13. On a Sequence of Fourier Coefficients

By Hiroshi Hirokawa and Ikuko Kayashima
Department of Mathematics, Chiba University, Chiba (Comm. by Kinjirô Kunugi, m. J. A., Jan. 12, 1974)
§ 1. Let $f(t)$ be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. Let its Fourier series be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=0}^{\infty} A_{n}(t) . \tag{1.1}
\end{equation*}
$$

Then the conjugate series of (1.1) is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n t-a_{n} \sin n t\right)=\sum_{n=1}^{\infty} B_{n}(t) . \tag{1.2}
\end{equation*}
$$

Let $\left\{p_{n}\right\}$ be a sequence such that $P_{n}=\sum_{k=0}^{n} p_{k} \neq 0$ for $n=0,1,2, \ldots$ A series $\sum_{n=0}^{\infty} a_{n}$ with its partial sum s_{n} is said to be summable (N, p_{n}) to sum s, if

$$
\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} s_{k} \rightarrow s \quad \text { as } \quad n \rightarrow \infty
$$

The $\left(N, p_{n}\right)(C, 1)$ method is obtained by superimposing the method (N, p_{n}) on the Cesàro means of order one.
Throughout this paper, let $\left\{p_{n}\right\}$ be a sequence such that $p_{n} \geqq 0, p_{n} \downarrow$, $P_{n} \rightarrow \infty$, and we write

$$
\begin{gathered}
\psi(t)=f(x+t)-f(x-t)-l, \\
\Psi(t)=\int_{0}^{t}|\psi(u)| d u
\end{gathered}
$$

and $\tau=[1 / t]$, where $[\lambda]$ is the integral part of λ.
§ 2. Varshney [9] proved that if

$$
\begin{equation*}
\Psi(t)=o\left(t / \log t^{-1}\right) \quad \text { as } \quad t \rightarrow+0 \tag{2.1}
\end{equation*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $(N, 1 /(n+1))(C, 1)$ to l / π. This was generalized by Sharma [6], Singhal [8] and Dikshit [1], respectively, as follows.

Theorem A (Sharma [6]). If

$$
\begin{equation*}
\Psi(t)=o(t) \quad \text { as } \quad t \rightarrow+0 \tag{2.2}
\end{equation*}
$$

and, for some fixed $\delta, 0<\delta<1$,

$$
\begin{equation*}
\int_{t}^{\delta} \frac{|\psi(u)|}{u} \log \frac{1}{u} d u=o\left(\log t^{-1}\right) \quad \text { as } \quad t \rightarrow+0, \tag{2.3}
\end{equation*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $(N, 1 /(n+1))(C, 1)$ to l / π.
Remark 1. (2.3) implies (2.2), because

$$
\begin{aligned}
\Psi(t)=\int_{0}^{t}|\psi(u)| d u= & \int_{0}^{t} \frac{|\psi(u)|}{u} \log \frac{1}{u} \frac{u}{\log u^{-1}} d u \\
= & -\left[\frac{u}{\log u^{-1}} \int_{u}^{s} \frac{|\psi(x)|}{x} \log \frac{1}{x} d x\right]_{0}^{t} \\
& +\int_{0}^{t} \frac{\log u^{-1}+1}{\left(\log u^{-1}\right)^{2}} d u \int_{u}^{s} \frac{|\psi(x)|}{x} \log \frac{1}{x} d x \\
= & o(t) .
\end{aligned}
$$

Therefore, we see that the assumption (2.2) is superfluous.
Theorem B (Singhal [8]). Let $\alpha(t)$ be a positive non-decreasing function such that $\log n=O\left(\alpha\left(P_{n}\right)\right)$, as $n \rightarrow \infty$, and $t / \alpha(t)$ is non-decreasing. If

$$
\begin{equation*}
\Psi(t)=o\left(t / \alpha\left(P_{\imath}\right)\right) \quad \text { as } \quad t \rightarrow+0, \tag{2.4}
\end{equation*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $\left(N, p_{n}\right)(C, 1)$ to l / π.
Remark 2. We see, from the proof of Theorem 2 in [3], that the assumption on monotone of $\alpha(t)$ is superfluous.

