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ON A REPRESENTATION OF A STRONGLY
HARMONIC RING BY SHEAVES

KwaNGIL KoH

A ring R is strongly harmonic provided that if M, M
are a pair of distinct maximal modular ideals of E, then there
exist ideals % and &% such that &% € M,, £&F £ M, and
S # =0. Let #(R) be the maximal modular ideal space of
R. If Mec _#Z(R),let O(M) = {rec R | for some y&¢ M, rxy =0
for every x<R}). Define “Z(R)= U (R/OM)|Me #Z(R).
If R is a strongly harmonic ring with 1, then R is isomorphic
to the ring of global sections of the sheaf of local rings
H(R) over . #(R). Let I'l#Z(R), Z(R)) be the ring of
global sections of Z(R) over .Z(R). For every unitary
(right) R-module A, let Ay = {ac A|aRxz = 0 for some x¢& M)
andlet A = U{A/Ay | Me _#(R)}. Define 4(M)=a + Ay and
M) =r + O(M) for every ac A, r¢ Rand me _#Z(R). Then
the mapping &4 ¢+— 4 is a semi-linear isomorphism of A
onto I'(_#Z(R)), ZP(R))—module I'(_#(R), A) in the sense
that &, is a group isomorphism satisfying &ilar) = &7 for
every a € A and rc R.

1. If R is a ring with 1, R is called harmonic (or regular) if
the maximal modular ideal space, say . (R), with the hull-kernel
topology, is a Hausdorff space (refer [5]). A ring R is strongly
harmonic provided that for any pair of distinct maximal modular
ideals M,, M, there exist ideals .o, <& in R such that & &€ M,
B & M, and <% = 0. For any nonempty subset S of a ring R
define (S)' = {re R|sr = 0 for every sc S} and if ac R let aR, be
the principal right ideal generated by «. If M is a prime ideal of
a ring Rlet OM)={reR|(rR)" & M}. An ideal .o of a ring R
is called M-primary for some maximal modular ideal M of R provided
that M/.o»r is the unique maximal modular ideal of R/.%~ and if
&7 is an ideal of R such that .’ & & and %"’ # & then R/.%’
is no longer a local ring (here by a local ring we mean a ring with
the unique maximal modular ideal). The principal results in this
paper are as follows: Let R be a ring such that if R/S is a local
ring for some ideal S of R then R/S has a unit. Then R is strongly
harmonic if and only if O(M) is M-primary for every maximal
modular ideal M of R. If R is a strongly harmonic ring with 1
then R is isomorphic to I'(_# (R), Z#(R)) the ring of global sections
of the sheaf of local rings <Z(R) = U {R/OM)|Mec _#(R)} over
A (R) and if A is a unitary right R-module then the mapping
éiiar— @ is a semi-linear isomorphism of A onto I'(_#(R), Z#(R))—
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module I'(_# (R), A) in the sense that &, is a group isomorphism
satisfying &,(ar) = a-7 for aec A, re¢ R where &(M) = a+ Ay, #(M) =
r + O(M) for Me _#(R) and A = {4/A, | Me _#(R)}, the disjoint
union of the family of right R-modules A/A,) indexed by _#(R),
and Ay = {acA|(@R)}* £ M}. If R is a ring with 1 such that it
contains no nonzero nilpotent elements then R is biregular (see [2:
p. 104] for definition) if and only if every prime ideal of R is a
maximal ideal. Our results here generalize S. Teleman’s result
that in case le¢ R, a strongly semi-simple harmonie ring or a von
Neumann algebra can be represented as a ring of global sections of
the sheaf of local algebras over its maximal modular ideal space
(refer [5], [6] and [7]). The author wishes to express his gratitude
to Professors K. H. Hofmann and S. Teleman for their many in-
valuable suggestions for the preparation of this paper.

