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ON A RING PROPERTY UNIFYING REVERSIBLE AND
RIGHT DUO RINGS

NAM KyuN KiM AND YANG LEE

ABSTRACT. The concepts of reversible, right duo, and Armendariz rings
are known to play important roles in ring theory and they are indepen-
dent of one another. In this note we focus on a concept that can unify
them, calling it a right Armendarizlike ring in the process. We first find a
simple way to construct a right Armendarizlike ring but not Armendariz
(reversible, or right duo). We show the difference between right Armen-
darizlike rings and strongly right McCoy rings by examining the structure
of right annihilators. For a regular ring R, it is proved that R is right
Armendarizlike if and only if R is strongly right McCoy if and only if R
is Abelian (entailing that right Armendarizlike, Armendariz, reversible,
right duo, and IFP properties are equivalent for regular rings). It is shown
that a ring R is right Armendarizlike, if and only if so is the polynomial
ring over R, if and only if so is the classical right quotient ring (if any).
In the process necessary (counter)examples are found or constructed.

1. Right Armendarizlike rings

Throughout this note every ring is associative with identity unless otherwise
stated. Given a ring R we use R[x] to denote the polynomial ring with z an
indeterminate over R. Let Mat,(R) be the n by n full matrix ring over R,
and denote by e;; the matrix with (¢, j)-entry 1 and elsewhere zeros. We use
Z and Z, to denote the ring of integers and the ring of integers modulo n,
respectively. Given a ring R, ¢r(—) (resp. rgr(—)) is used for the left (resp.
right) annihilator in R.

We extend the McCoy’s study of constant zero divisors of polynomial rings
([25, 26]) onto a kind of ring that is near-related to reversible rings, right duo
rings, and Armendariz rings. These three properties play important roles in
noncommutative ring theory. The near-related concept will be scheduled to
unify them, and we will call it a right Armendarizlike ring. Another property
that unifies them is what Hong et al. in [14] called strongly right McCoy rings.
In this section we examine the relation between right Armendarizlike rings
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and strongly right McCoy rings. A ring is called reduced if it has no nonzero
nilpotent elements. Due to Cohn [7], a ring R is called reversible if ab = 0
implies ba = 0 for a,b € R. Reduced rings are clearly reversible. Anderson and
Camillo [2], observing the rings whose zero products commute, used the term
ZCy for what is called reversible. It is obvious that both commutative rings
and reduced rings are reversible. The study of reversible rings was continued in
[14, 18, 21] and [22]. Especially, Hong et al. obtained the following interesting
result for zero-dividing polynomials over reversible rings.

Lemma 1.1 ([14, Theorem 1.6)). Let R be a reversible ring and f(x) =
Sty airt, g(x) = Z?:O bjx™ be nonzero polynomials over R with f(z)g(z) =
0. Then there exists r = aé"alf . ~~ai‘ ER(t<mandl >0 fork=0,...,%)
with g(z)r # 0 and a;bjr =0 for all i and j.

Due to Feller [9], a ring is called right duo if every right ideal is two-sided.
Various kinds of examples and results can be found in [8, 23, 24] and [31]. Es-
pecially, Hong et al. obtained the following interesting result for zero-dividing
polynomials over right duo rings.

Lemma 1.2 ([14, Theorem 1.11]). Let R be a right duo ring and f(x) =
Yo airt, g(z) = > im0 bjz? be nonzero polynomials over R with f(z)g(x) = 0.
Then there exists r € R with g(xz)r # 0 and a;b;r =0 for all i and j.
For a reduced ring R, Armendariz [4, Lemma 1] proved that

(%) a;b; = 0 for all i, j whenever f(z)g(z) =0,

where f(z) = 31" gaix’, g(x) = Y7 bja’ are in Rlz]. From this result,
Rege-Chhawchharia [29] called a ring (not necessarily reduced) Armendariz if
it satisfies (). So reduced rings are clearly Armendariz. Essential properties

of Armendariz rings are developed in [1, 3, 13, 16, 17, 19, 20] and [29]. Based
on Lemmas 1.1 and 1.2, we define the following concept.

Definition 1.3. A ring R is called right Armendarizlike provided that if
f(z)g(x) = 0, then there exists r € R such that

g(x)r # 0 and a;b;r = 0 for all ¢ and 7,

where f(z) = 3" a;x" and 0 # g(z) = Y77 bja’ are polynomials over R.
Left Armendarizlike rings are defined symmetrically. If a ring is both left and
right Armendarizlike, then the ring is called Armendarizlike.

It is clear that Armendariz rings are Armendarizlike. Both reversible rings
and right duo rings are right Armendarizlike by Lemmas 1.1 and 1.2. So the
concept of Armendarizlike rings unifies reversible rings, right duo rings, and
Armendariz rings. But these implications will be shown to be irreversible by
Example 1.4(1) and Example 2.2(1) to follow.

Example 1.4. (1) We expand the argument in [14, Example 1.5]. Let S =
Zs[s,t] be the polynomial ring with indeterminates s,¢ over Zs. Let I be
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the ideal of S generated by s3,s%t2,t3 and R = S/I. Identify h(s,t) + I
with h(s,t) for simplicity. Take f(z) = s + tx, g(x) = s? + 2stz + t?2% in
R[z]. Then f(z)g(x) = 0 but ts*> # 0, whence R is not Armendariz. But
R is Armendarizlike by Lemma 1.1 since R is commutative. In fact, we have
g(z)t # 0 and t2f(z) # 0 so that abt = 0 and t?ab = 0, where a and b are
coefficients of f(x) and g(x), respectively.

(2) Armendariz (reversible, right duo) rings need not be one-sided Armen-
darizlike when the rings do not have identities. Let R = (¢ ) be a subring of
the 2 by 2 full matrix ring over any ring A. Simple computation shows that R
is both reversible and right duo. Next for two polynomials f(z) = >.1" , a;a’,
g(x) = X0 bja? over R, f(z)g(x) = 0 and a;b; = 0 for all i,j, concluding
that R is Armendariz as a ring without identity. But rf(z) = 0 and g(z)r =0
for all » € R and so R is neither left nor right Armendarizlike.

We next find a simple way to construct a right Armendarizlike ring but not
Armendariz, from given any right Armendariz(like) ring. Given a ring R and
an integer n > 2, first consider the following subrings of Mat,, (R):

a ai2 -+ Qln
0 a S dop
Dy, (R) = . .| la,ai; €R
0 0 a
and
ay az -+ Ap-1 Qn,
0 a1 -+ ap—2 ap—1
Va(R) = oo : a1y...,an € R
0 0o .- a1 as
o o0 --- 0 ay

Then D3(R) is Armendariz over a reduced ring R by [17, Proposition 2], but
Dy(R) is not Armendariz for any ring R by [17, Example 3]. Also, by [17,
Example 5], there exists an Armendariz ring A such that Ds(A) is not Ar-
mendariz. So if Ds(A) is proved to be Armendarizlike, then we can always
construct an Armendarizlike ring but not Armendariz from any Armendariz
ring.

