ON A REPRESENTATION OF A STRONGLY HARMONIC RING BY SHEAVES

KWANGIL KOH

A ring R is strongly harmonic provided that if M_1 , M_2 are a pair of distinct maximal modular ideals of R, then there exist ideals $\mathcal M$ and $\mathcal B$ such that $\mathcal M \not\subseteq M_1, \mathcal B \not\subseteq M_2$ and $\mathcal{MB} = 0$. Let $\mathcal{M}(R)$ be the maximal modular ideal space of R. If $M \in \mathcal{M}(R)$, let $O(M) = \{r \in R \mid \text{for some } y \notin M, rxy = 0\}$ for every $x \in R$. Define $\mathcal{R}(R) = \bigcup \{R/O(M) \mid M \in \mathcal{M}(R)\}.$ If R is a strongly harmonic ring with 1, then R is isomorphic to the ring of global sections of the sheaf of local rings $\mathscr{R}(R)$ over $\mathscr{M}(R)$. Let $\Gamma(\mathscr{M}(R),\mathscr{R}(R))$ be the ring of global sections of $\mathscr{R}(R)$ over $\mathscr{M}(R)$. For every unitary (right) R-module A, let $A_M = \{a \in A \mid aRx = 0 \text{ for some } x \notin M\}$ and let $\widetilde{A} = \bigcup \{A/A_M \mid M \in \mathscr{M}(R)\}$. Define $\widehat{a}(M) = \alpha + A_M$ and $\widehat{r}(M) = r + O(M)$ for every $a \in A$, $r \in R$ and $m \in \mathscr{M}(R)$. Then the mapping ξ_A : $a \mapsto \hat{a}$ is a semi-linear isomorphism of Aonto $arGamma(\mathscr{M}(R))$, $\mathscr{R}(R)$)—module $arGamma(\mathscr{M}(R),A)$ in the sense that ξ_A is a group isomorphism satisfying $\xi_A(ar) = \hat{a}\hat{r}$ for every $a \in A$ and $r \in R$.

1. If R is a ring with 1, R is called harmonic (or regular) if the maximal modular ideal space, say $\mathcal{M}(R)$, with the hull-kernel topology, is a Hausdorff space (refer [5]). A ring R is strongly harmonic provided that for any pair of distinct maximal modular ideals M_1 , M_2 there exist ideals \mathcal{A} , \mathcal{B} in R such that $\mathcal{A} \nsubseteq M_1$, $\mathscr{A} \not\subseteq M_2$ and $\mathscr{A} \mathscr{A} = 0$. For any nonempty subset S of a ring R define $(S)^{\perp} = \{r \in R \mid sr = 0 \text{ for every } s \in S\}$ and if $a \in R$ let aR_1 be the principal right ideal generated by a. If M is a prime ideal of a ring R let $O(M) = \{r \in R \mid (rR_1)^\perp \subseteq M\}$. An ideal $\mathscr M$ of a ring R is called M-primary for some maximal modular ideal M of R provided that M/\mathscr{A} is the unique maximal modular ideal of R/\mathscr{A} and if \mathscr{N}' is an ideal of R such that $\mathscr{N}' \subseteq \mathscr{N}$ and $\mathscr{N}' \neq \mathscr{N}$ then R/\mathscr{N}' is no longer a local ring (here by a local ring we mean a ring with the unique maximal modular ideal). The principal results in this paper are as follows: Let R be a ring such that if R/S is a local ring for some ideal S of R then R/S has a unit. Then R is strongly harmonic if and only if O(M) is M-primary for every maximal modular ideal M of R. If R is a strongly harmonic ring with 1 then R is isomorphic to $\Gamma(\mathcal{M}(R), \mathcal{R}(R))$ the ring of global sections of the sheaf of local rings $\mathscr{R}(R) = \bigcup \{R/O(M) \mid M \in \mathscr{M}(R)\}$ over $\mathcal{M}(R)$ and if A is a unitary right R-module then the mapping $\xi_A: a \mapsto \hat{a}$ is a semi-linear isomorphism of A onto $\Gamma(\mathcal{M}(R), \mathcal{R}(R))$ —

