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ON A SCHEDULING PROBLEM IN SEQUENTIAL ANALYSIS!

By S. EHRENFELD

New York University

1. Introduction and summary. This paper reconsiders the usual sequential
decision problem of choosing between two simple hypotheses Hy and H,, in terms
of iirv when there is a time delay, assumed to have a known exponential distribution,
in obtaining observations.

A basic assumption underlying much of the current analysis, is that results of
taking observations are considered as immediately available. In other words, it is
assumed that there is no time delay between the decision to take an observation and
obtaining the result of the observation. This, of course, can be a tremendous
limitation to the applicability of the theory. In actuality, such time lags can be sub-
stantial and taking an observation often involves experimentation. One important
example, where this time delay often considerably inhibits the use of sequential
analysis is medical experimentation. Here, a long time may elapse between the
application and the result of a treatment.

The theory of sequential analysis is considered, explicitly taking account of time
lags. At any point in time the decision maker must decide whether to stop and take
action now or to continue and schedule more experiments. If he continues he must
also decide how many more experiments to schedule. The problem basically then
is to find an optimal procedure incorporating a stopping, scheduling and terminal
action rule. There is an interesting interplay among these three; and optimals
stopping rules, currently used for some problems, may not be optimal when
scheduling factors are considered. The usual losses related to decision errors are
specified and linear cost assumptions, with regard to amount of experimentation
and time until a final decision, are made. Time until a terminal decision is an im-
portant variable. If it is decided to continue observation then scheduling many
experiments will result in a small expected waiting time until the next result. How-
ever, this advantage must be balanced with the cost of scheduling these experiments.
Finally, all the previous must be weighed with the loss of taking immediate action
with only the currently available information.

Bayes procedures are derived. The information state, at any time, because of the
exponential assumption, will be described by (r, ©) where = is the current posterior
probability of H, and »n the numbers of results outstanding from tests already
scheduled. As indicated in Section 2, when a known exponential time delay dis-
tribution is assumed, possible decision changes should be made only when test
results are obtained. In Section 3, the usually used Sequential Probability Ratio
Test (SPRT) stopping rule is studied. Here there are two values 0 <7, S 7, <1
and SPRT specifies that (n, n) is a continuation state as long as n; <7 <m,. It is
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ON A SCHEDULING PROBLEM IN SEQUENTIAL ANALYSIS 1207

shown that there is a bounded function z(w) such that the optimal scheduling
quantity, for a continuation state (n, ), is y(#,n) = max [0, z(x) —n]. That is, if
n> z(m) we schedule no experiments. On the other hand, if » < z(rn) then z(z)—n
more experiments are scheduled. The functional equation approach of Dynamic
Programming is used and provides a computational method for approximating
z(m).

The general case, where the problem is to find an optimal stopping and scheduling
rule, is studied in Section 4. Various results about the optimal stopping region, in
the (n, ) plane, are derived and it is shown that the optimal procedure stops with
probability one. The optimal stopping region is a kind of generalized SPRT
described by functions 0 < 7,(n) < n,(n) < 1 such that (#, ) is a continuation state
aslongas m,(n) < m < m,(n). Also, it is shown that there exist two bounded functions
z,(m) < z,(n) £ M < oo such that if (n,7) is a continuation point the optimal
scheduling quantity is y(n, ) = z;(n)—n if n < z,(n), and y(n,7) = 0 if n = z,(n).

When a continuous approximation to the problem is used, allowing » to take
on a continuous range of values, a stronger result is proven. Here, the two functions
z,(m) and z,(m) may be taken as equal. The results for optimal scheduling rules have
similarities to some problems studied in Inventory theory, see [5].

2. Notation and background. We consider choosing sequentially between two
simple hypotheses H, and H; on the basis of iirv X, X,,--. Let L(i,j) denote the
loss of choosing H; when the true hypothesis is H;. The usual simple loss structure
is assumed where L(0,0) = L(1,1) = 0, L(0, 1) = wy > 0 and L(1,0) = w, > 0.