Theorem 1.5. For a ring R and n > 3, the following conditions are equivalent:
(1) R is right (resp. left) Armendarizlike;
(2) Da(R) is right (resp. left) Armendarizlike;
(3) Vi (R) is right (resp. left) Armendarizlike.

Proof. (1)=-(2): Suppose that R is right Armendarizlike. Note that D,,(R)[z] =
D, (R[z]) for any n > 2. Let

=5 (5 )= (8 4)

i=0
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e =3 (5 )= (% )

and

in Do(R)[z] such that A(_) B(z) = 0, where fi(z) = 3" aia’, gi(z) =
Z:io bliziv Ja(x) = Z?:o ag;x’, g2(z) = Z?:o b2jzj'
Case 1. fa(x) #£0.

Note fi(z)f2(x) = 0. Then since R is right Armendarizlike, there exists
a € R such that fo(z)a # 0 and ai;a2;c0 = 0 for all ¢, 5. So B(z)aeis # 0 and

(0513 bli az; bgj 0 « . .o
<0 a1i><0 a; 0 0 =0 for all 4, .

Case 2. fa(x) =0 (then go(x) # 0 since B(z) # 0).
Note fi(z)gz2(x) = 0. Then since R is right Armendarizlike, there exists
ﬂ € R such that 92(1')ﬂ 7& 0 and alibgjﬂ = 0 for all Z,j So B(z)ﬂ(eu +€22) 7& 0

ai; b\ (0 b\ (B 0) _ .
(0 au) (0 0) (0 3 =0 for all 4, .
By Cases 1 and 2, D2(R) is right Armendarizlike.
(2)=-(1): Suppose that Dy(R) is right Armendarizlike and let

:E):iaz 0#g(x beJGR
i=0

with f(z)g(x) = 0. Then, letting

Az) = i (% f) ot and B(z) = sz: (’8 b(i) "

we have A(z) = (f(oz) f(o)) and B(z) = (g(ox) (01)) with A(z)B(x) = 0. Since
D5 (R) is right Armendarizlike, there exists C' € Da(R) such that B(z)C # 0,

say C' = (§!), and

a; 0 bj 0 S t o ..
<0 ai) <0 bj> <0 s> =0 for all 7,j.

So we have “g(z)s # 0 and a;bjs = 0" or “g(x)t # 0 and a;b;t = 0” for all ¢, j,
concluding that R is right Armendarizlike.

(1)=(3): Suppose that R is right Armendarizlike. Note that V,,(R)[z] =
V..(R[x]) for any n > 3. Let

fix)  folx) - faa(x)  ful®)
0  filx) - fao(x) faooi(z)
0 0 - A fl
0 0o .- 0 fi(z)
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and
gi(x) g2(z) - gn-1(x)  gn(z)
0 gi(z) - g2 gn-1(2)
B(x) = : : e : :
0 0 - gi(z) g2(x)
0 0o .- 0 g1()

in V,(R)[x] such that A(x)B(z) =0 and B(x) # 0.

Suppose g1(x) # 0. Then fi(x)g1(z) = 0. Since R is right Armendarizlike,
there exists @ € R such that g1(x)a # 0 and a;bjoe = 0 for all i,j where a;
and b; are coefficients of fi(x) and g1(x), respectively. So B(z)aei, # 0 and
A;Bjaer, = 0 for all 4, j, where A; and B; are coefficients of A(z) and B(x)
respectively.

Suppose that gi(z) = 0 and gz2(x) # 0. Then fi(x)g2(xz) = 0. Since R is
right Armendarizlike, there exists § € R such that g2(z)8 # 0 and a;¢;8 =0
for all 4, j, where a; and c; are coefficients of fi(x) and ga(z), respectively. So
B(x)B(e1(n—1) + e2n) # 0 and A;B;B(eq(—1) + €2n) = 0 for all i, 5.

We can proceed inductively for the remaining computation, using the matrix
€1(n—k+1) + -+ €xn when gi(x) = 0fori € {1,...,k—1} and gp(x) # 0 with
2 < k < n (here f1(z)gr(z) = 0), obtaining that V, (R) is right Armendarizlike.

(3)=(1): Similar to the proof of (2)=(1). O

Corollary 1.6. If R is an Armendariz ring (a reversible ring or a right duo
ring), then Da(R) is an Armendarizlike ring.

Based on Theorem 1.5, one may ask whether D, (R) is also right Armen-
darizlike over a right Armendarizlike ring R when n > 3. But the following
answers negatively.

Example 1.7. We use the examples and arguments in [14, Remark below
Theorem 2.2].

(1) There is a mistake about the computation of [14, Remark(1) below The-
orem 2.2], and we provide a correction here. Let T" be a reduced ring and let
S = D3(T). Then, by [17, Proposition 2], S is an Armendariz ring and hence
a right Armendarizlike ring. Next consider R = D3(.5). Take two polynomials

A(z) = (e12 + eq5 + e78) + (€14 + €25 + e36)x and B(x) = eq9 — eg9.

Then A(z)B(xz) = 0. Note that the right ideal I of R = D3(S) generated by
the coefficients of B(x) is eagR + e49R = ea9gT + e49T. Let r be any element
in I = ea9T + eq9T, say © = eaga + e49b. But A(z)r = 0 implies a = b = 0,
entailing » = 0. Thus there does not exist nonzero r € I such that A(x)r =0
and so R = D3(S) is not right Armendarizlike.

(2) Let R be any ring and consider the case of n > 4. Take two polynomials

f(w) = e12 + e13x and g(x) = —es, + eant.
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Then f(x)g(x) = 0. But the right ideal of D,,(R) generated by the coefficients
of g(x) is J = eanR + e3n R, there does not exist nonzero s € J such that
f(z)s =0 and so D,(R) (n > 4) is not right Armendarizlike.

Now it is the step to argue the left-right symmetry of the Armendarizlikeness.
However there exist right Armendarizlike rings but not left Armendarizlike.

Example 1.8. Let K be a field and S = K({(ag, a1, az,as) be the free algebra
with noncommuting indeterminates ag, a1, a2, az over K. Let I be the ideal of
S generated by the following relations

aoaz, a1as + agasz, ayas, a;ao(0 < i < 3),a;a1(0 < i < 3), 050500 < 4,5,k < 3).

