authors explained why Erlang
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risk models are justified in practice by showing that the ruin probabilities calculated in an Erlangian risk
model are significantly different (and especially much smaller) from those calculated in a “corresponding”
classical compound Poisson risk model.

Here, we adopt the same approach in order to compare the ruin probabilities calculated in an Erlang risk
model under the FGM copula with those calculated by the “corresponding” classical compound Poisson risk
model also under the FGM copula for θ �= 0. The two compared “corresponding” models are risk models
with the same claim-size distribution, the same expected number of claims in any time interval [0, t], the
same security loading, and the same initial surplus. As stated by De Vylder and Goovaerts (1998), this
definition of the “corresponding” models can only be adopted asymptotically for t→ ∞.

We assume for the claim amount r.v. that X ∼ Exp(1) for both risk models. For the Erlang risk model
under the FGM copula, we assume that the interclaim r.v. W ∼ Erl(2, 2), i.e., k(t) = 4te−2t and thus
the expected number of claims in [0, t] is E[N(t)] = t − 1

4 (1 − e−4t). For the “corresponding” classical
compound Poisson risk model under the FGM copula with Poisson parameter μ > 0we denote by ψP (u) the
ruin probability. Since, the expected number of claims in [0, t] for the “corresponding” classical compound
Poisson risk model is equal to μt, we take μ = 1, because the expected number of claims in time interval
[0, t] must asymptotically be the same in both models as t → ∞. Also, in the Erlangian risk model we take
the premium rate c = 1.5 and then we also take c = 1.5 in the “corresponding” classical model because the
security loadings in [0, t] must asymptotically be the same. The above choice of the parameters implies that
the security loading is 50% for both models.

For the Erlang(2,2) risk model, using δ = 0 from Eq. (67), we provide the analytic expressions for the
ruin probability ψ(u) (derived with Maple) as function of the initial surplus u ≥ 0 and for different values of
the dependence parameter θ, while the ruin probabilities ψP (u) for the “corresponding” classical compound
Poisson risk model are taken from Example 8.1 in Cossette et al. (2010), see also in Figure 1:

• with θ = −1

ψ(u) = 0.6416701672e−0.3487732254 u − 0.0169012248e−2.1517194000 u

ψP (u) = 0.7201508967e−0.2687389645 u − 0.01854637723e−2.220708719 u

• with θ = −0.5

ψ(u) = 0.6111640019e−0.3833132642 u − 0.0096651749e−2.0792454120 u

ψP (u) = 0.6957948813e−0.2976043940 u − 0.01047590296e−2.114760590 u

• with θ = 0.5

ψ(u) = 0.5314436215e−0.4762087115 u + 0.01332254042e−1.911908905 u

ψP (u) = 0.6311261756e−0.3788264025 u + 0.01399640216e−1.873562242 u

• with θ = 1

ψ(u) = 0.4774717870e−0.5409429369 u + 0.03255482730e−1.811552947 u

ψP (u) = 0.5865437312e−0.4391578659 u + 0.03347620593e−1.730494168 u
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Figure 1: Ruin Probabilities in Corresponding Risk Models for θ �= 0
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Numerical values of these ruin probabilities corresponding to particular values of the initial surplus u ≥ 0
are given in Table 1.

Table 1. Ruin Probabilities in Corresponding Risk Models
θ = −1 θ = −0.5 θ = 0.5 θ = 1