Let ¢ > 0 denote the cost per test and a > 0 the cost per unit time until a terminal
choice is made. It is also assumed that the time delay in obtaining an observation
has an exponential distribution with a known mean value of 8 > 0.

The cost, apart from terminal decision losses, can be given as aT+cN where T
is the total time until a terminal decision is made and N is the total number of
scheduled tests. Letting the a priori probability = = Pr(H,), the risk for any
decision procedure § can be expressed as,

2.1 Ry(m) = n[Eq(cost) +woa] +(1 —m)[E,(cost) +w, B]

where o and f are the usual probability of error types. The procedure § incorporates
a stopping rule, terminal action rule and a scheduling rule.

In the case where no observations are made the Bayes risk is denoted by
B(m) = min[nw,, (1 —7)w,]. In general, as observations x,, - -, x; are obtained the
posterior probability of H, changes and is denoted by

(22) Tc(xh T axk) = 7':fO(xl’ T, xk)/Qn(xla T, xk)
where fi(xy, ", x,) is the joint probability distribution of x,, - -, x, under H; and
(2.3) 0n(x1, %) = mfo (X, X)) +(L =) f1 (X1, +, %)

Also, it is known that, see [10]

n(xl’ T xk) = nx;, RN ,xk-1(xk) = n(xl’ T ’xk—l)fo(xk)/Qﬂ(xl, s ,xk-l)(xk)'
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In other words, the posterior probability of H, changes from 7 to m(x,) then to
7, (x,) and so forth.

Because the time delay distribution is assumed to be exponential the information
state at any time will be described by (n,7) where n is the current a posteriori
probability of H, and #» is the number of results outstanding from tests already
scheduled. In this paper, the restricted though natural class of procedures depending
on (n, w) will be studied. A non-rigorous discussion, motivating this assumption, is
given in what follows. In order to indicate the background let N, be the number of
experiments scheduled until time ¢, and #, the number of results outstanding from
tests already scheduled at times ¢,,- - -, #,. The number of results already obtained
is then r, = N,—n, with observations denoted by x;,x,, -, x, and delay times
T4,°°*,7,. The history until ¢ is further specified by the times at which the N,
experiments were scheduled and the r, results obtained. The history can then be
summarized by (r,,n,; X1, ", X314, "5 1,3 T15° ", T,). The optimal procedure, at
time ¢, will depend on the expected future cost, as a function of the past history
up to ¢. Since the time delay distribution was assumed known the values of 7, -, 7,
are irrelevant to the future. This is usually not the case when the time delay dis-
tribution is not known. Using an argument similar to [8] the observations x;, - -, x,
are relevant, for the future, in terms of n(x,, -, x,) = n, which is the posterior
probability of H, at time ¢t. Hence, the relevant history is summarized by (n,, =,,
ty,* ", t,). Finally, since the time delay distribution was assumed to have a known
exponential distribution it follows that ¢,, - -, ¢, is irrelevant for assessing when the
results of the n,, previously scheduled, experiments will arrive. Hence, the relevant
history up to time ¢, can be described by (»,, 7,). Thus, any optimal procedure will
depend only on (n,,7,). Suppose the optimal procedure has continued until ¢ and
we are at state (n,, w,) at which no results have arrived. Let ¢’ be the largest ' < ¢
such that experiments were scheduled and/or results from previously scheduled
experiments arrived. During the time interval (¢', ¢] the state was (n,, 7,). Since the
optimal procedure only depends on (n,, 7,) no action except continuation is called
for at ¢, using the optimal procedure, since none was called for during (¢', ¢]. Hence,
it follows that changes in decision, such as stopping or scheduling should only be
made when test results are obtained. In what follows, the current state of informa-
tion at any time will sometimes be designated by (n, 7) with the subscript ¢ deleted.