module $\Gamma(\mathscr{M}(R), \widetilde{A})$ in the sense that ξ_A is a group isomorphism satisfying $\xi_A(ar) = \hat{a} \cdot \hat{r}$ for $a \in A$, $r \in R$ where $\hat{a}(M) = a + A_M$, $\hat{r}(M) = r + O(M)$ for $M \in \mathscr{M}(R)$ and $\hat{A} = \bigcup \{A/A_M \mid M \in \mathscr{M}(R)\}$, the disjoint union of the family of right R-modules A/A_M indexed by $\mathscr{M}(R)$, and $A_M = \{a \in A \mid (aR)^\perp \not\subseteq M\}$. If R is a ring with 1 such that it contains no nonzero nilpotent elements then R is biregular (see [2: p. 104] for definition) if and only if every prime ideal of R is a maximal ideal. Our results here generalize S. Teleman's result that in case $1 \in R$, a strongly semi-simple harmonic ring or a von Neumann algebra can be represented as a ring of global sections of the sheaf of local algebras over its maximal modular ideal space (refer [5], [6] and [7]). The author wishes to express his gratitude to Professors K. H. Hofmann and S. Teleman for their many invaluable suggestions for the preparation of this paper.

2. Let R be a ring and A be a right R-module. For each prime ideal M of R, define $A_M = \{a \in A \mid (aR_1)^\perp \not\subseteq M\}$ where aR_1 is the submodule of A which is generated by the element a and $(aR_1)^\perp = \{r \in R \mid aR_1r = 0\}$.

Proposition 2.1. A_M is a submodule of A.

Proof. Let $a, b \in A_M$. Then $(a-b)R_1 \subseteq aR_1 + bR_1$ and $((a-b)R_1)^{\perp} \supseteq (aR_1 + bR_1)^{\perp} = (aR_1)^{\perp} \cap (bR_1)^{\perp} \supseteq (aR_1)^{\perp} (bR_1)^{\perp}$. Hence if $a-b \notin A_M$ then $(aR_1)^{\perp} (bR_1)^{\perp} \subseteq M$ and either $(aR_1)^{\perp} \subseteq M$ or $(bR_1)^{\perp} \subseteq M$ since M is a prime ideal of R. Hence either $a \notin A_M$ or $b \notin A_M$. This is impossible. Thus $a-b \in A_M$. Now if $r \in R$ and $a \in A_M$ then $arR_1 \subseteq aR_1$ and $(arR_1)^{\perp} \supseteq (aR_1)^{\perp}$. Since $(aR_1)^{\perp} \not\subseteq M$, $(arR_1)^{\perp} \not\subseteq M$ and $ar \in A_M$.

COROLLARY 2.2. If A is R, whose module multiplication is given by the ring multiplication, then A_M is an ideal of R which is contained in M for any prime ideal M of R. In this case, we denote A_M by O(M).

Proof. O(M) is already a right ideal of R by 2.2. Let $r \in R$ and $a \in O(M)$. Then $(raR_1)^{\perp} \supseteq (aR_1)^{\perp}$. Since $(aR_1)^{\perp} \not\subseteq M$, $(raR_1)^{\perp} \not\subseteq M$ and $ra \in O(M)$.

PROPOSITION 2.3. If A is a right R-module for some ring R then $AO(M) \subseteq A_M$ for any prime ideal M of R.

Proof. Since A_M is a submodule of A, it suffices to show that if $a \in A$ and $x \in O(M)$ then $ax \in A_M$. But this is immediate since $(axR_1)^{\perp} \supseteq (xR_1)^{\perp}$ and $(xR_1)^{\perp} \not\subseteq M$.

THEOREM 2.4. Let R be a ring such that if $\mathscr P$ is a proper ideal of R then there is a maximal modular ideal M in R such that $\mathscr P \subseteq M$. Let A be a right R-module such that if aR = 0 for some $a \in A$ then a = 0. Then $\bigcap \{A_M \mid M \text{ is a maximal modular ideal of } R\}$ is zero.

Proof. Let $a \in \bigcap \{A_M \mid M \text{ is a maximal modular ideal of } R\}$ such that $a \neq 0$. Then $(aR_1)^\perp \neq R$, for if $(aR_1)^\perp = R$ then aR = 0 and a = 0. Since $(aR_1)^\perp \neq R$, $(aR_1)^\perp$ is a proper ideal of R. Hence there is a maximal modular ideal M in R such that $(aR_1)^\perp \subseteq M$. This means that $a \notin A_M$ and $a \notin \bigcap \{A_M \mid M \text{ is a maximal modular ideal of } R\}$. This is a contradiction.

COROLLARY 2.5. If R is a ring with 1 and A is a unitary right R-module, then $\bigcap \{AO(M) \mid M \text{ is a maximal ideal of } R\}$ is zero.