u ψ(u) ψP (u) ψ(u) ψP (u) ψ(u) ψP (u) ψ(u) ψP (u)
0 0.6248 0.7016 0.6015 0.95532 0.54477 0.64512 0.51003 0.62002
5 0.1122 0.18787 0.089909 0.21809 0.049135 0.094953 0.031942 0.065271
10 0.01962 0.049012 0.013227 0.04925 0.0045426 0.014285 0.0021363 0.0072621
15 0.003430 0.012786 0.0019458 0.011122 0.00041999 0.0021492 0.0001429 0.00080806
20 0.0005997 0.0033357 0.00028625 0.0025115 3.8829e-005 0.00032335 9.5582e-006 8.9913e-005
25 0.0001049 0.00087022 4.211e-005 0.00056713 3.5899e-006 4.8648e-005 6.3934e-007 1.0005e-005
30 1.8332e-005 0.00022702 6.1949e-006 0.00012807 3.319e-007 7.319e-006 4.2765e-008 1.1132e-006
35 3.2052e-006 5.9226e-005 9.1134e-007 2.8921e-005 3.0686e-008 1.1011e-006 2.8605e-009 1.2387e-007
40 5.604e-007 1.5451e-005 1.3407e-007 6.5308e-006 2.837e-009 1.6566e-007 1.9134e-010 1.3783e-008
45 9.7983e-008 4.0308e-006 1.9723e-008 1.4748e-006 2.623e-010 2.4924e-008 1.2799e-011 1.5337e-009
50 1.7132e-008 1.0516e-006 2.9015e-009 3.3303e-007 2.425e-011 3.7498e-009 8.5609e-013 1.7065e-010

Figure 1 and Table 1 show that the ruin probabilities ψ(u) for the Erlang risk model under the FGM copula
are significantly different and especially much smaller than the “corresponding” classical risk model under
the FGM copula for the practical values of the initial surplus u and for all θ ∈ [−1, 0) ∪ (0, 1], indicating
why it is worthwhile to consider Erlangian risk models under the FGM copula.
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8.1.2 Impact of the dependence parameter θ

In Figure 2 we plot the values ψ(u) calculated in the previous subsection. As we can see from Figure 2, the
dependence parameter θ has a clear impact on the ruin probabilities. It is clear that the higher the dependence
parameter the lower the ruin probability is. This happens because when for example the dependence relation
is positive, the probability of having an important claim increases as the time elapsed since the last claim
increases. Thus the ruin probability will be lower since the probability that the insurance company will have
enough premium income to pay the claim will be higher. Similar results for the case of the exponential
distribution were obtained from Cossette et al. (2010).

Figure 2: Ruin Probabilities
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Furthermore using δ = 0.05, we provide the analytic expressions for the Laplace transform of the time of
ruin mτ (u) (derived with Maple) as function of the initial surplus u, (u ≥ 0) and for different values of the
dependence parameter θ,

• with θ = −1

mτ (u) = 0.588107070542046e−0.4015607208 u − 0.0198616515195528e−2.150382538 u

• with θ = −0.5

mτ (u) = 0.558265539590616e−0.4358563215 u − 0.0112379309905072e−2.078539964 u

• with θ = 0
mτ (u) = 0.5230305556e−0.4769694444 u
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• with θ = 0.5

mτ (u) = 0.480589531459186e−0.5272636613 u + 0.0151619535823271e−1.912699668 u

• with θ = 1

mτ (u) = 0.427916113486677e−0.5905527687 u + 0.0366819441278372e−1.813223037 u

Figure 3: Laplace Transform of Time to Ruin

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Initial Surplus

L
a

p
la

ce
 T

ra
sf

o
rm

 o
f 

T
im

e
 t

o
 R

u
in

 

 
θ=−1
θ=−0.5
θ=0
θ=0.5
θ=1

As we can see from Figure 3, the dependence parameter θ has a clear impact on the values of the LT of
time to ruin. It is clear that the higher the dependence parameter the lower the value of the LT of time to
ruin is.

Acknowledgements.
The authors wish to thank an anonymous referee for carefully reading the paper. His/her comments allowed
us to improve the quality of the paper.

9 References

1. H. Gerber, E. Shiu, On the time value of ruin, North American Actuarial Journal 2 (1998) 48-78.

2. X.S. Lin, G.E. Willmot, Analysis of a defective renewal equation arising in ruin theory, Insurance:
Mathematics and Economics 25 (1999) 63-84.

30



3. D.C.M. Dickson, On a class of renewal risk processes, North American Actuarial Journal 2 (1998)
60-68.

4. D.C.M. Dickson, C. Hipp, Ruin probabilities for Erlang(2) risk processes, Insurance: Mathematics
and Economics 22 (1998) 251-262.