3. Optimal scheduling with an SPRT stopping rule. An SPRT stopping rule specifies
two values 0 <7, <7, <1. We will assume that 0 <n, <7y <7n, <1 with
Ty = wy/(Wo+w,). The information state (n,n) calls for continuation so long as
m; < W < 7wy Let Ry(n, ) be the risk, using procedure J starting from state (», 7).
Consider truncated procedures 7, where we stop after k observations if we have
not stopped before with the SPRT stopping rule. Let p,(n, ) equal the minimum
risk which can be achieved when d € T}, and we start at (#, «). That is,

(3.1 pi(n,m) = infs . 1, Rs(n,m).

The best terminal action rule is to choose H,; when the stopped value of = < ©; and
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choose H, when &t = m,. Also, p(n, ) is decreasing in n and p,(n, ©) — pp(n+y,7) <
cy since we can always go from (n, 7) to (n+y, ) at a cost ¢y, by scheduling y tests.

The decision process can be described by changes of information state as results
of previously scheduled experiments arrive and the successive intervals between
such changes. At a continuation state (#, ) we schedule y experiments and start the
next time interval with (n+ y, ). Then, from the exponential assumption the waiting
time until the next observation has an exponential distribution with mean 6/(n+ y).
The next state reached is (n+y—1,n(X)), where X has the unconditional distri-
bution Q,(x).

The expected loss between two such time points is cy+d/(n+y), witha 6 = d,
where the first term is the cost of scheduling y tests and the second is the added
expected loss due to the waiting time until a decision is reached. Finally, if we stop
at (n,m) we have a loss B(x) due to errors in the terminal action rule. Using a
standard procedure one obtains a functional equation relating p,.(n,7) and
pi(n, ™). We have,

(3.2) px+1(n,m) = B(m) if m¢(my,m,),
d
= minygol:cy+m+E,,(pk(n+y—l,n(X)))] otherwise;

where E, refers to an unconditional expectation and the minimum relates to the
fact that the optimal amount y must be scheduled. Letting n+y = z and

(3.3) Hy(z,m) = cz+d/z+ E(p(z—1,7(X)))
one obtains,
(3.4 Pr+1(n, ) = B(m) for né(n,,m,);

=min,, H(z,m)—cn otherwise.

As can be seen the essential facts depend on the behavior of the functions Hy(z, m).
Under typical conditions in sequential analysis, p,(#,7) approaches a function
p(n, m) as k approaches infinity.

Let Y = In[f(x)/fo(x)] where fi(x) is the probability density of X under H;, and
W equal the number of state changes until 7 ¢ (n,, 7,).

LemMA 1. If P.(Y =0) < 1 then p,(n,n) approaches a unique bounded function
p(n, ) satisfying functional equation (3.7).

Proor. The value of p,,(n,m) can be bounded from above by finding the
expected loss using the optimum k truncated procedure and then scheduling one
experiment for the k+ Ith stage if required. Then, comparing with p,(n, ) we can
obtain a constant C; > 0 such that

(3.5) P+ 1(n,m)—pi(n, ) < C; P(W 2 k).

Now, using the condition of the Lemma and Stein’s theorem, see [10], one obtains
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constants b > 0 and 0 < r < 1 with P (W = k) £ br*. A similar procedure can be
used to find a lower bound. Combining them we have C > 0 such that,

(3.6) ]Pk+1(ns ) — pi(n, 7'5), < Cbr

which is sufficient to prove the result. A direct proof, using (3.4) is also possible.
Hence, we finally have the functional equation,

3.7) p(n, ) = B(n) for wé¢(ny,7m,),
= min,, H(z,m)—cn otherwise;
where,
(3.8) H(z,n) = cz+djz+E (p(z—1,7(X))).
LEMMA 2. p(n, 7) is a convex function in n.