Proof. By 2.4, $\bigcap \{A_M \mid M \text{ is a maximal ideal of } R\} = 0$. Since $AO(M) \subseteq A_M$ for any prime ideal of R by 2.3, the conclusion now follows.

DEFINITION 2.6. We say that a ring R is strong harmonic provided that for any pair of distinct maximal modular ideals M_1 , M_2 there exist ideals \mathscr{A} , \mathscr{B} in R such that $\mathscr{A} \nsubseteq \mathscr{M}_1$, $\mathscr{B} \nsubseteq \mathscr{M}_2$ and $\mathscr{A} \mathscr{B} = 0$.

PROPOSITION 2.7. If R is strongly harmonic, then $\mathcal{M}(R)$ is Hausdorff.

Proof. If M_1 , M_2 are distinct maximal modular ideals of R, then, by definition, there exist ideals $\mathscr A$ and $\mathscr B$ such that $\mathscr A \not \subseteq M_1$, $\mathscr B \not \subseteq M_2$ and $\mathscr A \mathscr B = 0$. Therefore, two open sets $\{M \in \mathscr M(R) \mid \mathscr A \not \subseteq M\}$ and $\{M \in \mathscr M(R) \mid \mathscr A \not \subseteq M\}$ are disjoint.

EXAMPLE 2.8. Let R be a strongly semi-simple ring, that is a ring in which the intersection of maximal modular ideals is zero. If the maximal modular ideal space, $\mathcal{M}(R)$ with the hull-kernel topology, is a Hausdorff space, then R is strongly harmonic.

EXAMPLE 2.9. If R is a ring with 1 such that it is strongly harmonic then it is harmonic. However, if $1 \notin R$ then a strongly harmonic ring may not be harmonic. For example, let R be the algebra of sequences $(a_n)_{n\geq 0}$ of 2×2 -matrices over the field of complex numbers C, such that $a_n \to \begin{pmatrix} \lambda & 0 \\ 0 & 0 \end{pmatrix}$ for $n\to \infty$ for some $\lambda \in C$. Then

the intersection of the maximal modular ideals of R is zero and $\mathcal{M}(R)$ is Hausdorff. Hence R is strongly harmonic; however, it is not harmonic.

EXAMPLE 2.10. Let R be a von Neumann algebra. Then for any distinct pair of maximal ideals M_1 , M_2 there exist central idempotents e_1 , e_2 in R such that $e_1 \notin M_1$, $e_2 \notin M_2$ and such that $e_1 \cdot e_2 = 0$. Hence R is strongly harmonic.

EXAMPLE 2.11. Let Q be the field of rational numbers and let p_1, p_2, \dots, p_l be a finite number of distinct prime numbers. Let $R = \{m/n \in Q \mid n \text{ is not divisible by any } p_i, 1 \leq i \leq l\}$. Then $\mathscr{M}(R)$ consist of l points and it is a Hausdorff space. However, since R is an integral domain, R is not strongly harmonic if l > 1.

DEFINITION 2.12. Let R be a ring and M be a maximal modular ideal of R. An ideal \mathcal{O} in R is said to be M-primary, for some maximal modular ideal M of R, provided that $\mathcal{O} \subseteq M$, R/\mathcal{O} is a ring with a unique maximal modular ideal M/\mathcal{O} , and if P is an ideal of R such that $P \subseteq \mathcal{O}$ and $P \neq \mathcal{O}$, then R/P is not a local ring. Here, by a local ring we mean a ring with a unique maximal modular ideal.

PROPOSITION 2.13. Let R be a ring and M be a maximal modular ideal of R. If an M-primary ideal, say \mathcal{O} , exists, then it is unique.

Proof. Let $\mathscr P$ be a M-primary ideal of R. If either $\mathscr P \subseteq \mathscr O$ or $\mathscr O \subseteq \mathscr P$ then, by definition, $\mathscr P = \mathscr O$. So assume $\mathscr O \cap \mathscr P$ is properly contained in $\mathscr O$ or $\mathscr P$. Then the ideal $\mathscr O \mathscr P$ is properly contained in $\mathscr O$ and $R/\mathscr O \mathscr P$ is not a local ring. Hence there is a maximal modular ideal N in R such that $N \neq M$ and $\mathscr O \mathscr P \subseteq N$. Since N is a prime ideal, this means that either $\mathscr O \subseteq N$ or $\mathscr P \subseteq N$. In either case, this means that $\mathscr O$ or $\mathscr P$ is not M-primary. This is a contradiction.