Set R = S/I and we coincide {ag, a1, az, a3z} with their images in R for sim-
plicity. Put s(z) = ap + a12 and t(z) = ag + azz. Then s(z)t(z) = 0. Since
lr(ag) = lr(a1) = R — K, we can’t find » € R such that rs(z) # 0 and
raa; = 0 for all ¢ = 0,1,5 = 2,3, hence R is not left Armendarizlike. Now
we claim that R is right Armendarizlike. Take f(z) = >.1"j ;z",0 # g(z) =
>i—oBjx’ € Rlz] with f(z)g(x) = 0. Fix o/ to be a monomial of a;’s of
smallest degree in the support of «;’s.

If 0 # k € K occurs in the support of some 3;, then o'k remains in the
support of Y a;3; = 0, a contradiction. Thus k does not occur in the support
of ;’s, and similarly k does not occur in the support of o;’s.

Let H,, be the set of all linear combinations of monomials of degree n over
a field K. Then all coefficients o, 3; are in Hy or Hy. If B € Hy for all
0 <k < n, then a;8; = 0 for all ¢,5. If B, € H; for some ¢, then we can
find a nonzero polynomial g1 (z) from g(z) such that g(z) = g1(x) + g2(z) and
f(x)g1(x) = 0 where g1(x) € Hy[z] and g2(xz) € Ha[z]. Clearly, we can easily
find r € Hy such that g1(z)r # 0 and ;8,7 = 0 for all 4,5. So R is a right
Armendarizlike ring.

According to Hong et al. [14], a ring R is strongly right McCoy provided
that f(z)g(x) = 0 implies f(z)r = 0 for some nonzero r in the right ideal of R
generated by the coefficients of g(x), where f(x) and 0 # g(x) are polynomials
in R[x]. The strongly left McCoy ring can be defined symmetrically. Right
Armendarizlike rings are clearly strongly right McCoy, but the converse need
not hold by the following.

Example 1.9. Let K be a field and A = K{aog, bo, a1, b1, a2,b2) be the free
algebra generated by the noncommuting indeterminates ag, by, a1, b1, az, by over
K. Let I be the ideal of A generated by

aobo, aobr + aibo, apbs + arby + azbo, aibz + asbi,
G,ng, albon, a2b0b2, bjlbjzbjsa ailaiz, bjai,

where i, §, 41,42, j1, j2, J3 € {0,1,2}. Define R = A/I and identify a;’s and b;’s
with their images in R for simplicity. We first get an equality agb1b2 = 0 from
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0 = (agb1 + a1bg)ba = agb1bs. Every element r € R can be rewritten by

2 2
T:u+2visas+2vjtbt+ Z vy, b, by,
s=0 t=0 11,12€{0,1,2}

+ vaapbr + v3apba + viai1by + vsaiba

+ vgaob1bo + v7apbib1 + vsapbaby + voapbabi + vipapbabs + vi1a1b1bg

+ v12a1b1b1 + V130410102 + v14a1baby 4 visa1baby + vigaibaby,

where u, v, vs_, vj,,v1, € K for all m, s, j, 1,

Let a(z) = ap+aiz+azz? and b(z) = bo+bix+bex? € R[z]. Then a(z)b(x) =
0 and b(x) # 0. Assume that a;b;7 = 0 and b(z)r # 0 for some r € R. We use
the preceding expression for r. Note b(z)r = b(z)(u + v;,bo + vj,b1 + v;,b2),
so we can let 7 = u 4 v;, by + v, b1 + v;,b2. From a;b;7 = 0, we have agbiu =
aobl’UjObO = aoblvjlbl = aonUj2b2 = 0. This yields U = Vj, = Vj; = Vjy, = 0
and r = 0, a contradiction. So R is not right Armendarizlike.

Next we will show that R is strongly right McCoy. Note that every polyno-
mial over R can be expressed by

2
(%) ho(x) + Y hu, (2)bs +Zh2t Ve,
s=0

where ho(m),hls (m),hgt (.T) S K(ao,al,a2>[x] and kl = bobo,kg = bobl,l{?3 =
bobg, k4 = blbo, k5 = blbl, 1{36 = blbg, 1{37 = bgbo, 1{38 = bgbl, kg = bgbg. Note that
each coefficient of ho(x), hi_(x)’s, and hg,(x)’s is of the form z + Z?:o zia;
with z, z; € K.

Take two nonzero polynomials f(z) = 0" Coa®,g(z) = > 0 _ Dwz® €
R[z] with f(z)g(z) = 0. According to the expression (x), rewrite them by

() = fo(x) + Z )b +Zf2t )k and

s=0

= go(z) + Zgl )bs + Zg% (@)ke
t=1

Since f(z)g(x) =0, we have fo(x)go(z) = 0 and

2 9
Fo@)O_ gr.(@)bs + > g2, ()ke) + (Z x)bs + Z f2. (@)ke)go(x
s=0 t=1 s=0
2 9
+ (O fi(@)bs + Y fo, (w)kt)(z g1.(x)bs + Z% (@)ke) =
s=0 t=1 s=0 t=1

So every coefficient of fy(z) and go(x) must be of the form Z?:o z;a; with
z; € K when fy(z) # 0 or go(x) # 0.
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Suppose go(x) # 0. Then g(x)b? = go(x)b? # 0 and moreover C, D,,b3 = 0

for all v,w. So it suffices to compute the case of go(x) = 0. Based on this
conclusion, we now rewrite g(z) (with go(z) = 0) by

2 2
() g(z):ZOzpbp+Zg/1 )bs +Zﬂqk +Zth ki,
p=0 s=0

where oy, 3, € K[z] and every coefficient of g7 (x)’s and g5, (z)’s is of the form
Z?:o z;a; (z; € K). Thus, for any nonzero r € R, g(z)r is of the form

2 2
gla)r = Z apbpby, + Z g1, (x)bsbp.
p,h=0 s,h=0

Case 1. (fo(z) #0, go(z) =0).

If each coefficient of g1, (x)’s and go, (x)’s is of the form Z?:o zia; (z € K),
then C,D,, = 0 for all v,w. So assume that not every coefficient of g1 (x)’s
and go, (z)’s is of the form 2220 zia; (z € K). From f(x)g(z) = 0 we have

2
Zfo(»’c)gl )bs Jero z)g2, (x)ke + Z fr.(@)bugr, (2)by = 0.
s=0

u,v=0

Then by the construction of I, we have

9
> fo(@)gr, (x)bs = 0 and Y fo(w)ge, (@)k: + Z fr.(@)bugr, ()b, = 0.

s=0 t=1 u,v=0

If we use the expression (f), then we also obtain

2 9 2
(%) > apfol@)b, =0 and Y Byfo(@)kg + D apfr, (@)buby =0
p=0

q=1 u,p=0

since 332 fo(x)g1, (x)bs = 0, S2,—; fo(x)gh, (x)k; = 0, and

Zfl ugl )U*O'

u,v=0

We will use these equalities in (#x) freely.
(Subcase 1-1) fo(x) € K{ao)[x].
In this case we have the following two cases:
(i) Assume that 2127:0 apby # 0. Then 2127:0 ap fo(z)b, = 0 yields

2
E Oépbp = Oé()bo.
p=0
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Whence we get
2

g(l‘)bQ = Oéobobg + Zgis (x)bsbg 7& 0
s=0

and this yields that C,D,bs = 0 for all v, w.