Proor. We use induction on k with functions p,(n, 7). It can be observed that
po(n, ) = B(w). Then, '

(3.9) py(n,m) = B(n) it mé(my,m);
=min, ,(cz+d/z)—cn+E(B(n(X))) otherwise.

It is easily calculated that p,(n, ) is convex in n. Now, we use induction on k.
From the convexity of cz+d/z and E,(p(z—1,7(X))) one obtains the convexity
of Hy(z,n) and min,, H,(z, n)— cn, hence of p, . ,(n, ).

The optimal scheduling rule can now be obtained. Let z(n) be the integer which
minimizes H(z, ) over the range z = 0. That is,

(3.10) H(z(m),n) = min, o H(z, n) = K(7n).

Then, if n £ z(n) the minimum of H(z, x) over the range z = n is taken on at z(m).
On the other hand, because of the convexity of H(z, n), when n > z(n) the minimum
of H(z, m) is taken on at z = n. Hence, since z = n+ y the optimal scheduling amount
is

(3.11) y(n,m) = max [0, z(m)—n].

That is, when n < z(r) schedule z(n) —n to bring the number of active experiments
up to z(m). When n > z(n) do not schedule any more experiments. The values of
cz+d|z are decreasing in the range of z <(d/c)*. Hence, H(z,n) is decreasing for
this range of z and so z(m) =(d/c)*. Also; it can be noted that when n, <7 <7,
and n £ z(n) we have p(n,n) = K(nr)—cn a linear function of n. Finally, it is
observed that, by dividing both sides of the functional equation (3.7) by ¢, the
results only depend on the constants w,, w,, ¢ and d via we/c, w,/c and d]c. Also,
equation (3.4) provides a computational means for successively approximating z(r).

4. The general case. In this case one must find an optimal scheduling and
stopping rule. As in Section 3 procedures truncated at k are considered. Let
gi(n, ) be the minimum risk achievable, starting at (n,7), using any procedure
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truncated at k. Also, let G,(z,n) = cz+d/z+ E,(g,(z—1,n(X))). From general
optimal stopping theory, a recursion relation between g, ,(n, #) and g,(n, 7) is

4.1) G+ 1(n, m) = min [B(n), min, 5, G,(z, ®) —cn].

The first minimum relates to the stopping rule, while the second concerns scheduling.
It may be observed that g,(n, ) is decreasing with k. That is, g, ,(n, 7) < g\(n, 7)
since anything achievable with a k truncated plan can certainly be done with a
k+1 truncated procedure. This was not necessarily the case when a specified
SPRT stopping rule was used as in Section 3. Because of this monotonicity g,(n, 1)
approaches a unique bounded function g(n, 7) satisfying

4.2 g(n,m) = min [B(r), min, 5, G(z, n) —cn] where
4.3) G(z,n) = cz+d/z+E(9(z—1,n(X))).

The information states (n,7) with 0 <7 <1and n=0,1,2, - can be divided
into three disjoint sets By, B; and C where C are the continuation states and B; the
stopping sets where H; (i = 0, 1) is chosen. As in stopping rule theory these sets can
be characterized in terms of the functional equation (4.2).

4.4 (n,m)eC when min,;,G(z,n)—cn < B(n).

For continuation states,

4.5) g(n,m) = min, 5, G(z, r)—cn.

On the other hand,

4.6) (n,m)eB, when min,;,G(z,m)—cn=B(nr) and =n>m,

where ny, = w,/(wy+ w,) the solution of wyn = (1—r)w,. Also,

4.7) (n,m)eB;, when min,,,G(z,n)—cn = B(n) and 7 = m,.

For stopping points, g(n, n) = B(n). More specifically, when (n,7)e B, we have
g(n, ) = wyr and for (n, w) € B, it equals (1 —m)w;,.

The functions g,(n, ) are decreasing in »n since the decision maker starting at
(n+1,7) can do as well as one starting at (n, 7), in terms of risk, by simply ignoring
one of his scheduled tests. Also, using induction it may be shown that g,(n, 7)
and g(n,7) are concave functions of n. From (4.2) it is also generally true that
g(n,m) < B(m).