PROPOSITION 2.14. Let R be a ring such that if R/\mathcal{O} is a local ring for some ideal \mathcal{O} in R, then R/\mathcal{O} has a unit. If R/O(M) is a local ring for some maximal modular ideal M in R, then O(M) is M-primary.

Proof. Observe that $O(M) \subseteq M$. Hence M/O(M) is the unique maximal modular ideal of the local ring R/O(M). Let $\mathscr P$ be an ideal of R such that $\mathscr P \subseteq O(M)$, $\mathscr P \neq O(M)$ and $R/\mathscr P$ is a local ring. Let $t \in O(M)$ such that $t \notin \mathscr P$. Then $(tR_1)^{\perp} \not\subseteq M$. If $\mathscr P + (tR_1)^{\perp} \neq M$

R then there is a maximal modular ideal N in R such that $\mathscr{P}+(tR_1)^{\perp}\subseteq N$, since R/\mathscr{P} has a unit. Since $(tR_1)^{\perp}\not\subseteq M$, this means that $M\neq N$. This is impossible. Hence $R=\mathscr{P}+(tR_1)^{\perp}$. Let $e+\mathscr{P}$ be the identity of R/\mathscr{P} for some $e\in R$. Then e=p+s for some $p\in \mathscr{P}$ and $s\in (tR_1)^{\perp}$. Hence te=tp and $t-te=t-tp\in \mathscr{P}$. This means that $t\in \mathscr{P}$ and this is a contradiction. Thus O(M) must be M-primary.

Theorem 2.15. Let R be a ring such that if R/\mathcal{O} is a local ring for some ideal \mathcal{O} , then it has a unit. Then R is strongly harmonic if, and only if, O(M) is M-primary for every maximal modular ideal M in R.

Proof. Assume R is strongly harmonic. By 2.14, it suffices to show that R/O(M) is a local ring for each maximal modular ideal M of R. If R/O(M) is not a local ring for some maximal modular ideal M, then there is a maximal modular ideal N in R such that $N \neq M$ and $O(M) \subseteq N$. Since R is strongly harmonic, there exist ideals $\mathscr A$ and $\mathscr A$ such that $\mathscr A \not\subseteq N$, $\mathscr A \not\subseteq M$ and $\mathscr A \mathscr A = 0$. This means that $\mathscr A \subseteq O(M)$. Since $O(M) \subseteq N$, $\mathscr A \subseteq N$. This is a contradiction. Conversely, assume O(M) is M-primary for each maximal modular ideal M of R. Let M_1 , M_2 be two distinct maximal modular ideals or R. Then $O(M_1) \not\subseteq M_2$ and $O(M_2) \not\subseteq M_1$. Hence there exist $a \in O(M_1)$ such that $a \notin M_2$ and $b \in O(M_2)$ such that $b \notin M_1$. Then (b), the ideal generated by b, is not contained in M. Let $\mathscr A = (b)$ and let $\mathscr A = (bR_1)^\perp$. Then $\mathscr A \not\subseteq M_1$, $\mathscr A \not\subseteq M_2$ and $\mathscr A \mathscr A = 0$.

REMARK 2.16. If R is a strongly semi-simple ring with 1 such that $\mathcal{M}(R)$, the maximal modular ideal space of R, is a Hausdorff space, then by [5: Theorem 6.5] and [5: Theorem 6.15], the M-primary ideal exists for each maximal modular ideal M in R. In this case, the M-primary ideal p(M) is given by the set $\{x \in R \mid \overline{\operatorname{supp}(RxR)} \cap \{M\} = \phi\}$, where $\operatorname{supp}(RxR) = \{M \in \mathcal{M}(R) \mid RxR \nsubseteq M\}$ by [5: Theorem 6.14].

3. If \mathcal{A} is an ideal of a ring R, let

$$\operatorname{supp} \left(\mathscr{A}\right) = \left\{M \in \mathscr{M}(R) \mid \mathscr{A} \nsubseteq M\right\}, \quad h(A) = \mathscr{M}(R) \backslash \operatorname{supp} \left(\mathscr{A}\right), \\ k(F) = \bigcap \left\{M \in \mathscr{M}(R) \mid M \in F\right\}.$$