2. Let R be aring and A be a right R-module. For each prime
ideal M of R, define Ay = {ac A| (aR)* & M} where aR, is the sub-
module of A which is generated by the element ¢ and (aR)' =
{reR|aRr = 0}.

ProrosiTION 2.1. A, s a submodule of A.

Proof. Leta,beA,. Then (a—bd)R,ZaR,+bR, and ((a—b)R)* 2
(@R, 4+ bR)* = (aR)* N (bR)* 2 (aR)*(bR)*. Henceif o —b¢ A, then
(aR)*(BR)* < M and either (aR)* & M or (bR)* & M since M is a
prime ideal of R. Hence either a ¢ 4, or b¢ A,. This is impossible.
Thus ¢ —beAy. Now if reR and ac A, then arR, € aR, and
(arR)* 2 (aR)*. Since (aR)* £ M, (arR)* £ M and arc A,.

COROLLARY 2.2. If A s R, whose module multiplication is given
by the ring multiplication, then A, is an ideal of B which is con-
tained in M for amy prime ideal M of R. In this case, we denote
A,y by O(M).

Proof. O(M) is already a right ideal of B by 2.2. Let reR
and a e O(M). Then (reR)* 2 (aR)*. Since (aR)*Z M, (raR)* & M
and rac O(M).

ProrosiTiON 2.3. If A is a right R-module for some ring R
then AO(M) S Ay for any prime ideal M of R.

Proof. Since A, is a submodule of A, it suffices to show that if
a€ A and xe O(M) then axe A,. But this is immediate since (axR)* 2
(xR)* and (xR)* & M.
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THEOREM 2.4. Let R be a ring such that if 7 1is a proper
ideal of R thewn there is a maximal modular ideal M in R such that
FP S M. Let A be a right R-module such that if aR = 0 for some
acA then a=0. Then N{4Ay| M is a maximal modular ideal of
R} s zero.

Proof. Let ac M {A,| M is a maximal modular ideal of R} such
that ¢ =« 0. Then (aR)* = R, for if (aR)" = R then aR =0 and
a = 0. Since (aR)* # R, (aR)* is a proper ideal of R. Hence there
is a maximal modular ideal M in R such that (eR)* & M. This
means that a¢ A, and a¢ {4, | M is a maximal modular ideal of
R}. This is a contradiction.

COROLLARY 2.5. If R s a ring with 1 and A is a uwnitary
right R-module, then [Y{AOM)| M is a maximal ideal of R} is zero.

Proof. By 2.4, M{4,| M is a maximal ideal of R} = 0. Since
AO(M) < A, for any prime ideal of R by 2.3, the conclusion now
follows.

DerFiNiTION 2.6. We say that a ring R is strong harmonic
provided that for any pair of distinct maximal modular ideals M|,
M, there exist ideals .o, <% in R such that &% & .72, <& & _+#,
and <% = 0.

ProposITION 2.7. If R is strongly harmonic, then _#(R) 1is
Hausdorff.

Proof. If M,, M, are distinct maximal modular ideals of R, then,
by definition, there exist ideals .% and <& such that & £ M,
B L M, and .7 <Z =0. Therefore, two open sets {Me _#(R)| . & M}
and {Me _#(R)| <& & M} are disjoint.

ExaMPLE 2.8. Let R be a strongly semi-simple ring, that is a
ring in which the intersection of maximal modular ideals is zero.
If the maximal modular ideal space, _#(R) with the hull-kernel
topology, is a Hausdorfl space, then R is strongly harmonie.

ExampLE 2.9. If R is a ring with 1 such that it is strongly
harmonic then it is harmonic. However, if 1¢ R then a strongly
harmonic ring may not be harmonic. For example, let B be the
algebra of sequences (a,),», of 2 X 2-matrices over the field of complex

numbers C, such that an—><3 8) for n— o for some e C. Then
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the intersection of the maximal modular ideals of R is zero and
A# (R) is Hausdorff. Hence R is strongly harmonic; however, it is
not harmonic.