Some properties of the sets By, B; and C are:

- (i) (n,0)e B, and (n,1)e B, and g(n,0) = g(n, 1) = 0. This is so since the loss for
stopping when at (»,0) is equal to B(0) = 0 and for (n, 1) it is equal to B(1) = 0.

(ii) If (n,)e C then (n+1,7)e C. Since (n,n)e C we have g(n, n) < B(rn). Then,
since g(n+1,7n) < g(n,m) we obtain gr+1,7) < g(n,n) < B(r) and hence
(n+1,m)eC.

(iii) If (n, 7)€ B; then (n—1,n)e B, for i = 0, 1. Since (n, n) € B; we have g(n, n) =
B(m). Then,

(4.8) B(n) = g(n,n) < g(n—1,m) < B(n).
Hence, g(n— 1, ) = B(n) which proves the result.
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(iv) If o’ £ < m, and (n,n)e B, then (n,n')e B,. Similarly when nyo = n = n’
and (n,m)eB, then (n,n")eB,. To prove the first relation let n' =Anr where
0 < 4 = 1. Using the concavity of g(n, ) and g(n, 7) = wqm, it follows that,

4.9) B(n') = won' 2 g(n,n') 2 Ag(n,m) = wo ' = B(x").

Hence, g(n,n") = wyn’ so that (n,n")€ B,.
From the previous properties it follows that the sets can be characterized by
functions 0 =< 7,(n) £ m,(n) < 1 such that:

C=((nn):n(n) <rn <my(n))
(4.10) By =((n,m):n < my(n))
By = ((n,m):m = my(n)).

It can be observed that 7,(n) decreases with n and n,(n) increases with z#. This may
be thought of as a generalized SPRT procedure. Further properties of 7,(n), 7,(n)
and g(n, ) are incorporated in the following lemmas.

LeMMA 3. 7t,(n) > 0 and m,(n) < 1.

ProOF. We show 7,(n) > 0. First, if
4.11) min,,,(cz+d/z)—cn = wyn then
(4.12) min,;,G(z,n)—cn = min,;,(cz+d/z+E (9(I—1,n(x)))—cn = wo .

Hence, (n,m)eB,. Thus, equation (4.11) forms a bound, away from zero, for
7,(n). The relation n,(n) < 1 is proven in similar fashion.

LeEMMA 4. g(n,7n) - 0 as n — .

PRrROOF. Pick any k and let » > k and consider the procedure which does not
schedule and waits for the kth result and then stops. Comparing the risk for this
procedure with g(n, ©) gives,

d d
1 < ) S e X500,
“4.13) 0=g¢g(n n)_n+n_1+ +n_k+1+E[B(n(X1 X, X
Hence,
(4.14) 0= lim,, ,g(n,m) < E[B(n(X, "+, X))] for all k.

The result follows by letting £ — oo because when X’ 1> X3, -+ are iirv the standard
sequential analysis theory shows that the upper bound in (4.14) goes to zero. This
can be seen by considering 7, = n(Xy, -, X,) as k— co. If H, is true then if
0<n<l1m,—1 as k— oo with probability 1, see [9]. Similarly, when H, is true
then =, — 0 with probability 1. Hence, B(w,) — 0, with probability 1 when H, is
true with probability 7 and H; with probability 1 —7.

In the case with the SPRT stopping rule, discussed in Section 3, a similar result
does not hold. That is, p(n, ©) does not in general approach zero as n — co0. In this



ON A SCHEDULING PROBLEM IN SEQUENTIAL ANALYSIS 1213

case, it may be shown that lim,_, . p(n,7) = E [B(n(Xy," -, X,)] where k is the
number of observations when stopping occurs. Consider any case where the
stopping boundaries 0 < 7, < 7, < 1 are chosen so that stopping always occurs
exactly at either n, or m,, see [10]. In such circumstances, B(n(Xy, ", X;)) =
min [B(r,), B(%,)] > 0 and so lim,,_, ., p(n, ) = min [B(n,), B(n,)] > 0.