(ii) Assume that Zizo apb, = 0. Then 23:1 Byfo(x)ky = 0. Here if
S o1 Bakq =0, then g(z) = 32 gl (2)bs + ¢, g, (2)k; and so C, D,y = 0
for all v,w. If Yo Bykq # 0, then Yo Bykq consists of B,bob; or Bybiba. We
also have that C,D,, = 0 for all v, w.

For the cases of fo(z) € {(a1)[z] and fo(z) € (a2)[z], the computations are
similar to the preceding case.

(Subcase 1-2) Suppose that both ap and az occur in the coefficients of
Jo().
In this case, we can express fo(z) by
fo(x) = folz) + fo'(x) with fi(z) € K{ao)[z] and fg'(x) € K(az)[x].
Then

2 2 1
0= Z ap fo(x)b, = Z ap fo(z)by + Z ap fi ()b,
p=0 p=1 p=0

2 1
& > apfi(@)by =0="_ apfl(z)b,.
p=1 p=0

Assume that 2127:0 apby # 0. Then 212721 ap fo(x)b, + Z;:o apfl ()b, # 0, a
contradiction. Thus Y75 o b, = 0 and g(x) = 2o g1, (2)bs + Y, ok +
Z?:l gét (x)kt, entailing

9 9 9
0= f(z)g(x) = ZquO(x)kq = Zﬁqf(/)(x)kq + Zﬁq 0 (2)kq

= Bafy(@)ks + Bs fo(x)ks + Br fo(x)kr + Bs fo(x) ks + Bo fo(x)ke
+ Bufy (x)k1 + Bafy (x)ka + Bafl (@)ka + Bs [ () ks + Bo fo () k-

Here suppose 3_,_; Bykq # 0. Then Y., Bekq = Bsks = Bsbobs by the preced-
ing argument, entailing g(z) = Zi:o g1, (2)bs+B3boba +Z?:1 g5, (x)k¢. Whence
CyDyy = 0 for all v,w. Next if Y., Bekq = 0, then g(x) = 3.2 g1 (2)bs +
S gb, (2)ks and so C,D,, = 0 for all v, w.

(Subcase 1-3) Suppose that both ag and a; occur in the coefficients of
fo(l‘)

The computation is similar to one of Subcase 1-2.
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(Subcase 1-4) Suppose that both a; and az occur in the coefficients of
fo(@).
The computation is similar to one of Subcase 1-2.
(Subcase 1-5) Suppose that the coefficients of fy(x) contain all of ag, a1,
and as.
First note that fo(x) and the expression (T) of g(z) can be rewritten by
fola) = p(x)(a0 + a1z + aza®) + f§'(z)

and

2 2 9 9
g(x) = (bo + b1z + boa®)q(x) + Y _ apby + Z i (@)bs + Y Bikg + Z 93, (2)k:
p=0 = q=1 t=1

for some p(x),q(z), « p,ﬁ’ € Klz] and fi'(x) € K{ag,a1,a2)[z], where f’(x)
(resp. Zp 0 Qpbp + Zq 1 Bykq) does not contain polynomials of the form
p(x)(ag + a1x + azz?) (resp. (bg + b1z + bex?)q(x)) as sum-factors. From
f(z)g(x) =0, we have

Z app(x)(ao + a1 + aza®)b, = 0;

Z /// =0 :

W( )(bo+b11‘+b21‘ ) (SC) :0,

and

Z Bap(x)(ao + a1 + asx?)k, =0,

2
Zfl bo +b1$+b21‘ —l—Zﬁ /” I{Zq + Z a;fls(:zj)b b, =

s,p=0

Hegre if p(z)(ap + a1 + azx?) # 0, then Zp Oapbp = 0. Moreover since
> g=1 Bgp(x) (a0 + a1z + asz?)k, = 0, we have Zq:l Bykq = B3bob2 when
22:1 Bykq # 0. Thus we have

2

9
g(x) = (bo + br + bax®)q(x) + Biboba + Y g1, (¥)bs + > _ g5, (@
s=0

t=1
It p( )(ao + a1x + azz?) = 0, then f’(z) # 0 (since fo(z) # 0) and so
2 @by =0 = (bo + biz + bax?)q(x), entailing

p=0""p
2 9 9
(@) =Y g1, (@)bs + Y Bikg+ Y _ b, (x)ke
s=0 q=1 t=1
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From
2 9 2
D 1 @) (bo + br + bax®)g(x) + Y Befo" (@)kg + Y apf1, (@)bshy, =0,
s=0 q=1 s,p=0

we also obtain Y0 3 f¢'(z)ky = 0 and this yields Y_,_; 8k, = B3bobs when
22:1 Bykq # 0. Thus we have

2 9
g(x) = Biboba + Y g1 (@)bs + Y _ gh, (2)ke.
s=0 t=1

If (bo + b1z + bax?)g(z) # 0, then f§’(z) = 0 and this yields fo(x) = p(z)(ap +
ai1r + a2$2).

Thus we have the following three cases.

(i) Suppose that p(z)(ag + a1z + azz?) # 0 and (by + biz + bex?)g(x) # 0.
Then

fo(z) = p(z)(ap + a1z + asa?)

and

2 9
g(x) = (bo + by + bax?)q(x) + Byboba + Zg'ls (2)bs + Z g5, (2)ky.
s=0 t=1
So some coefficients of g(x) are D = 2'by + 2"bobs + 2320 dsbs + Z?Zl ik,
where 0 # 2/, 2" € K and nonzero elements d;,; are of the form Z?:o zia;. It
then follows that

2
Dby = zboby + Y _ dubsba # 0
s=0
and f(x)Dby = 0.
(ii) Suppose that p(z)(ap + a12 + azz?) # 0 and (b + b1z + baz?)q(x) = 0.
Then
fo(x) = p(a)(ao + a1z + azz?) + fy' (z)

and
2

9 9
g(@) =Y g1, (@)bs + Y Bokg+ Y g, (x)ke.
s=0 q=1 t=1

Here if 22:1 Bykq # 0, then we get

2 9
g(x) = Biboba + Y gy (x)bs + Y _ g, ()ke (with B # 0)
t=1

s=0
by the arguments above. Whence C, D,, = 0 for all v, w.
Next if 22:1 Bykq = 0, then we also have that C, Dy, = 0 for all v, w.
(iii) Suppose that p(z)(ao + a1z + asz?) = 0 and f}’(x) # 0. Then if
22:1 Bykq # 0, then
folz) = 5" ()
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and

2 9
g(x) = Byboba + Zgis(ﬂﬁ)bs + Zgét (x)ke (with B3 # 0)
t=1

s=0

by the arguments above. Whence C, D,, = 0 for all v, w.
Next if 22:1 Bykq = 0, then we also have that C, Dy, = 0 for all v, w.

