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A semi·relativistic treatment estimating the gravitational radiation emitted by a particle 
thrusted into a Schwarzschild black hole with a finite kinetic energy at infinity is presented on 
the two extreme assumptions: (a) The particle moves along a geodesic in a curved space and 
(b) the particle radiates as if it were in flat space-time. 

The structure of the burst and beaming process of gravitational radiation are studied. 
The merit of this approach lies in its simplicity and in providing a direct and complemen­

tary understanding of the results obtained by a fully relativistic treatment. 

§ 1. Introduction 

The recent progress in the development of a new family of gravitational 
wave antennae!) and the possibility of achieving the accuracy required to observe 
predicted levels of gravitational wave signals coming from galactic sources,2) 
have made a new analysis of the detailed structure of bursts of gravitational 
waves necessary. 

In this paper we propose a semi-relativistic treatment for the estimation of 
the gravitational radiation emitted by a particle thrusted into a Schwarzschild 
black hole with a finite kinetic energy at infinity. Following the approach used 
in Ref. 3) we have made two extreme assumptions: (a) the particle moves along 
a geodesic in the Schwarzschild geometry, and (b) the particle radiates as if it 
were in flat space-time. However, contrary to Ref. 3), in which the stress is 
mainly on the energy spectrum of the radiation, here we are interested in the 
temporal structure of the burst. Therefore, we introduce an approximation 
technique by which the details of the radiating process can be readily studied 
and easily compared with the results obtained by using a fully relativistic treat­
ment. The fully relativistic treatment of this same process is presented in Ref. 
4). 

§ 2. Perturbations induced by a particle thrusted into 
a black hole in the semi-relativistic treatment 

Let us consider a particle with initial (asymptotic) velocity - Va( Va > 0) 
falling straight into a Schwarzschild black hole along the z-axis. The coordi­
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1628 R. Ruffini and M. Sasaki 

nates are taken to be the usual Schwarzschild coordinates (t, r, e, ¢) and 
z = r cos e. (We shall use gravitational units, where G = c = 1.) Integrating the 
geodesic equation we obtain the trajectory 

_ t/2M=lnl x - Yolj1 + a2x21 
x+Yolj1+a2x2 

(2'1) 

where Yo = (1- V0 2 
)-1/2, a = Yo Vo, x = ( r/2M )1/2, and M is the mass of the Schwarz­

schild black hole. Then the velocity vz = r and the acceleration v z = rare 
given, respectively, by 

r = -(1-1/x2)j1 + a2x 2 /( Yox), 

r = -(1-1/x2)[(1-2a2 )-3/x2]/(4x 2y02 M), 

(2·2) 

(2'3) 

where the dot denotes time differentiation, and the relativistic factor 
y=(1- V/tll2 is given by 

(2'4) 

In order to estimate the gravitational wave emission we solve the linearized 
Einstein equation in fiat space-time. In the Lorentz gauge we have 

(2'5) 

where ifJ",,= h",,- t TJ""haa and h"" is the metric perturbation. This generalizes 
the quadrupole formula used in Ref. 3) and can in fact be applied to the case of 
particles moving with relativistic velocities as well. 
tensor T"lI of a point particle is given by 

1+'" dz" dz" T"lI=m ---~o4(x-z(s»ds, 
-'" ds ds 

The energy-momentum 

(2·6) 

where m and s are the mass and the proper time of the particle, respectively, and 
04(X-Z(S» is the Dirac delta function. From Eqs. (2'5) and (2·6) we obtain 

(2'7) 

where u" = dz" Ids is the 4-velocity, R = Ix - z( s)1 is the spatial distance between 
the field point and the position of the particle z"( s) at its retarded time zoe s) 
= x ° - R, and la = ( 1, n) is the null vector joining these two points, n being 
given by n=(x - z( s) )/R. ifJ"lI is just the~gravitational Lienard-Wiechert potential. 
Several features and implications of Eq. (2' 7) are discussed in the Appendix. 