ExampLE 2.10. Let R be a von Neumann algebra. Then for
any distinet pair of maximal ideals M,, M, there exist central
idempotents e, ¢, in R such that e, ¢ M,, ¢, ¢ M, and such that e,.e,=0.
Hence R is strongly harmonie.

ExampLE 2.11. Let @ be the field of rational numbers and let
P, Dy *++, P, be a finite number of distinct prime numbers., Let
R = {m/ne@Q|n is not divisible by any p;,, 1 £¢=<1. Then _Z(R)
consist of [ points and it is a Hausdorff space. However, since R is
an integral domain, R is not strongly harmonic if 7 > 1.

DEFINITION 2.12. Let R be a ring and M be a maximal modular
ideal of R. An ideal ¢« in R is said to be M-primary, for some
maximal modular ideal M of R, provided that & S M, R/ is a
ring with a unique maximal modular ideal M/~”, and if P is an
ideal of R such that PS « and P+ ¢’ then R/P is not a local
ring. Here, by a local ring we mean a ring with a unique maximal
modular ideal.

PRoOPOSITION 2.13. Let R be a ring and M be a mazimal modular
ideal of R. If an M-primary ideal, say o7, exists, then it is unique.

Proof. Let & be a M-primary ideal of R. If either &# < &
or & < ” then, by definition, &2 = ¢’ So assume 7 N & is
properly contained in ~ or <. Then the ideal .7 is properly
contained in « and R/~”.<” is not a local ring. Hence there is a
maximal modular ideal N in R such that N%# M and &< & N.
Since N is a prime ideal, this means that either ~» & N or & & N.
In either case, this means that 2 or & is not M-primary. This
is a contradiction.

PROPOSITION 2.14. Let R be a ring such that if R/¢7 is a local
ring for some ideal & in R, then R/ has a unit. If R/O(M) is a
local ring for some maximal modular ideal M in R, then O(M) is
M-primary.

Proof. Observe that O(M) & M. Hence M/O(M) is the unique
maximal modular ideal of the local ring R/O(M). Let & be an
ideal of R such that & =& O(M), & + O(M) and R/<” is a local
ring., Let te O(M) such that t¢ &% Then ((R)*Z M. If +({R)*=
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R then there is a maximal modular ideal N in R such that & +(tR)‘&S
N, since R/Z” has a unit. Since (tR)* & M, this means that M=+ N.
This is impossible. Hence R = . + (tR)*. Let e+ & be the
identity of R/&? for some ec R. Then ¢ = p + s for some pe &
and sc (tR)*. Hence te =tp and ¢t — te =t — tpe .&” This means
that ¢te . &” and this is a contradiction. Thus O(M) must be M-
primary.

THEOREM 2.15. Let R be a ring such that if R/ is a local
ring for some ideal 7, then it has a wunmit. Then R 1s strongly
harmonic if, and only if, O(M) is M-primary for every maximal
modular ideal M in R.

Proof. Assume R is strongly harmonic. By 2.14, it suffices to
show that R/O(M) is a local ring for each maximal modular ideal M
of R. If R/O(M) is not a local ring for some maximal modular
ideal M, then there is a maximal modular ideal N in R such that
N+ M and O(M) <& N. Since R is strongly harmonic, there exist
ideals .%” and <# such that & £ N, # £ M and .« <% = 0. This
means that &% & O(M). Since OM) S N, &% < N. This is a con-
tradiction. Conversely, assume O(M) is M-primary for each maximal
modular ideal M of RB. Let M,, M, be two distinct maximal modular
ideals or R. Then O(M,) £ M, and O(M, £ M,. Hence there exist
aec O(M) such that a¢ M, and be O(M,) such that b¢ M,. Then (b),
the ideal generated by b, is not contained in M. Let .97 = (b) and
let & = BR)*. Then & £ M,, <&# £ M, and ¥ <Z = 0.