5. D.C.M. Dickson, C. Hipp, On the time to ruin for Erlang(2) risk processes, Insurance: Mathematics
and Economics 29 (2001) 333-344.

6. Y. Cheng, Q. Tang, Moments of the surplus before ruin and the deficit of ruin in the Erlang (2) risk
process, North American Actuarial Journal 7 (2003) 1-12.

7. C. Tsai, L. Sun, On the discounted distribution functions for the Erlang(2) risk process, Insurance:
Mathematics and Economics 35 (2004) 5-19.

8. S. Li, J. Garrido, On ruin for the Erlang(n) risk process, Insurance: Mathematics and Economics 34
(2004) 391-408.

9. L. Sun, The expected discounted penalty at ruin in the Erlang(2) risk process, Statistics and Probability
Letters 72 (2005) 205-217.

10. H. Gerber, E. Shiu, The time value of ruin in a Sparre Andersen model, North American Actuarial
Journal 9 (2005) 49-84.

11. M. Boudreault, Modeling and pricing earthquake risk, First prize in the Canadian actuarial research
competition, SCOR Canada, (2003).

12. A. Nikoloulopoulos, D. Karlis, Fitting copulas to bivariate earthquake data: the seismic gap hypothesis
revisited, Environmetrics 19 (2008) 251-269.

13. H. Albrecher, O. Boxma, A ruin model with dependence between claim sizes and claim intervals,
Insurance: Mathematics and Economics 35 (2004) 245-254.

14. H. Albrecher, O. Boxma, On the discounted penalty function in a Markov - dependent risk model,
Insurance: Mathematics and Economics 37 (2005) 650-672.

15. H. Albrecher, J. Teugels, Exponential behavior in the presence of dependence in risk theory, Journal
of Applied Probability 43 (2006) 265-285.

16. M. Boudreault, H. Cossette, D. Landriault and E. Marceau, On a risk model with dependence between
interclaim arrivals and claim sizes, Scandinavian Actuarial Journal (2006) 265-285.

17. Q. Meng, X. Zhang, J. Guo , On a risk model with dependence between claim sizes and claim intervals,
Statistics and Probability Letters 78 (2008) 1727-1734.

18. H. Cossette, E. Marceau, F. Marri, On the compound Poisson risk model with dependence based on a
generalized Farlie Gumbel Morgenstern copula, Insurance: Mathematics and Economics 43 (2008)
444-455.

19. H. Cossette, E. Marceau, F. Marri, Analysis of ruin measures for the classical compound Poisson risk
model with dependence, Scandinavian Actuarial Journal (2010) 221-245.

20. A. Badescu, E. Cheung, D. Landriault, Dependent risk models with bivariate phase-type distributions,
Journal of Applied Probability 46 (2009) 113-131.

31



21. R.S. Ambagaspitiya, Ultimate ruin probability in the Sparre Andersen model with dependent claim
sizes and claim occurrence times, Insurance: Mathematics and Economics 44 (2009) 464-472.

22. E. Cheung, D. Landriault, G.E. Willmot, Structural properties of Gerber - Shiu functions in dependent
Sparre Andersen models, Insurance: Mathematics and Economics 46 (2010) 117-126.

23. H. Albrecher, C. Constantinescu, S. Loisel, Explicit ruin formulas for models with dependence among
risks, Insurance: Mathematics and Economics 48 (2011) 265-270.

24. Z. Zhang, H. Yang, Gerber - Shiu analysis in a perturbed risk model with dependence between claim
sizes and interclaim times, Journal of Computational and Applied Mathematics 235 (2011) 1189-
1204.

25. Z. Zhang, H. Yang, H. Yang, On a Sparre Andersen risk model with time - dependent claim sizes and
jump - diffusion perturbation, Methodology and Computing in Applied Probability (2011) 1-23.

26. J.K. Woo, Some remarks on delayed renewal risk models, Astin Bulletin 40 (2011) 199-219.

27. R.B. Nelsen, An introduction to copulas, 2nd ed., Springer-Verlag, New York, 2006.
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