Now, for motion along the z-axis we have 

u"=y(1, 0, 0, v), (2'8) 
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On a Semi-Relativistic Treatment of the Gravitational Radiation 1629 

and the only non-vanishing components of <PPl! are 

<Poo = 4m[),/R(l- v cos 8) ]ret , 

<poz=-4m[)'v/R(l-vcos 8)]ret, 

<Pzz = 4m[)'v2 /R(l- v cos 8)]ret, (2·9) 

where cos 8 is the z-component of the unit vector n. In contrast with the usual 
assumption that the Lorentz condition applied to Eq. (2·6) implies the motion 
along a flat space-time geodesic, in the following we assume that the velocity in 
Eq. (2·9) is given by Eq. (2·2). This assumption is valid in the limit of weak 
gravitational fields. For a field point which is sufficiently far away from the 
Schwarzschild black hole we have r=lxl"lz(s)l. Assuming that 1)'2vz/vl~1, R 
and Zo( s) = Xo - R can be replaced by rand Xo - r respectively. Inspection of Eqs. 
(2·2), (2·3) and (2·4) shows that this assumption holds over the major part of the 
trajectory (i.e., x<1.5), if a (=)'ovo) is less than the order of unity. Our treat­
ment will apply to astrophysical systems fulfilling this condition. (In fact it is 
fulfilled in most of the relevant astrophysical situations.) The relevant informa­
tion about gravitational waves is contained in the transverse traceless (TT~ 
components of <PPlI (see the discussion given in § 4). The general form of <PI;; is 
given in the Appendix, Eqs. (A· 2) and (A· 4). From these equations we obtain 

<pH =0, 

<P E = - <P TT = 2m [ )'v
2
sin

2

8 ] 
e e ¢ ¢ r 1 - v cos 8 ret' (2·10) 

where <P rF = ( a, b = 8, ¢) are the components of the orthonormal diad basis (e § , 

e¢). The effective energy-momentum tensor of the gravitational wave is 
obtained from the first derivative of <PI;;. From Eq. (A ·3) we have 

,/,TT _ ,/,IT _ 2m[ sin
2
8)'vv (2( 8» ] 'f'(j§a--'f'''''a--~- (1 8)3 1+)' 1-vcos la . . '/''/'. r -vcos ret 

(2·11) 
Then 

(2·12) 

where 

A=sin28)'vv[1+y2(l-vcos 8)]/(l-vcos e)3. 

Since the fully relativistic calculation is done using the Regge-Wheeler-Zerilli 
formulation of the perturbation of the Schwarzschild geometry,4)-7) it is conve­
nient to expand our results in terms of tensor spherical harmonics. From Eq. 
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1630 R. Ruffini and M. Sasaki 

TT 

(2 ·10) cjJ ij can be written as 

TT 2m 
<Pij==-<PCiJ, 

r 

where the polarization tensor C ij is defined by 

cijdx i 0dx j = eli 0e li - e i 0ei . 

TT 
Then cjJ ij is expanded as 7) 

(2·13) 

(2·14) 

(2·15) 

where Yab (a, b= e, ¢) is the metric on the unit sphere, the vertical bar ( I ) denotes 
covariant differentiation with respect to Yab and the normalization constant Nt 
and the expansion coefficient ft( r, t) are given by 

Nt = [2( l-2)! I( l+2)! ]112 for l~2, 

Since cjJ is independent of the azimuthal angle ¢, Eq. (2·17) reduces to 

Now, since ly2( iizlv)l~l, this equation is further simplified to 

ft(r, t)=[(2l+1)]112Nt2myv2 ht(v), 
r 

where y= y( t- r), v= v( t- r) and hl( v) is 

(2·16) 

(2·17) 

(2·18) 

(2·19) 

(2·20) 

It is also convenient to have the expression for ht( v) expanded in terms of v, 

h ( )_21+1(l+2)! t-2~ (n+l)!(2n+l-2)! 2n 
tV - (l-2)! v n~O n!(2n+2l+1)! v 

(2·21) 
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On a Semi-Relativistic Treatment of the Gravitational Radiation 1631 
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Fig.1. The square of the ratio of the 1=2 potential 
to the total potential is shown as a function of the 
velocity. Since we assumed Ir2 vz/vl-t:l, the high 
velocity part of the graph is not necessarily 
correct. The high ratio of the 1 = 2 part for I vi 
:S 0.5 suggests that the quadrupole contribution 
is predominant in most cases. 