REMARK 2.16. If R is a strongly semi-simple ring with 1 such
that _# (R), the maximal modular ideal space of R, is a Hausdorff
space, then by [5: Theorem 6.5] and [5: Theorem 6.15], the M-primary
ideal exists for each maximal modular ideal M in R. In this case, the
M-primary ideal p(M) is given by the set {x e R |supp (RxR) N {M} =
¢}, where supp(RzR) ={Me #(R)| RxRZ M} by [5: Theorem
6.14].

3. If &7 is an ideal of a ring R, let

supp (%) = {Me #(R)| & &£ M}, MA)= _#(R)\supp (),
kF) = N{Me_#(R) | McF}.

THEOREM 3.1. Let R be a ring and let
ZR) = U{R/OM)| Me #(R)},
the disjoint union of a family of rings {R/OM)| Me _#(R)}. For
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each re R define 7 to be the function from _# (R) into #(R) such
that #(M) = » + O(M) for each Me _# (R). Let v = {#(U)|re R and
U is an open set in _# (R)}. Let p be a family of sets consisting
of arbitrary wunions of the members of ©. Then (F(R), p) is a
topological space and each point #(M) of #(R), r€ R and Me _#(R),
is contained in an open set which is homeomorphic to an open set
of _#(R) under the canonical projection: #(M) | — M, that is, F(R)
s a sheaf of rings over _# (R).

Proof. In nper(U)N#(V) for some », r,e¢ R and some open
gsets U, V in _+/(R) then there is Me UN V such that », — r, ¢ O(M).
Hence ((r, —r)R)~ L M. Let W= UnNn VNsupp ((r, —r)R)*). Then
Me W and ne#r (W) S #(U)N#(V). Since W is an open set of
A (R), ¥,(W)et and hence (#Z(R), p) is a topological space. In
view of [1: 2.2 p. 151], it suffices to show that if #(M) = 0 for some
reR and Me _#(R) then there exists an open set U of M such
that #(U) = 0. But this is immediate since if #(M) = 0 then r ¢ O(M)
and (rR)* £ M. Therefore, if we let U = supp (rR)*) then #(U) =0
since re N {OM) | Me U}.

THEOREM 3.2. Let R be a strongly harmonic ring. If F is a
compact subset of _#(R) and M, ¢ F for some M,c _# (R) then there
exist ideals 7 and <& such that & <Z = O, M,csupp () and
F < supp (7).

Proof. Since R is strongly harmonic, for any Me F there exist
ideals .%7’, <&’ in R such that M, e supp (.5"), Mesupp(<Z’) and
' F' = 0. Since F is compact, there exist a finite number of
ideals, say &%, .54, +++, .7, B, B, +++, 55, such that

M, e () supp (.o7;) = supp (7.9 + -+ .¥)
i=1

and F < U7, supp (<) = supp D, &7, such that o747, = 0 for all
7=12 -+, 0, and (4.4 +++ )0, 2#) = 0.

THEOREM 3.3. Let R be a strongly harmonic ring. If F is a
compact subset of _#(R) then F = (N {O(M)| Me F}).

Proof. Since Nyer OM) & k(F), F < h(Ny.r O(M)). Suppose
there is M, (yer O(M)) such that M,¢ F. Then by 3.2 there
exist ideals .o/, <% in R such that M,esupp (.%), F & supp (Z)
and w.<Z =0. Hence if McF then & £ M and & & O(M).
Thus A & Ny OM). Since M,c h(Ny-» O(M)), this means that
& = M, and this is a contradiction.
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THEOREM 3.4. Let R be a strongly harmonic ring with 1 and
let H(R) be the sheaf of local rings over _.Z(R), which is described
n 3.1. If F, is a compact subset of _# (R) and ¢ is a section from
F, into <2 (R), then there is r< R such that # |, = 0.