THEOREM 3.1. Let R be a ring and let

$$\mathscr{R}(R) = \bigcup \{R/O(M) \mid M \in \mathscr{M}(R)\},$$

the disjoint union of a family of rings $\{R/O(M) \mid M \in \mathcal{M}(R)\}$. For

each $r \in R$ define \hat{r} to be the function from $\mathcal{M}(R)$ into $\mathcal{R}(R)$ such that $\hat{r}(M) = r + O(M)$ for each $M \in \mathcal{M}(R)$. Let $\tau = \{\hat{r}(U) \mid r \in R \text{ and } U \text{ is an open set in } \mathcal{M}(R)\}$. Let ρ be a family of sets consisting of arbitrary unions of the members of τ . Then $(\mathcal{R}(R), \rho)$ is a topological space and each point $\hat{r}(M)$ of $\mathcal{R}(R)$, $r \in R$ and $M \in \mathcal{M}(R)$, is contained in an open set which is homeomorphic to an open set of $\mathcal{M}(R)$ under the canonical projection: $\hat{r}(M) \mid \to M$, that is, $\mathcal{R}(R)$ is a sheaf of rings over $\mathcal{M}(R)$.

Proof. In $\eta \in \hat{r}_1(U) \cap \hat{r}_2(V)$ for some $r_1, r_2 \in R$ and some open sets U, V in $\mathscr{M}(R)$ then there is $M \in U \cap V$ such that $r_1 - r_2 \in O(M)$. Hence $((r_1 - r_2)R_1)^\perp \nsubseteq M$. Let $W = U \cap V \cap \operatorname{supp} ((r_1 - r_2)R_1)^\perp)$. Then $M \in W$ and $\eta \in \hat{r}_1(W) \subseteq \hat{r}_1(U) \cap \hat{r}_2(V)$. Since W is an open set of $\mathscr{M}(R)$, $\hat{r}_1(W) \in \tau$ and hence $(\mathscr{R}(R), \rho)$ is a topological space. In view of [1: 2.2 p. 151], it suffices to show that if $\hat{r}(M) = 0$ for some $r \in R$ and $M \in \mathscr{M}(R)$ then there exists an open set U of M such that $\hat{r}(U) = 0$. But this is immediate since if $\hat{r}(M) = 0$ then $r \in O(M)$ and $(rR_1)^\perp \nsubseteq M$. Therefore, if we let $U = \operatorname{supp} ((rR_1)^\perp)$ then $\hat{r}(U) = 0$ since $r \in \bigcap \{O(M) \mid M \in U\}$.

THEOREM 3.2. Let R be a strongly harmonic ring. If F is a compact subset of $\mathcal{M}(R)$ and $M_0 \notin F$ for some $M_0 \in \mathcal{M}(R)$ then there exist ideals \mathscr{A} and \mathscr{B} such that $\mathscr{A}\mathscr{B} = O$, $M_0 \in \operatorname{supp}(\mathscr{A})$ and $F \subseteq \operatorname{supp}(\mathscr{B})$.

Proof. Since R is strongly harmonic, for any $M \in F$ there exist ideals \mathscr{A}' , \mathscr{B}' in R such that $M_0 \in \operatorname{supp}(\mathscr{A}')$, $M \in \operatorname{supp}(\mathscr{B}')$ and $\mathscr{A}'\mathscr{B}' = 0$. Since F is compact, there exist a finite number of ideals, say $\mathscr{A}_1, \mathscr{A}_2, \cdots, \mathscr{A}_n, \mathscr{B}_1, \mathscr{B}_2, \cdots, \mathscr{B}_n$ such that

$$M_{\scriptscriptstyle 0} \in igcap_{\scriptscriptstyle i=1}^n \operatorname{supp} \left(\mathscr{N}_{\scriptscriptstyle i}
ight) = \operatorname{supp} \left(\mathscr{N}_{\scriptscriptstyle 1}\mathscr{N}_{\scriptscriptstyle 2}\cdots\mathscr{N}_{\scriptscriptstyle n}
ight)$$

and $F \subseteq \bigcup_{i=1}^n \operatorname{supp} (\mathscr{B}_i) = \operatorname{supp} \sum_{i=1}^n \mathscr{B}_i$ such that $\mathscr{A}_i \mathscr{B}_i = 0$ for all $i = 1, 2, \dots, n$, and $(\mathscr{A}_1 \mathscr{A}_2 \cdots \mathscr{A}_n)(\sum_{i=1}^n \mathscr{B}_i) = 0$.

THEOREM 3.3. Let R be a strongly harmonic ring. If F is a compact subset of $\mathcal{M}(R)$ then $F = h(\bigcap \{O(M) \mid M \in F\})$.