From this formula for hl( v), it is easy to see that when Ivl~ 1 the only surviving 
term is the one for 1=2, which is essentially equivalent to the quadrupole 
approximation. In any case we expect the 1=2 term to give an important 

TT 

contribution to the total potential cP ij (see Fig. 1 for verification of this con-
jecture). Let us, therefore, concentrate our attention on this term; h2( v) is given 
explicitly as 

00 

=48~ v2n /[(2n+1)(2n+3)(2n+5)]. (2·22) 
n~O 

Now we define the function R l : 

Rl(t- r)=NL/lr 

= (4;r )1!2(2l + 1)1!2( Nd 2 myv2 hl( v). (2·23) 

This corresponds to the Fourier transformed radial function satisfying the Zerilli 
equation and is to be compared with the result of the fully relativistic treat­
ment. 4 ),6) 

§ 3. Results of numerical computations 

In Fig. 2, the 1=2 component of the perturbation is given for selected values 
of Yo as a function of the retarded time (t- r)/2M. One of the most striking 
features is the strong dependence of the value of R2 on the kinetic energy of the 
particle at infinity. 

Since the value of the potential Rl depends directly on the value of the 
apparent velocity as given in Eq. (2·23), we have plotted the apparent velocity of 
the projected particle given by Eq. (2·2) in Fig. 3. It is shown that for Yo 
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Fig. 2. The /= 2 potentials for Yo = 1.0, 1.2 and 1.4 are shown as functions of retarded 
time. The arrows are the moments when the potentials become maximum. 
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Fig. 3. The velocity is shown as a function of the Schwarzschild time t. The arrow 
denotes a maximum velocity for each Yo. When 1'0>(3/2)1/2, this maximum 
disappears as explained in the Appendix. 

>(3/2)1/2 the apparent velocity decreases monotonically with time as a consequ­
ence of relativistic time dilation (see the Appendix). For 10< (3/2)1/ 2 the velocity 
of the particle reaches a maximum and then asymptotically approaches zero for 
t-> +co. Similar behaviour is found for the potential R2. 

In Fig. 4, we have plotted the relevant components of the Riemann tensor for 
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-20 -1 10 (~-~I 

-2.0 

Yo=LO and Yo=L4. 
In the burst structure shown in 

these figures, we can distinguish 
two different parts: 
(a) One part of the burst is emit­
ted when the particle is far away 
from the black hole (the "precur­
sor" of Ref. 7» with values of (t 
- r)/2M-;:'; -2.5. 

Fig. 4. (d'/dt2)R2(t- r) is shown for Yo=LO and 1.4 as 
a function of the retarded time. The correspond­
ing Riemann tensor is 

(b) The other part is emitted 
when the particle approaches the 
black hole, with values of - 2.5 
-;:.;( t- r)/2M-;:';5 (the "main burst" 
of Ref. 7», in which the largest 
values of the Riemann tensor are 
obtained. 

(a,j3=B,</J). 

These results are compared 
and contrasted with the ones ob­
tained by the fully relativistic 

treatment in Ref. 4). While this semi-relativistic treatment gives an excellent 
approximation, both of the precursor and of the main burst, it is clearly in­
adequate for the description of the third component of the burst (the "ringing 

/ 
Yo =1 
m2 

(x 1600 nM ) 

_--_sin," 

Yo =10 /' 
5m2 

(x 16nM) 

0.5 

1.0 

Fig. 5. The angular distribution of the total radiated energy is shown. One sees the 
characteristic forward beaming of the radiation. However the beaming does not 
actually become so sharp, because the radiation comes mainly from the "decelera­
tion" process where the velocity eventually becomes small. 
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1634 R. Ruffini and M. Sasaki 
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Fig. 6. The angle for which the radiation is a maximum is shown. One clearly sees 
the slow down of the peak angle, which converges to a finite angle even if )"0 

becomes very large. 

tail" of Ref. 7)), since the oscillations of the black hole induced by the infalling 
particle are clearly missing in our approximation scheme. 