Proof. If M,e F, then there exists an open set U in _#(R)
which contains M, and rc R such that if Mc UNF, then o(M) =
#M). Let U, = _Z(R\F, Since _#(R) is Hausdorff by 2.7, F, is
a closed set. Hence U, is an open subset of _.Z(R). There exist a
finite number of points M, M,, --+, M, in F,, opensets U,, U,, ---, U,
such that M;e U, 1 =1,2,+-+, n, and », #, +-+, r, in R such that
o(M)=#,(M) for every Mec U; N F, for every i=1, 2, -+, n. Further-
more, F,eUr, U; and _Z(R) = U, U,.. Let F,= _~2(R\U; and
let I, = Nuyer OM) for each 1=0,1,2, .-+, n. Since F; is a closed
subset of a compact space, it is compact. Hence F; = h(1;) for each
1=10,1,2 -+, » by 38.3. Since ¢ = (Voo F; = Niwo ML) = W0, L),
R=3r,I and 1= 37" ¢ for some ¢cl, 1=0,1,2 +-.,n If
MeF,NF, then #(M)é; (M) = OM) = o(M)e,(M). If MeU,NF,
then 7,(M)é,(M)=0c(M)é,(M). Hence, for every Me F,, #,(M)é;(M) =
o(M)é(M). Thus if we let r = ¢, + > % 7., then for every

Me F,#(M) = 6,(M) + g P(M)&,(M)
= o(M)2,(M) + 3, o(M)2M)
= o(M)(3 &) = o(M) -

COROLLARY 3.5. If R 1is a strongly harmonic ring with 1 then
R = I'(Z(R), #(R)).

Proof. By 2.5, r+ # is a monomorphism from R into I'(_#(R),
2 (R)). Since _#(R) is a compact space, by 3.4 if o I'(Z(R),
“#(R)) then there is re R such that ¢ = #. Thus »~— # is an iso-
morphism of R onto I'(_#(R), ZZ2(R)).

DEFINITION 3.6. We say that a sheaf .<#Z over the space X is
soft provided that if F' is a compact subset of X and ¢e I'(F, <2)
then there is ¢ ¢ I'(X, &%) such that ¢, = g.

THEOREM 3.7." Let R be a strongly harmonic ring with 1. Then
the sheaf #(R) of local rings which is constructed in 8.1 1s soft.
Conversely, if <& s a soft sheaf of local rings over a Hausdorff
compact space _7, then I'(_#, G#) is a strongly harmonic ring.

! The author is indebted to Professor S. Teleman for this theorem.
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Proof. By 3.4, “#(R) is soft if R is a strongly harmonic ring
with 1. Suppose now that <Z is a soft sheaf of local rings over a
Hausdorff compact space _#. Let R = I'(_#, ). By Theorem 11
of [6: p. T12], _# is homeomorphic to .4 (£). Hence we may take
R=TI(#(R), ). Since .~ is Hausdorft, if M, M,c _(R) such
that M, -+ M, then there exist open sets U, ¢ =1, 2, in _#(R) such
that M,e U, M,e U, and U, N U, = ¢é. If o¢ R, define

lo|l={Me »#(R)|o(M) = 0}.

Let A, ={oeRl|o| = U}, 1 =1,2. Clearly, A, A, are ideals of R
and 4.4, = 0= A,A4, since U, N U, = ¢. There exists compact sets
K, K, such that M;c K, and K, S U,, i =1,2. Let F, = _#Z(R\U,.
Since <Z is soft there exist g, in I'(_#(R), <#) such that ¢(K,) =1
and o;(F,) =0, t=1,2. Hence A, Z M; for i =1,2. Thus R is
strongly harmonie.