Remark 3. Singhal has written his theorem with

$$
\Psi(t)=o\left(t / \log t^{-1}\right) \quad \text { as } \quad t \rightarrow+0
$$

instead of (2.4). But he has proved his theorem under the condition (2.4).

Theorem C (Dikshit [1]). Let $\beta(t)$ be a non-negative non-decreasing function such that $\beta(n) \log n=O\left(P_{n}\right)$, as $n \rightarrow \infty$. If

$$
\begin{equation*}
\Psi(t)=o\left(t \beta(1 / t) / P_{\tau}\right) \quad \text { as } \quad t \rightarrow+0 \tag{2.5}
\end{equation*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $\left(N, p_{n}\right)(C, 1)$ to l / π.
Remark 4. If Theorem C holds, then Theorem B also holds and conversely, when $\beta(1 / t) / \beta(\tau)=O(1)$ as $t \rightarrow+0$, if Theorem B holds, then Theorem C also holds. (See [3], Theorem 2.)

Theorem D (Dikshit [1]). Let $\gamma(t)$ be a non-negative function such that (i) $\{\gamma(t) /(t \log t)\}$ is monotonic, (ii) $\gamma(t)=O(\log t), t \rightarrow \infty$ and (iii)

$$
\begin{equation*}
\sum_{k=2}^{n} \gamma(k) P_{k} /(k \log k)=O\left(P_{n}\right), \quad \text { as } \quad n \rightarrow \infty . \tag{2.6}
\end{equation*}
$$

If

$$
\begin{equation*}
\Psi(t)=o\left(t \gamma(1 / t) / \log t^{-1}\right) \quad \text { as } \quad t \rightarrow+0, \tag{2.7}
\end{equation*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $\left(N, p_{n}\right)(C, 1)$ to l / π.
Remark 5. After the proof of Theorem 2 below, we see that the condition (ii) is superfluous. And Theorem in which $\gamma(t)=1$ is due to Singh [7].

The main result of this paper is the following theorem which includes all the results mentioned above.

Theorem 1. Let $p(t)$ be monotone non-increasing and positive for $t \geqq 0$. Let $p_{n}=p(n)$ and let

$$
\begin{equation*}
P(t)=\int_{0}^{t} p(u) d u \rightarrow \infty \quad \text { as } \quad t \rightarrow+\infty . \tag{2.8}
\end{equation*}
$$

If, for some fixed $\delta, 0<\delta<1$,

$$
\begin{equation*}
\int_{1 / n}^{\delta} \Psi(t) \frac{d}{d t} \frac{P(1 / t)}{t} d t=o\left(P_{n}\right) \quad \text { as } \quad n \rightarrow \infty, \tag{2.9}
\end{equation*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $\left(N, p_{n}\right)(C, 1)$ to l / π.
Theorem 2. If Theorem 1 holds, then Theorems A, B, C and D also hold.

Corollary 1. Let $\alpha(t)$ be a positive function such that

$$
\int_{1 / n}^{\delta} \frac{P_{\tau}}{\alpha\left(P_{\tau}\right)} \frac{1}{t} d t=O\left(P_{n}\right), \quad 0<\delta<1 .
$$

If

$$
\Psi(t)=o\left(t / \alpha\left(P_{\tau}\right)\right) \quad \text { as } \quad t \rightarrow+0
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $\left(N, p_{n}\right)(C, 1)$ to l / π.
This is contained in the result of Theorem 1 (see [3], pp. 305-306), but this includes Theorem B.

Corollary 2. Let $\beta(t)$ be a positive integrable function such that

$$
\int_{\eta}^{n} u^{-1} \beta(u) d u=O\left(P_{n}\right) \text { as } \quad n \rightarrow \infty, \quad \text { for any fixed } \eta>0
$$