It is also of interest to use this semi-relativistic approach in order to 
estimate the relative contribution of the higher multipoles as a function of ro 
and to estimate the beaming of the radiation. The angular distribution of the 
radiation is given as a function of ro in Fig. 5. The integration with respect to 
time has been carried out without assuming I r2 i; z/v I ~ 1. In Fig. 6, the angle for 
which the radiation is a maximum is shown as a function of roo 

The simplicity of the semi-relativistic treatment, and its good agreement with 
the fully relativistic treatment in the description of some components of the burst 
structUFe (see Ref. 4)), make this approximation scheme particularly useful in the 
analysis of a large variety of astrophysical processes in relativistic regimes. 

§ 4. The observability of the radiation burst 

It is well known that the metric perturbation hi'" has a freedom of gauge 
transformations 

(4·1) 

where tJ-l are arbitrary functions, and hJ-ll/ itself does not have any physical 
significance in general. However under a certain situation the direct observation 
of hJ-ll/ is possible. 

On flat space-time background or in a region where the background curva­
ture changes sufficiently little, the source free part of hJ-ll/ can be put into the TT­
gaugeS) 

(4·2) 
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On a Semi-Relativistic Treatment 0/ the Gravitational Radiation 1635 

Then we can construct a locally flat cartesian coordinate system along the 
trajectory of an observer, 0, which differs from TT-coordinates by O( hpv). In 
this coordinate system the Jacobi equation gives 

(4·3) 

where x i are the coordinates of another observer in the locally flat coordinate 
system of 0, and the subscript GW is used in order to stress that only the relative 
acceleration due to the gravitational wave is considered. If (a/ao( hi} hT = 0 
holds initially at t = to and no other force is present, Eq. (4·3) can easily be 
integrated to give 

Xi(t) = {Oil + ~ [( hiA t hT - (hil(to)hrJ }xj(to). (4·4) 

Therefore the TT-components of the metric perturbation are physically observ­
able. Furthermore, it is clear from Eq. (4·4) that if the initial and the final values 
of (hi} hT are different the relative distance between these two observers will 
change permanently. In recent years several kinds of experiments have been 
proposed in which the direct observation of the TT-components is possible. The 
laboratory type free-mass detector9) measures the change of the relative distance 
between suspended masses by means of a Michelson-Morley type laser inter­
ferometer. This is a simple application of Eq. (4·4). The Doppler tracking of 
spacecraft by radio waves suggested by Estabrook and Wahlquise O

) also gives 
direct information of (hij hT, which is based on the theory of the propagation of 
electromagnetic wave through the gravitational field. The frequency shift due to 
the gravitational wave is given by 

where e is the angle between the propagation direction of the gravitational wave 
and the direction of the radio beam, and h= ninj( hi} hT, n being the unit vector 
in the direction of the radio beam. The indices E, T and R of h mean that the 
value of h is evaluated at the coordinates (t, Xi) of the emitter, the transponder 
and the receiver of a particular radio beam, respectively. 

Mashhoon11) pointed out that there is a further shift due to the relative motion 
of the emitter, the transponder and the receiver, which is a consequence of Eq. 
(4·3). He investigated the perturbation of a binary star system and gave the 
Doppler shift formula due to the tidal force (coming from the Riemann tensor) 
induced by a monochromatic gravitational wave as well as the equations govern­
ing the perturbed orbital motion of the system. 

The case in which the initial and the final values of (hij) TT are different is 
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1636 R. Ruffini and M. Sasaki 

particularly interesting for the detection experiments mentioned above. The 
radiation induced by a particle thrusted into a black hole with a finite kinetic 
energy at infinity, examined in the previous section, is a good example of this 
case. 
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Appendix 

From Eq. (2 -7), the "field strength" of the gravitational potential is 

cP"II,P={ - R( ia~a)3 [( laua)( U"UII+ UIIU,,)- U"UII( Zaua)]lp 

+ R 2(4Z: a)3 [U"UII(lP+ lauaup)]Lt' (A-I) 

where U" = (d/ds) u". The first and the second term in the curly brackets are the 
radiation and the velocity field,12) respectively. 