Proof. Since $\bigcap_{M\in F}O(M)\subseteq k(F)$, $F\subseteq h(\bigcap_{M\in F}O(M))$. Suppose there is $M_0\in h(\bigcap_{M\in F}O(M))$ such that $M_0\notin F$. Then by 3.2 there exist ideals \mathscr{A} , \mathscr{B} in R such that $M_0\in \operatorname{supp}(\mathscr{A})$, $F\subseteq \operatorname{supp}(\mathscr{B})$ and $\mathscr{A}\mathscr{B}=0$. Hence if $M\in F$ then $\mathscr{B}\nsubseteq M$ and $\mathscr{A}\subseteq O(M)$. Thus $A\subseteq \bigcap_{M\in F}O(M)$. Since $M_0\in h(\bigcap_{M\in F}O(M))$, this means that $\mathscr{A}\subseteq M_0$ and this is a contradiction.

THEOREM 3.4. Let R be a strongly harmonic ring with 1 and let $\mathscr{R}(R)$ be the sheaf of local rings over $\mathscr{M}(R)$, which is described in 3.1. If F_0 is a compact subset of $\mathscr{M}(R)$ and σ is a section from F_0 into $\mathscr{R}(R)$, then there is $r \in R$ such that $\hat{r}|_{F_0} = \sigma$.

Proof. If $M_0 \in F_0$ then there exists an open set U in $\mathcal{M}(R)$ which contains M_0 and $r \in R$ such that if $M \in U \cap F_0$ then $\sigma(M) = \widehat{r}(M)$. Let $U_0 = \mathcal{M}(R) \backslash F_0$. Since $\mathcal{M}(R)$ is Hausdorff by 2.7, F_0 is a closed set. Hence U_0 is an open subset of $\mathcal{M}(R)$. There exist a finite number of points M_1, M_2, \dots, M_n in F_0 , open sets U_1, U_2, \dots, U_n such that $M_i \in U_i$, $i = 1, 2, \dots, n$, and r_1, r_2, \dots, r_n in R such that $\sigma(M) = \widehat{r}_i(M)$ for every $M \in U_i \cap F_0$ for every $i = 1, 2, \dots, n$. Furthermore, $F_0 \subseteq \bigcup_{i=1}^n U_i$ and $\mathcal{M}(R) = \bigcup_{i=0}^n U_i$. Let $F_i = \mathcal{M}(R) \backslash U_i$ and let $I_i = \bigcap_{M \in F} O(M)$ for each $i = 0, 1, 2, \dots, n$. Since F_i is a closed subset of a compact space, it is compact. Hence $F_i = h(I_i)$ for each $i = 0, 1, 2, \dots, n$ by 3.3. Since $\phi = \bigcap_{i=0}^n F_i = \bigcap_{i=0}^n h(I_i) = h(\sum_{i=0}^n I_i)$, $R = \sum_{i=0}^n I_i$ and $1 = \sum_{i=1}^n e_i$ for some $e_i \in I_i$, $i = 0, 1, 2, \dots, n$. If $M \in F_i \cap F_0$, then $\widehat{r}_i(M)\widehat{e}_i(M) = O(M) = \sigma(M)\widehat{e}_i(M)$. If $M \in U_i \cap F_0$, then $\widehat{r}_i(M)\widehat{e}_i(M) = \sigma(M)\widehat{e}_i(M)$. Hence, for every $M \in F_0$, $\widehat{r}_i(M)\widehat{e}_i(M) = \sigma(M)\widehat{e}_i(M)$. Thus if we let $r = e_0 + \sum_{i=1}^n r_i e_i$, then for every

$$egin{aligned} M \in F_0 \ \hat{r}(M) &= \hat{e}_{\scriptscriptstyle 0}(M) + \sum\limits_{i=1}^n \hat{r}_i(M) \hat{e}_i(M) \ &= \sigma(M) \hat{e}_{\scriptscriptstyle 0}(M) + \sum\limits_{i=1}^n \sigma(M) \hat{e}_i(M) \ &= \sigma(M) (\sum\limits_{i=0}^n \hat{e}_i(M)) = \sigma(M) \ . \end{aligned}$$

COROLLARY 3.5. If R is a strongly harmonic ring with 1 then $R \cong \Gamma(\mathcal{M}(R), \mathcal{R}(R))$.