Case 2. (fo(z) =0, go(z) =0).
From f(x) and the expression (f) of g(z), f(x)g(z) = 0 implies

2

Z apfi,(x)bsby, = 0.

s,p=0

If Y2 apb, = 0, then €, D,, = 0 for all v, w. So assume 3">_; apby, # 0. Then
some coefficients of g(z) are of the form Z?:o 2bj + Zi:o 8sbs + 23:1 2 ke +
Z?Zl Yiki, where 27, 2 € K, Z?:o 27bj # 0, and nonzero elements Js,y; are of
the form Z?:o zia;. It then follows that g(x)b; # 0 for all j and C,Dyb; =0
for all v, w.

By Cases 1 and 2, R is strongly right McCoy.

Note. (1) Consider the strongly right McCoy ring R in Example 1.9. We
will show that R is not strongly left McCoy. Recall a(z)b(x) = (ag + a12 +
az7?)(bo+b1z+ba2?) = 0. Consider the left ideal L of R generated by ag, a1, az.
Then L = Kaop + Ka; + Kaz. Assume that sb(z) = 0 for some 0 # s € L,
$ = Yoag + Y101 + Y202 say. From sbg = 0, we have

= sby = (y0a0 + Y101 + Y2a2)bo = Y1a1bo + Y2a2bo.

This yields 71 = 72 = 0, entailing s = vpag. From 0 = sby = ypapb1, we get
Y0 = 0 and so s = 0, a contradiction. So R is not strongly left McCoy.
(2) Let K be a field and A = K{ag, by, a1, b1,as2,ba) be the free algebra
generated by the noncommuting indeterminates ag, by, a1, b1, az, by over K.
Let J be the ideal of A generated by

apbo, aogbi + aiby, agbz + aiby + agby, aibs + azby,

azbe, apaobi, apagba, ai,ai,aq,, by bj,, bja;,

where i, j,141, 2,13, j1,j2 € {0,1,2}. Then one can show that A/J is strongly
left McCoy, but neither strongly right McCoy nor left Armendarizlike, through
similar computations to Example 1.9 and (1) above.

But right (left) Armendarizlike property and strong right (left) McCoy prop-
erty are equivalent for regular rings by Theorem 2.5, to follow.
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2. Properties of right Armendarizlike rings

In this section we examine basic properties of right Armendarizlike rings, and
relations between right Armendarizlike rings and related concepts. Especially it
is proved in Theorem 2.5 to follow that the properties of right Armendarizlike,
Armendariz, reversible, right duo, and strong right McCoy are equivalent for
regular rings. First we obtain a similar result to [1, Proposition 1].

Proposition 2.1. Let R be a right Armendarizlike ring and suppose that
fi(@), ..., fu(x) € Rlx] are such that fi(x)--- fn(z) = 0 and fi(z) # 0 for
all i € {2,...,n}. Then for any choice ai,...,a, with a; a coefficient of f;(x)
there exists 1 € R such that f,(z)r #0 and a1 +--ap,r = 0.

Proof. If fo(x)--- fn(x) # 0, then there exists r; € R such that

(fa(x) -+ fn(z))r1 # 0 and ax (f2(2) - - fu(x))r1 = 0
for any coefficient a1 of fi(x). From (fa(z)- - fn(x))r1 # 0, we have

fs(@) -+ fu(x)ry #0

and hence there exists ro € R such that

(f3(@) - fulx)ri)rs # 0 and (a1a2)(f3(2) - - fu(@)r1)r2 =0

for any coefficient ajas of a; fa(x). We inductively obtain r,,—1 € R such that

(fa(@)r1 - rp_2)rp—1 # 0 and (a1 apn_1) fu(x)(r1 - rn_2)rn_1 =0

for any coefficient aj - - ap—2an—1 of (a1 -+ an—2)fn-1(x).

Letting r =71 -+ 127 —1, we are done.

If fa(z) - fo(x) = 0, then take & > 3 such that k is smallest with respect
to the property

Sr(@) fesa (@) - fulz) #0
(this k exists since f,,(z) # 0). We then get

(a1 ak—1)(fx(z) - fn(x)) = 0 for any choice ay,...,ar_1
with a; a coefficient of f;(x) for ¢ € {1,...,k — 1}. Applying the manner

of the preceding case, we can also obtain » € R such that f,(z)r # 0 and
a - - - a,r = 0, starting from the product

(a1 ak—1f1(@)(fes1(z) - fu(z)) =0
with fry1(2) - fu(z) # 0. O

A ring is usually called Abelian if every idempotent is central. Armendariz
rings are Abelian by the proof of [1, Theorem 6] or [16, Corollary 8]. Due to
Bell [5], a ring R is called IFP if ab = 0 implies aRb = 0 for a,b € R. IFP
rings are clearly Abelian and it is also trivial to check that reversible rings and
right duo rings are IFP. The study of IFP rings was developed by many authors
containing [6, 12, 13, 16, 18, 22, 30, 27] and [28].
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The concepts of Armendariz rings and IFP rings are independent of each
other. Rege-Chhawchharia showed that commutative (hence IFP) rings need
not be Armendariz in [29, Example 3.2]; and by [16, Example 14] or [3, Ex-
ample 4.8], there exist Armendariz rings that is not IFP. It then follows that
Armendariz rings (and so Armendarizlike rings) need not be reversible or right
duo.

Recall that if a ring R is right duo or reversible, then R is right Armendariz-
like. Also recall that the class of Abelian rings contains Armendariz rings, right
duo rings, and reversible rings. So it is natural to check the implications be-
tween right Armendarizlike rings and Abelian rings. But they are independent
of each other as follows.

Example 2.2. (1) There exists an Armendarizlike ring but not Abelian. We
use the ring in [6, Theorem 7.1]. Let K be a field and K({e,z,y,z) be the
free algebra with noncommuting indeterminates e, x,y, z over K. Set R be the
factor ring of K (e, z,y, z) with the relations

6226, ex=x, ze =0, ey =ye =0, ez = ze = z,

2 2

=y ==ay=az=yr=yz =z =2y =0.

We coincide {e,z,y, 2z} with their images in R for simplicity. Note that R is
non-Abelian since e is an idempotent that does not commute with z. By the
computation of [14, Example 1.10], we can show that R is an Armendarizlike
ring.