We next show the basic result that no tests should be scheduled beyond a certain
value of n.

THEOREM 1. There exists N < oo such that if (n, 7)€ C then y(n,n) =0 forn = N-

PRrROOF. Since g(n, ) is concave in © and bounded it is continuous. Further,
g(n, ) decreases monotonically to zero as n — co. Hence, by Dini’s theorem for any
d > 0 there is an n, such that

(4.15) lg(n,s)—g(n+1,5)| <6 forall n=n, andall 0<s< 1.

Choosing 0 < J < ¢ and using the forward difference, A, operator, A[A(x)] =
h(x+ 1)—h(x), with respect to the variable z,

4.16) A[G(z,m)] = Al:cz+c—zi]+A[E,,(g(z— L,a(X))] = c—;;o—i——é >0

when z = max (No, no) = N where N, is chosen as the smallest integer such that
No(No+1) > df(c—06) > 0.

LemMA 5. The optimal procedure stops with probability one.

This result is obvious since g(n, 7) < B(r), and if there were a positive probability
of an infinite number of observations the expected testing cost would be infinite.

Another view of this lemma is to consider the value of N in Theorem 1. The
optimal procedure certainly stops when 7 = n(X, - - -, X;) moves out of the interval
(n,(N), m5(N)). Since 7;(N) > 0 and 7,(N) < 1 from Lemma 3, the usual theory of
sequential analysis gives the result.

5. A continuous approximation. In the previous sections » was assumed to take
on only integer values. In the continuous version we let n be any non-negative real
number. The optimal return functions for truncated procedures is denoted by
vi(n, m), where vy(n, ©) = B(n) and,

(5.1) Vi+1(n, ) = min [B(n), min, 5, V(z, ) —cn]
where
5.2 Vi(z,n) = cz+d/z+E,(v(z—1,(X))).

The functions v,(n, #) are monotonically decreasing with k£ and thus approach
uniformly v(n, ) the minimum risk attainable by any procedure, starting at (», ),
and

(5.3) v(n, n) = min [B(n), min,, , V(z,7)— cn] with
(5.4) V(z,n)=cz+d/z+E (v(z—1,n(X))).
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Stopping sets and continuation set can be defined similar to that discussed in
Section 4. Again, v(n, ) is a concave function in n. Also, v(n, ) < g(n, ). The
stopping sets and continuation set are denoted by B,’, B;’ and C'. Let n,'(n) and
n,'(n) denote the functions characterizing the optimal stopping rule. Unless d = 0,
the sets B,’, B;’ are not convex. This follows from the fact that (0, 7,’(0)) € B; and
(n,0)e B, for all n. If B; were convex, all convex combinations would also be in B,
which by facts (ii) and (iii), Section 4 can only be if ©,’(n) is constant for all n. A
similar argument holds for B,. This would then give the SPRT stopping rule which
is optimum when d = 0. However, for small values of » the sets have a kind of
convexity property. '

LEMMA 6. The sets R; = B;n[n <(d/c)*] (i = 0, 1) are convex.

Proor. We show the result for R,. Let (n,, ) and (n,,,) be in R, and denote
(n,m) =Mny, )+ (1 —4) (ny,7,) for any 0 < A < 1. Since, (n;, t;)€ B, we have,
(5.5) v(ng, ) =won, and v(n,, ;) = wo,. Let
K'(n) = min, o v(z, ) and, z'(n) the value of z where the minimum occurs. Since
V(z,m) is decreasing in the range 0 £z <(d/c)*, the value of z'(n) =(d/c) .
Hence, for n <(d/c)?,

(5.6) min, >, V(z,n) = K'(n). Thus,
(5.7 v(ny,my) =womny < K'(my)—cny

u(ny, ) = womy S K'(m;)—ch,.