First, let us discuss the radiation field. The TT-part of the potential and its 
derivatives are given, respectively, for large R 

TT_ [ UkUI PklP ] cPij - -4m ~ -Rl a C Cij 
P aU ret 

[ 

Pkl P ] 
=4m ~ YVkVIC Cij 

P (1 - V - n) R ret 
(A -2) 

and 

(A -3) 

where Vi = uduo = y- I 
Ui, ai = dvddt and ~ ij(P = 1,2) are two independent polari-

I .. 1 2 .. 2 

zation tensors and are normalized so that C l) C ij = C 'J C ij = 1. One of the most 

convenient choices is 
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On a Semi-Relativistic Treatment oj the Gravitational Radiation 1637 

(A ·4) 

where (e iJ , e ¢ ) are the orthonormal diad basis introduced in § 2. Now from Eq. 
(A· 2), we see that ¢ll does not vanish even for a constant velocity. Thus, the 
net change of velocity from the initial state to the final state of the particle will 
entail a net change in the value of ¢?7. It is well known that this same feature 
occurs in the theory of electromagnetic fields and is due to the emission of soft 
photons (gravitons in our case), which causes (infrared) divergence of the 
potential. 13

) 

Next, let us consider the velocity field, 

(A ·5) 

The explicit form of the potential ¢ "" will not be needed. Since ¢ "" ,,, = ° from 
L 

Eq. (A·5), the potential ¢"" satisfies the Lorentz gauge condition and there is no 
further freedom of the gauge transformation which might change the form of 
(A·5). A hypothetical observer at rest in the global Lorentz frame {x"} will 
experience acceleration 

(A·6) 

where s" = - u" - l,,/( laua). In order to compare this formula with the Newto­
nian force we introduce a vector ri = [R( ni - Vi) ]ret. This spatial vector connects 
the point where the particle would have been at the time of observation, had its 
velocity been constant, to the point of the observer. Then Eq. (A·6) is rewritten 
as 

d2x i m (2y2-l)n'i_ y2(2y2+1)(n'·v)vi 

(jj2- -7 [1- y2(n'· V)2)3/2 (A·?) 

where r= Irl = Rln - vi and n' = r/r. Equation (A·7), for v=O, gives the accelera­
tion obtained from the traditional Newtonian gravitational force. In the general 
case, in which v * 0, the acceleration of the observer has an additional contribu­
tion, which is parallel to the velocity. If the particle moves along a straight line 
passing through the spatial position of the observer, we have the acceleration 

d 2 x i 
_ 2 'i 2 (jj2- -[m(3-2y )/y]n /r . (A ·S) 
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1638 R. Ruffini and M. Sasaki 

This equation shows that the acceleration relative to the global Lorentz frame 
changes in sign if /2 -Z 3/2. 

This feature can also be seen, from a different point of view, from the direct 
analysis of the radial geodesics equation in the Schwarzschild geometry. We 
have 

(A'9) 

where 5 is the proper time of the particle. This acceleration does not show any 
peculiar feature but is actually exactly equal to the Newtonian acceleration. 
However if one rewrites Eq. (A' g) in terms of the Schwarzschild time t, one 
obtains 

The factor (ds/dt)2 is the well-known red shift correction factor. The second 
term in the curly brackets is due to the change of the red shift factor with distance 
and is always positive in contrast with the first term which is always negative. 
From Eq. (A·I0) or (2'3), it follows that if the particle is falling into the black 
hole with initial relativistic factor /0> (3/2)1(2 at infinity, the second term becomes 
larger than the Newtonian term, Eq. (A, g). Thus, even though the particle is 
attracted by the black hole an observer at infinity will see the particle decelerat­
ing (see Fig. 3). 
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