(2) By help of Theorem 1.5, we can find an Abelian ring but not right
Armendarizlike. Let S be a reduced ring and let R = Dy4(S). Then R is an
Abelian ring by [15, Lemma 2], but not right Armendarizlike by Example 1.7.

The class of IFP rings contains right duo rings and reversible rings. So one
may conjecture that IFP rings are right Armendarizlike. However there exists
an IFP ring that is not right Armendarizlike by help of [28, Section 3]. Nielsen
[28] and Rege-Chhawchharia [29] called a ring R (possibly without identity)
right McCoy when the equation f(z)g(x) = 0 implies f(z)r = 0 for some
nonzero r € R, where f(z),0 # g(x) are polynomials in R[z]. Left McCoy
rings are defined similarly. Strongly right (resp. left) McCoy rings are clearly
right (resp. left) McCoy. Following the literature, a ring R is called directly
finite if uwv = 1 implies vu = 1 for u,v € R.

Proposition 2.3. (1) Left or right McCoy rings are directly finite.
(2) Strongly left or right McCoy rings are directly finite.
(3) Left or right Armendarizlike rings are directly finite.

Proof. Tt suffices to prove (1). Right McCoy rings are directly finite by [6,
Theorem 5.2].

Let R be a left McCoy ring. Suppose that uv = 1 but vu # 1. Consider
two polynomials f(z) = (vu — 1) + (vu — 1)uz and g(z) = v + (vu — D)z
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over R. Then f(z)g(x) = 0 with f(z) # 0. Since R is left McCoy, there
exists 0 # r € R such that rg(x) = 0. So rv = 0 and r(vu — 1) = 0; but
0=r(vu —1) =rvu —r = —r # 0, a contradiction. ]

It is easily checked that Abelian rings are directly finite. So by Proposition
2.3, the class of directly finite rings contains Abelian rings and one-sided Ar-
mendarizlike rings. However neither implication is reversible by the following.

Example 2.4. Let R be the 2 by 2 upper triangular matrix ring over any
reduced ring. Consider the two polynomials f(z) = e;; — epx and g(z) =
ego + ez over R. Then f(z)g(z) = 0 but for any nonzero matrix r € R
cannot annihilate f(x) on the right. So R is not right Armendarizlike. Sim-
ilar computation implies that R is also not left Armendarizlike. Note that R
is non-Abelian but directly finite. Note that every n by n (n > 2) full (up-
per triangular) matrix ring is neither left nor right Armendarizlike by similar
computations to above.

The concepts of right Armendarizlike rings and Abelian rings are indepen-
dent of each other by Example 2.2. But for regular rings they are equivalent as
follows. A ring R is called (von Neumann) regular if for each a € R there exists
x € R such that a = aza. It is well-known that the ring of all column finite
infinite matrices over a field is regular but not directly finite; hence regular
rings need not be right Armendarizlike by Proposition 2.3.

Theorem 2.5. For a regular ring R, the following conditions are equivalent:
(1) R is right (left) Armendarizlike;
2) R is Abelian;
) R is Armendariz
) R is reversible;
) R is right (left) duo;
(6) R is strongly right (left) McCoy.

Proof. The conditions (2) and (5) are equivalent by [10, Theorem 3.2]. If R
is Abelian, then R is reduced (hence reversible) by [10, Theorem 3.2] and so
Armendariz by [4, Lemma 1], obtaining (2)=-(3) and (2)=(4). (3)=(1) and
(1)=(6) are obvious. (4)=(1) is obtained from Lemma 1.1. So it suffices to
prove (6)=-(2). Let R be strongly right McCoy and assume on the contrary
that there exist e? = e,r € R such that er(1 —e) # 0. Since R is regular, there
exists y € R with er(1—e) = er(1—e)yer(1—e). Here we can put y = (1—e)ye.
Next consider two nonzero polynomials
f(x)=er(l1—e)—ex and g(x) = er(1 —e) + yer(l — e)x.
Then f(x)g(z) = 0. Since R is strongly right McCoy, there exist s,t € R such
that « = er(l —e)s+yer(l—e)t # 0 and f(x)a = 0. But er(1 —e)a = 0 yields
0=-er(l—e)yer(l—e)t =er(l —e)t (hence yer(l —e)t = 0) and ea = 0 yields
0 = eer(l —e)s = er(l — e)s, entailing & = 0. This induces a contradiction.
The left cases can be proved similarly. (I

(

(3
(4
(5
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Since IFP rings are Abelian, the IFP can be an equivalent condition in
Theorem 2.5.

One may hope directly finite regular rings to be right Armendarizlike (hence
Abelian). But by [10, Example 5.10], there exists a directly finite regular ring
but not Abelain (hence not right Armendarizlike by Theorem 2.5).

A ring R is called w-regular if for each a € R there exist a positive integer
n = n(a), depending on a, and z € R such that a™ = a"xza™. Regular rings
are obviously m-regular. One may also ask whether Abelian 7-regular rings are
right Armendarizlike. But the answer is also negative by the ring R = D4(S)
over a division ring S. This ring R is clearly m-regular and by [15, Lemma 2]
R is Abelian, but R is not right Armendarizlike by Example 1.7(2).

3. Examples of right Armendarizlike rings

In this section we examine the interesting properties of the class of Armen-
darizlike rings, and find various kinds of Armendarizlike rings.

Theorem 3.1. A ring R is right Armendarizlike if and only if so is Rlx].

Proof. Let R be a right Armendarizlike ring and let R[z][t] denote the polyno-
mial ring with an indeterminate ¢ over R[z]. Let f(t) = Y-, fi(z)t", g(t) =
Z?:o g;(z)t? € R[z][t] be polynomials with f(t)g(t) = 0 and g(t) # 0. Say
fi(x) = Xploa(@pa” and g;(x) = 307, b(j)ka”. Set k = 331 deg(fi(x)) +
Z?:o deg(g;(x)) where the degree of the zero polynomial is taken to be 0.
Letting F(z) = fo + fizh + -+ + frma™™,G(z) = go + g1a® + -+ + gna*",
then F(z),G(z) € R[z] and G(x) # 0. Since the set of coefficients of the f;’s
(resp. g,’s) coincides with the set of coefficients of F(x) (resp. G(z)), we get
F(z)G(x) = 0 from f(t)g(t) = 0. Now since R is right Armendarizlike, there
exists r € R such that G(z)r # 0 and a(i)pb(j)kr = 0 for all ¢, h, j and k. This
implies that g(¢t)r # 0 and f;(z)g;(z)r = 0 for all ¢, j, concluding that R[x] is
right Armendarizlike.