Proof. By 2.5, $r \mapsto \hat{r}$ is a monomorphism from R into $\Gamma(\mathscr{M}(R), \mathscr{R}(R))$. Since $\mathscr{M}(R)$ is a compact space, by 3.4 if $\sigma \in \Gamma(\mathscr{M}(R), \mathscr{R}(R))$ then there is $r \in R$ such that $\sigma = \hat{r}$. Thus $r \mapsto \hat{r}$ is an isomorphism of R onto $\Gamma(\mathscr{M}(R), \mathscr{R}(R))$.

DEFINITION 3.6. We say that a sheaf \mathscr{R} over the space X is soft provided that if F is a compact subset of X and $\sigma \in \Gamma(F, \mathscr{R})$ then there is $\bar{\sigma} \in \Gamma(X, \mathscr{R})$ such that $\bar{\sigma}|_F = \sigma$.

THEOREM 3.7. Let R be a strongly harmonic ring with 1. Then the sheaf $\mathcal{R}(R)$ of local rings which is constructed in 3.1 is soft. Conversely, if \mathcal{R} is a soft sheaf of local rings over a Hausdorff compact space \mathcal{M} , then $\Gamma(\mathcal{M}, \mathcal{R})$ is a strongly harmonic ring.

¹ The author is indebted to Professor S. Teleman for this theorem.

Proof. By 3.4, $\mathscr{R}(R)$ is soft if R is a strongly harmonic ring with 1. Suppose now that \mathscr{R} is a soft sheaf of local rings over a Hausdorff compact space \mathscr{M} . Let $R = \Gamma(\mathscr{M}, \mathscr{R})$. By Theorem 11 of [6: p. 712], \mathscr{M} is homeomorphic to $\mathscr{M}(R)$. Hence we may take $R = \Gamma(\mathscr{M}(R), \mathscr{R})$. Since \mathscr{M} is Hausdorff, if $M_1, M_2 \in \mathscr{M}(R)$ such that $M_1 \neq M_2$ then there exist open sets U_i , i = 1, 2, in $\mathscr{M}(R)$ such that $M_1 \in U_1$, $M_2 \in U_2$ and $U_1 \cap U_2 = \phi$. If $\sigma \in R$, define

$$|\sigma| = \{M \in \mathscr{M}(R) \mid \sigma(M) \neq 0\}$$
.

Let $A_i = \{\sigma \in R \mid |\sigma| \subseteq U_i\}$, i = 1, 2. Clearly, A_1 , A_2 are ideals of R and $A_1A_2 = 0 = A_2A_1$ since $U_1 \cap U_2 = \phi$. There exists compact sets K_1 , K_2 such that $M_i \in K_i$ and $K_i \subseteq U_i$, i = 1, 2. Let $F_i = \mathscr{M}(R) \setminus U_i$. Since \mathscr{R} is soft there exist σ_i in $\Gamma(\mathscr{M}(R), \mathscr{R})$ such that $\sigma_i(K_i) = 1$ and $\sigma_i(F_i) = 0$, i = 1, 2. Hence $A_i \not\subset M_i$ for i = 1, 2. Thus R is strongly harmonic.

REMARK 3.8. Let R be a ring and A be a right R-module. We will associate with A a sheaf if $\mathscr{R}(R)$ -modules over $\mathscr{M}(R)$ (refer [4] for definition). For $M \in \mathscr{M}(R)$, denote $\widetilde{A} = \bigcup \{A/A_M \mid M \in \mathscr{M}(R)\}$, the disjoint union of a family of R-modules A/A_M indexed by $\mathscr{M}(R)$. Let $\pi \colon \widetilde{A} \mapsto \mathscr{M}(R)$ be given by $\pi^{-i}(M) = A/A_M$. For $a \in A$ and $M \in \mathscr{M}(R)$, let $t_a(M)$ be the image of a, under the natural homomorphism of A onto A/A_M . Topologize \widetilde{A} by taking all sets $t_a(U)$, with $a \in A$, U is an open set in $\mathscr{M}(R)$, as a basis for the open sets. Then \widetilde{A} becomes a sheaf of $\mathscr{R}(R)$ -modules over $\mathscr{M}(R)$. The justification of this statement and proof of this result require only slight modifications of 3.1.

THEOREM 3.9. Let R be a strongly harmonic ring with 1 and let A be a unitary right R-module. Then the mapping $\xi_A : a \mapsto t_a$ is a semi-linear isomorphism of A onto the $\Gamma(\mathscr{M}(R), \mathscr{R}(R))$ -module $\Gamma(\mathscr{M}(R), \widetilde{A})$ in the sense that ξ_A is a group isomorphism satisfying $\xi_A(ar) = t_a \cdot \hat{r}$ for $a \in A$, $r \in R$ where $t_a(M) = a + A_M$ for all $m \in \mathscr{M}(R)$.