We note that K'(n) is concave in 7.
Now, taking convex combination (4,1—21) on both sides of (5.7) we have,

(5.8) won < AK'(ny)+(1=A)K'(n)—cn £ K'(m)—cn.
Hence,
5.9 Wwon S min, o V(z,m)—cn < min,;, V(z,m)—cn.

Thus, won =uv(n,n) and (n,m)eB,. Since n; Z(d/c)* we also have n <(d/c)?
and so, (n,t)eR;.

In order to characterize the optimal scheduling rule we focus on the functions
Vi(z,7) and v,(n, 7). Also, we will assume that #(X) has an absolutely continuous
distribution over 0 £ n(X) < 1 for0 < n < 1. Let,

v(n+2h)—=2v,(n+h) +vy(n)

62Uk(na T[) * .
Rl = (W) = limyo: h?
(5.10)  Dyz,m) = 24H™
0z
dy(n, 7y = 0™
on

Some properties of these functions are described in the next theorem.
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THEOREM 2. The functions R, (n,n) are bounded and satisfy R, (n,m)=0. Also,
D,(n, ) exists for all (n, 1) and d(n, n), for any specified ©, exists for all but a finite
number of n.

Proor. First, if (n, ) is a stopping point and an interior point of B;uUB, then
vi(n, ) = wom or wi(1—m=). In either case, R (n, m) = 0. Suppose (n’,7) is a con-
tinuation point or a boundary point then (n, ) is for all » > »’ a continuation point
and

(5.11) v(n,m) = min, 5, Vi(z,m1)—cn for n>n'.
We will prove the theorem by induction. We have,
(5.12) Vi(z,n) = cz+d]z+ E (v,- (z—1,1(X))).

Suppose the theorem is true for k — 1; then essentially from the Lebesgue dominated
convergence theorem,

(5.13) Fzm —211+En[<azv"' 1z =1, 7() )>+] >0,

0z2 z3 0z

Also, we have assumed that d,,_,(z— 1, n(x)), for any specified n(x), exists for all
but a finite number of z. Hence, again basically resulting from the Lebesgue
theorem to differentiation under the integral sign, with respect to function with a
parameter, see [11] we have that D,(z, n) exists for all z. Hence, combining all these
observations, the optimal truncated scheduling plan is characterized by function
z,'(m) = (d/c)* such that,

(5.14) yi(n, m) = max [0, z,'(m) —n].
Hence, if n < z,/(%) then
(5.15) v(n,m) = Vi(z,/(n), m)—cn and,
~2 +
(5.16) (%Zﬂ)> =0.
If, n = z,/(n) then
(5.17) v(n,m) =dn+E (v, (n—1,1(X))) and,
*v(n,m)\* 2d *v_(n—=1,n(X)\*
5.18 =— =0.
sa9 (F5E7) en] () Jeo

Boundedness follows from the induction assumption and n =(d/c)*. The induc-
tion process is completed by inspecting the behavior of vy(n, #) and v, (n, 7).

The above property and the uniform approximation of v(n, ) and V(z, %) by
v(n,m) is sufficient to characterize the optimal scheduling rule as of the form
Y(n,n) = max[0, z'(nr)—n]. The value of z'(n) is the value of z where V(z,7) is
minimized and clearly if n < z'(z) then z'(r)—n tests should be scheduled. It
remains only to show that ¥(z,7) is non-decreasing for z > z'(7). Suppose, there
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were values z, >z, >z'(n) such that V(z'(n),n) £ V(z,,7) < V(zy,m). This is
impossible since ¥(z, ) can be uniformly approximated, as closely as desired, by
Vi(z, ®) with some suitable k¥ and the inequalities cannot occur for Vi(z,m) by
Theorem 2.
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