REMARK 3.8. Let R be a ring and A be a right R-module. We
will associate with A a sheaf if .#(R)-modules over _#(R) (refer
[4] for definition). For Me _~ (R), denote A=U{4/4,| Me A (R},
the disjoint union of a family of R-modules A/A4, indexed by _Z(R).
Let m A _#(R) be given by z~(M) = AJ/A,. For acA and
Me _#(R), let t, (M) be the image of «, under the natural homo-
morphism of A onto A/A,. Topologize A by taking all sets t.(U),
with ac 4, U is an open set in _# (R), as a basis for the open sets.
Then 4 becomes a sheaf of .22 (R)-modules over _.Z(R). The justi-
fication of this statement and proof of this result require only slight
modifications of 3.1.

THEOREM 3.9. Let R be a strongly harmonic ring with 1 and
let A be a unitary right R-module. Then the mapping &£, a—1, 1s a
semi-linear isomorphism of A onto the I'( 7 (R), #(R))-module
I'(_#Z(R), &) in the sense that £, is & group isomorphism satisfying
& ar) = t,-7 for ac A, r€ R where t,(M) = a + A, for all me _Z(R).

Proof. We omit the proof because it is only a variant of the
proof of 3.4. However, it is worth noting that the full strength of
2.4 is needed here to prove that &, is an injection.

4. A ring is called biregular if every principal ideal of the ring
is generated by a central idempotent. In [2], Dauns and Hofmann
proved that if R is a ring with 1 then R is biregular if and only
if R is isomorphic to the ring of all global sections of a sheaf of
simple rings over a Boolean space. By applying this theorem, we
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will show that if R is a ring with 1 such that it contains no nonzero
nilpotent elements then R is biregular if, and only if, every prime
ideal of R is a maximal ideal of R.

ProrposTION 4.1. If R is a biregular ring then every prime ideal
M of R is a mazimal ideal of R.

Proof. If R is biregular then so is the ring R/M for any ideal
M of R. Hence if M is a prime ideal then R/M is a prime biregular
ring. Therefore, R/M contains no proper principal ideal for if R/M
containg a proper principal ideal, then R/M would have two nonzero
ideals whose product is zero. Thus R/M is a simple ring and M is
a maximal ideal of R.

ProrosiTioN 4.2. Let R be a ring and M be a prime ideal of
R. Define Oy = {xeR|xy =0 for some y¢ M}. If R contains no
nonzero nilpotent elements then Oy = O(M).

Proof. Clearly O(M) € Oy. If z, y are elements of R such that
zy = 0 then yx is zero since yaxyxr = 0 and R contains no nonzero
nilpotent elements. Furthermore, if »e R, zry = 0 since zry xry = 0.
Thus O(M) = Oy.

PROPOSITION 4.3. Let R be a ring without nilpotent elements.
If every prime ideal of R is maximal, then M = O(M) for every
prime ideal M of R.

Proof. If every prime ideal of R is maximal, then every prime
ideal is a maximal prime ideal. Hence by [3: 2.4], M = O, for each
prime ideal M of R. Thus by 4.2 M = O(M).

PropPosITION 4.4. If R s a ring with 1 such that R contains no
nonzero nilpotent elements and if every prime ideal of R is maximal,
then _#(R) is a Boolean space.

Progf. This is a direct consequence of [3: 2.5].

THEOREM 4.5. Let R be a ring with 1 such that it contains no
nonzero nilpotent elements. Then R is biregular if, every prime
wdeal of R is maximal.

Proof. If R is biregular then by 4.1, every prime ideal is
maximal. Conversely, suppose that every prime ideal of R is maximal.
Since R is a ring without nilpotent elements, the intersection of
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prime ideals of R is zero. Since .#(R) is a Hausdorff space by 4.4,
if M,, M, are two distinct elements in _#(R), then there exist ideals
& and <Z such that &% &£ M,, &# £ M, and <% = 0. Hence
O(M) is M-primary for every Me _#(R) by 2.13 and thus R =
I'(#(R), #(R)) by 3.5. Since _#(R) is a Boolean space by 4.4
and M = O(M) by 4.3, R is a biregular ring by [2: 2.19, p. 108].
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