Proof. We omit the proof because it is only a variant of the proof of 3.4. However, it is worth noting that the full strength of 2.4 is needed here to prove that ξ_{β} is an injection.

4. A ring is called biregular if every principal ideal of the ring is generated by a central idempotent. In [2], Dauns and Hofmann proved that if R is a ring with 1 then R is biregular if and only if R is isomorphic to the ring of all global sections of a sheaf of simple rings over a Boolean space. By applying this theorem, we

will show that if R is a ring with 1 such that it contains no nonzero nilpotent elements then R is biregular if, and only if, every prime ideal of R is a maximal ideal of R.

PROPOSTION 4.1. If R is a biregular ring then every prime ideal M of R is a maximal ideal of R.

Proof. If R is biregular then so is the ring R/M for any ideal M of R. Hence if M is a prime ideal then R/M is a prime biregular ring. Therefore, R/M contains no proper principal ideal for if R/M contains a proper principal ideal, then R/M would have two nonzero ideals whose product is zero. Thus R/M is a simple ring and M is a maximal ideal of R.

PROPOSITION 4.2. Let R be a ring and M be a prime ideal of R. Define $O_M = \{x \in R \mid xy = 0 \text{ for some } y \notin M\}$. If R contains no nonzero nilpotent elements then $O_M = O(M)$.

Proof. Clearly $O(M) \subseteq O_M$. If x, y are elements of R such that xy = 0 then yx is zero since yxyx = 0 and R contains no nonzero nilpotent elements. Furthermore, if $r \in R$, xry = 0 since xry xry = 0. Thus $O(M) = O_M$.

PROPOSITION 4.3. Let R be a ring without nilpotent elements. If every prime ideal of R is maximal, then M = O(M) for every prime ideal M of R.

Proof. If every prime ideal of R is maximal, then every prime ideal is a maximal prime ideal. Hence by [3: 2.4], $M = O_M$ for each prime ideal M of R. Thus by 4.2 M = O(M).

PROPOSITION 4.4. If R is a ring with 1 such that R contains no nonzero nilpotent elements and if every prime ideal of R is maximal, then $\mathcal{M}(R)$ is a Boolean space.

Proof. This is a direct consequence of [3: 2.5].

THEOREM 4.5. Let R be a ring with 1 such that it contains no nonzero nilpotent elements. Then R is biregular if, every prime ideal of R is maximal.

Proof. If R is biregular then by 4.1, every prime ideal is maximal. Conversely, suppose that every prime ideal of R is maximal. Since R is a ring without nilpotent elements, the intersection of

prime ideals of R is zero. Since $\mathcal{M}(R)$ is a Hausdorff space by 4.4, if M_1 , M_2 are two distinct elements in $\mathcal{M}(R)$, then there exist ideals \mathcal{M} and \mathcal{B} such that $\mathcal{M} \nsubseteq M_1$, $\mathcal{B} \nsubseteq M_2$ and $\mathcal{M} \mathcal{B} = 0$. Hence O(M) is M-primary for every $M \in \mathcal{M}(R)$ by 2.13 and thus $R \cong \Gamma(\mathcal{M}(R), \mathcal{B}(R))$ by 3.5. Since $\mathcal{M}(R)$ is a Boolean space by 4.4 and M = O(M) by 4.3, R is a biregular ring by [2: 2.19, p. 108].

REFERENCES

- 1. J. Dauns and K. H. Hofmann, Representation of Rings by Sections, Memoirs, No. 83, 1968, Amer. Math. Soc.
- 2. ——, The representation of biregular rings by Sheaves, Math. Zeit., 91 (1966), 103-123.
- 3. K. Koh, On functional representations of a ring without nilpotent elements, Canad. Math. Bull., (to appear).
- 4. R. S. Pierce, Modules over Commutative Regular Rings, Memoirs, No. 70, Amer. Math. Soc. (1967).
- 5. S. Teleman, Analyse harmonique dans les algèbres régulieres, Rev. Roum. Math. Pures, Appl., 12 (1968), 691-750.
- 6. ——, La représentation des anneaux reguliers par les faisceaux, Rev. Roum., Math., 14 (1969), 703-717.
- 7. ———, Representation of Von Neuman algebras by Sheaves, Acta. Scient. Math. Szeged, (to appear).

Received February 10, 1971.

TULANE UNIVERSITY
AND
NORTH CAROLINA STATE UNIVERSITY