Conversely, suppose that R[z] is right Armendarizlike. Set R[x][y] be the
polynomial ring with an indeterminate y over R[z]. Let f(z) = /", a;2" and
g(z) = X0, bjz? in R[z] such that f(z)g(z) = 0 with g(z) # 0. Putting
fly) = XiZoay' and g(y) = 3jobjy’ € Rlallyl, we get f(y)g(y) = 0.
Clearly g(y) # 0 from g(z) # 0. Since R[z] is right Armendarizlike, there
exists ¢(z) € R[z] such that g(y)c(z) # 0 and a;bje(xz) = 0 for all ¢, 5. Since

g(y)c(z) # 0, g(y)cx # 0 for some coefficient ¢, of ¢(x). Thus g(x)ci # 0 and
abjcr, =0 for all 4, j. Therefore R is right Armendarizlike. (]

A ring R is called right Ore if given a,b € R with b regular there exist
a1,b; € R with by regular such that ab; = ba;. Note that R is a right Ore ring
if and only if the classical right quotient ring of R exists. There exist many
reduced rings which are not right Ore as can be seen by the free algebra in two
indeterminates over a field (this ring is a domain but cannot have its classical
right (left) quotient ring).
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Theorem 3.2. Let R be a right Ore ring with the classical right quotient ring
Q- (R). Then R is right Armendarizlike if and only if so is Q(R).

Proof. Let Q@ = Q.(R). Suppose F(z)G(z) = 0 for F(z),G(x) € Q[z] with
G(z) # 0. Then we can write F(z) = aou™! + aru=tz + - + apu=tz™
and G(x) = bov™! + byv~ta + -+ + by~ ta", where u,v are regular. Since
F(2)G(z) =0, (aout + aru™tz + -+ apu=ta™)(bo + byz + - + byz™) = 0
and so

(M) aou” by =0, a0u" by + aru" by =0, ..., amu”tb, = 0.

Now for u=tby,u by, ..., u"b,, there exist cg,c1,..., ¢y, s € R and s regular
such that u=1b; = ¢;s~! for all i. Then from Eq.(1), we have agco = 0, agc; +
aico =0,...,ame, = 0andso f(x)g(x) = 0, where f(x) = ap+arz+- - -+amz™
and 0 # g(x) = co+ 12+ -+ -+ cpz™ in R[z]. Since R is right Armendarizlike,
there exists r € R such that g(z)r # 0 and a;c;r = 0 for all ¢,j5. Since
brv~lvsr = bysr = ucys~lsr = ucgr # 0 for some k, there exists vsr € @ such
that G(x)vsr # 0 and so a;u™tbjv~ vsr = a;cjs™ v vsr = a;e;r = 0 for all
i, 7. Therefore @ is right Armendarizlike.

Conversely, let f(z) = ap + a1z + -+ + amaz™ and 0 # g(x) = by + bix +
-+« 4+ bpz™ in R[x] such that f(x)g(z) = 0. Then f(x),g(x) € Q[x]. Since Q
is right Armendarizlike, there exists 7s~! € @Q such that g(x)rs™' # 0 and
a;bjrs™ =0 for all i,j. So r € R such that g(z)r # 0 and a;b;r = 0 for all
i,j. Therefore R is right Armendarizlike. (]

Note. Let R be a right Ore ring with the classical right quotient ring Q.
We also note that if R is left Armendarizlike, then so is Q. Letting F(x) =
aou” ' +autr+ - +apuTta™ and G(z) = bov ! + v e+ + byl
in Q[z] with F(x)G(x) = 0, then (ap + a1z + -+ + amz™)u" (bg + byz + - - +
b,z™) = 0. Note that u=1b; = biu'~! for some b}, v’ € R with v/ regular. Then
(ap+arz+- - -+ amz™)(by+bix+---+b),2™) = 0. Since R is left Armendarizlike,
there exists € R such that 7(ag + @12+ -+ + apmz™) # 0 and raib; = 0 for
all 4,j. Then rF(x) # 0 and 0 = ra;bju'~" = ra;u~'bju~", proving that Q is
left Armendarizlike.

Proposition 3.3. (1) The class of right (left) Armendarizlike rings is closed
under direct limats.
(2) A direct product of rings R = [ [, R is right (resp. left) Armendarizlike
if and only if all rings R; for all i are right (resp. left) Armendarizlike rings.
(3) A direct sum of rings R =), R; is right (resp. left) Armendarizlike
if and only if all rings R; for alli are right (resp. left) Armendarizlike rings.
(4) The class of right Armendarizlike rings is not closed under subrings.
(5) The class of right Armendarizlike rings is not closed under homomorphic
images.

Proof. (1) Let D = {R;, a;;} be a direct system of right Armendarizlike rings
R; for i € I and ring homomorphisms «;; : R; — R; for each 7 < j satisfying
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a;;(1) = 1, where I is a directed partially ordered set. Set R = lim R; be the
direct limit of D with ¢; : R; — R and ¢tja;; = t;. Let a,b € R. Then a = ¢;(a;),
b=y (bj) for some i, j € I and there exists k € I such that i < k, j < k. Define
a+b = u(air(a;) + ajr(b;)) and ab = tg(our(ai)oyr(b;)), where asx(a;) and
a;,(b;) are in Ry. Then R forms a ring with 0 = ¢;(0) and 1 = ¢;(1).

Next let f(z) = 321" aix’,0 # g(x) = 37_o bz’ € R[z] be polynomials
such that f(z)g(x) = 0. Then there exists k € I such that f(x),g(x) € Ri[x]
via ¢;’s and «;;’s; hence we get f(z)g(z) = 0 in Rg[z]. Since Ry is right
Armendarizlike, there exists ¢, € Ry such that g(z)c, # 0 and a;bjc, = 0 for
all 7,j. Put ¢ = tx(cx). Then g(x)c # 0 and a;b;c = 0 for all 4, j, concluding R
being right Armendarizlike. The proof for left Armendarizlike rings is similar.

(2) Let f(@)g(@) = 0for f(x) = Y7o a(i)i)a?,0 # glz) = Sp_o(b(k):)a* €
R[z]. Letting fi(x) = >7"ja(j)i’ and gi(z) = Y2i_ob(k)iz" we can write
f(z) = (fi(z)) and g(x) = (gi(x)). Suppose that each ring R; is right Armen-
darizlike. Since g(z) # 0 there exists an index s € I such that gs(z) # 0. Then
since R is right Armendarizlike, there exists rs € Ry such that gs(z)rs # 0
and a(i)sb(j)srs = 0 for all 4,j. Let » = (r;) € R be the sequence with rs in
the s-th coordinate and zero elsewhere. Then g(x)r # 0 and a(i)b(j)r = 0 for
all 4,7 and so R is right Armendarizlike.

Conversely, suppose that R is right Armendarizlike. If R;, is not right
Armendarizlike for some i € I, then for all r;, € R;,, there exist f;, (x), g, ()
in R;,[z] with g;,(z) # 0 such that f; (x)gi,(x) = 0 but g;,(x)r;,, = 0 or
a(io)ib(i0);ri, # 0 for some 4,j. Taking f(z) = (fi(x)),g9(x) = (gi(x)) such
that f(z) and g(z) are the sequences with f; (x) in the ip-th coordinate and
1 elsewhere and g;,(z) in the ig-th coordinate and zero elsewhere, respectively.
Then since f(z)g(z) = 0 and R is right Armendarizlike, there exists r € R
such that r is the sequence with nonzero r;, in the ig-th coordinate and zero
elsewhere and g(z)r # 0 and a(i)b(j)kr = 0 for all 4, j, k, a contradiction. The
proof for left Armendarizlike rings is similar.

(3) The proof is almost similar to one of (2).

(4) By help of Example 2.2(1) and [14, Example 1.12(1)], there exists a right
Armendarizlike ring whose subring need not be right Armendarizlike.

(5) Let R be the ring of quaternions with integer coefficients. Then R is
a domain, so right Armendarizlike. However for any odd prime integer ¢, the
ring R/qR is isomorphic to Mats(Z,) by the argument in [11, Exercise 2A].
Thus R/qR is not right Armendarizlike by Example 2.4. (]

By the above Proposition 3.3(4), the class of right Armendarizlike rings is
not closed under subrings. But we find a kind of subring that preserves the
right Armendarizlike property.

Proposition 3.4. Let e be a central idempotent of R. Then the following
statements are equivalent:
(1) R is right Armendarizlike;
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(2) Both eR and (1 — e)R are right Armendarizlike.

Proof. (1)=(2) is obvious since e is central.
(2)=(1): It follows from Proposition 3.3(3), since R=eR® (1 —e)R. O

Next consider a natural conjecture: If R/I and I are both right Armendari-
zlike for any ideal I of a ring R, then R is right Armendarizlike, where I is
considered as a ring without identity. However there exist counterexamples as
follows.

Example 3.5. (1) Let R be the 2 by 2 upper triangular matrix ring over a
field F and I = ($ §). Then I and R/I = F & F are both Armendarizlike, but
R is not right Armendarizlike by Example 2.4.

(2) Let T = {a, b} be the semigroup with multiplication a? = ab = a,b? =
ba = b. Put § = ZsT be the four-element semigroup ring without identity.
Then we claim that S is Armendariz. Suppose that f(z)g(x) =0 with f(z) =
Sogaia’,g(x) = Y7 bja? € S[z]. Note that a +b € rs(f(x)). If every
coefficient of g(z) is a + b, then a;(a +b) = 0 (a;(a + b)a = 0 and g(z)a =
g(xz) # 0) for all i. If there exists b; such that b; € {a,b}, then a quick
calculation yields f(z) = 0 because £g(a) = 0 = £g(b). By these two cases,
a;b; = 0 for all ¢,j. Thus S is Armendariz (right Armendarizlike) as a ring
without identity.

Next we attach an identity to S, obtaining the ring R = S x Z. Consider
the polynomials s(z) = (a,1) + (b, 1)z, t(x) = (a,0) + (b,0)z € R[z]. Then
s(z)t(x) = 0, but s(x)e = 0 implies ¢ = 0 and dt(x) = 0 implies d = 0,
concluding that R is neither left nor right Armendaizlike. But letting I = 5,
R/I =2 Z and I are both right Armendarizlike.

In the preceding examples, I is non-reduced (I2 = 0 in (1), and (a +b)? =0
in (2)). So in the following we use the condition “reduced” for I.

Theorem 3.6. For a ring R suppose that R/I is a right Armendarizlike ring
for some proper ideal I of R. If I is reduced (as a ring without identity), then
R is right Armendarizlike.

Proof. Let f(x) = Y "y aix",0 # g(x) = 37_obja’ € Rlz] with f(z)g(x) = 0.
We first assume g(z) ¢ I[x]. In this case we apply the proof of [16, Theorem 11].
Since R/I is right Armendarizlike, there exists r € R such that g(x)r ¢ I[z]
and a;b;r € I for all 4,j. Then clearly g(z)r # 0. We proceed by induction
on m. If m = 0, then we are done and so suppose m > 1. We claim that
apbjr =0 for all j € {0,1,...,n}, based on apby = 0. Assume on the contrary
that agb;r # 0 for some j. Then we can take £ in {1,2,...,n} such that ¢ is
the smallest positive integer such that agber # 0. So for j € {0,...,¢ — 1},
apbjr = 0 and it follows that bjrIag = 0 since bjrlag C I, (bjrIag)? = 0 and
I is reduced. So (ar—;b;r)(agber)? = as—;bjr(aober)aober € ar—;bjrlagher =
ar—;(bjrlag)ber = 0 implies (ag—;b;7)(agber)?* = 0. The coefficient of the term
zt in f(2)g(z) = 0is 0 = agbe + arby_1 + -+ + agby = apby + Zf;é ag—jb;.
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Multiplying 7(aober)? to the preceding equation on the right side, we obtain
0= (aobg-i-Zﬁ;(l) ag—jbj)r(agber)? = (apber)3. Since agber € I and I is reduced,
aober = 0, a contradiction. Thus agb;r = 0 for all j € {0,1,...,n} and so we
have that fi(x)g(z)r = 0 with f1(x) = a1 +asx+- - +amz™ 1. But the degree
of f1(z) is less than m and so, by the induction hypothesis, there exists s € R
such that g(x)rs # 0 and a;bjrs =0 for all 4,5 with 1 <¢<m and 0 < j <n.
Therefore g(x)rs # 0 and a;bjrs = 0 for all ¢, with 0 <i<mand 0 < j < n.

Next assume g(z) € I[z]. Then a;b; and bja; are both contained in I for
all 7,j. So by the proof of [4, Lemma 1], we obtain that a;b; = 0 for all ¢, j.
Therefore R is right Armendarizlike. O

We apply Theorem 3.6 to the following situation.

Example 3.7. Consider the ideal J = {0,2,4} of Zg and the ideal S = J[{#; |
i € Z}] of the polynomial ring T' = Zg[{t; | i € Z}] over Zg. Next consider the
automorphism o of T defined by sending each t; to t;11, and the ideal S[x; o]
of the skew polynomial ring T'[z; o].

Set R be the ring S[x; 0] x Zg obtained by attaching an identity to S[z; o].
Letting I = S[x;0] x 0, I is an ideal of R that is reduced as a ring without
identity. Since R/I = Zg, R is Armendarizlike by Theorem 3.6.

Analyzing the computation of Example 3.7, we can extend the ideal J in Zg
to reduced ideals in Z,,.
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