If

$$
\Psi(t)=o\left(t \beta(1 / t) / P_{\tau}\right) \quad \text { as } \quad t \rightarrow+0
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $\left(N, p_{n}\right)(C, 1)$ to l / π.
This is also contained in the result of Theorem 1, but this includes Theorem C (see [2], p. 450). Further we see that this includes Corollary 1 and conversely, when $\beta(1 / t) \sim \beta(\tau)$ as $t \rightarrow+0$, Corollary 1 includes Corollary 2.
§ 3. Proof of Theorem 1. From the method of Mohanty and Nanda [4], we have

$$
\frac{1}{n} \sum_{k=1}^{n} k B_{k}(x)-\frac{l}{\pi}=\frac{1}{\pi} \int_{0}^{\delta} \psi(t)\left\{\frac{\sin n t}{n t^{2}}-\frac{\cos n t}{t}\right\} d t+o(1),
$$

by Riemann-Lebesgue's theorem. Since the (N, p_{n}) method is regular, in order to prove our theorem it is sufficient to show that

$$
\begin{gather*}
\frac{1}{P_{n}} \sum_{k=1}^{n} p_{n-k} \frac{1}{\pi} \int_{0}^{\delta} \psi(t)\left\{\frac{\sin k t}{k t^{2}}-\frac{\cos k t}{t}\right\} d t \tag{3.1}\\
\quad=\int_{0}^{\delta} \psi(t) N_{n}(t) d t=o(1),
\end{gather*}
$$

where

$$
\begin{align*}
N_{n}(t) & =\frac{1}{\pi P_{n}} \sum_{k=1}^{n} p_{n-k}\left\{\frac{\sin k t}{k t^{2}}-\frac{\cos k t}{t}\right\} \\
& = \begin{cases}O(n) & (0<t \leqq 1 / n) \\
O\left(P_{\tau} / t P_{n}\right) & (0<t \leqq \pi) .\end{cases} \tag{3.2}
\end{align*}
$$

(For these estimations, see Singh's [7], p. 441 or Singhal's [8], pp. 273274.) Now we write

$$
\int_{0}^{\delta} \psi(t) N_{n}(t) d t=\left(\int_{0}^{1 / n}+\int_{1 / n}^{\delta_{n}}\right) \psi(t) N_{n}(t) d t=I_{1}+I_{2} \text {, say. }
$$

From Rajagopal's lemma ([5], Lemma (a)), (2.8) and (2.9) together imply

$$
\Psi(t)=o(t) \quad \text { as } \quad t \rightarrow+0
$$

Hence, by (3.2), we have

$$
I_{1}=O(n)\left(\int_{0}^{1 / n}|\psi(t)| d t\right)=o(1)
$$

Next, by (3.3) and (2.9), we have

$$
\begin{aligned}
I_{2} & =O\left(\int_{1 / n}^{\delta}|\psi(t)| \frac{P_{\tau}}{t P_{n}} d t\right)=O\left(\int_{1 / n}^{\delta}|\psi(t)| \frac{P(1 / t)}{t P_{n}} d t\right) \\
& =O\left(\left[\Psi(t) \frac{P(1 / t)}{t P_{n}}\right]_{1 / n}^{\delta}\right)+O\left(\frac{1}{P_{n}} \int_{1 / n}^{\delta} \Psi(t)\left|\frac{d}{d t} \frac{P(1 / t)}{t}\right| d t\right) \\
& =o(1) .
\end{aligned}
$$

Therefore we have (3.1) and the proof of Theorem 1 is complete.
§ 4. Proof of Theorem 2. For the proof, since, by Remark 4, Theorem C includes Theorem B, it is sufficient to prove that the conditions of Theorems A, C and D, respectively, imply the one of Theorem 1. We define a function $p(t)$ by

$$
p(t)=p_{n} \quad \text { for } n \leqq t<n+1, \quad n=0,1,2, \cdots
$$

Further define a function $P(t)$ as in (2.8). Then the function $p(t)$ is monotone non-increasing and positive for $t \geqq 0$. And $P(t) \rightarrow \infty$ as $t \rightarrow \infty$. Furthermore, we get, $P_{\tau} \sim P(1 / t)$ and $1 / t p(1 / t) \sim P(1 / t)$ as $t \rightarrow+0$. Here, we want to show that the condition (2.9) is satisfied under the assumption.

Concerning Theorem A, since $(P(1 / t) / t)^{\prime}=O\left(P(1 / t) / t^{2}\right)$ $=O\left(\left(\log t^{-1}\right) / t^{2}\right)$, we have

$$
\begin{aligned}
\int_{1 / n}^{\delta} \Psi & (t) \frac{d}{d t} \frac{P(1 / t)}{t} d t=O\left(\int_{1 / n}^{\delta} \Psi(t) \frac{\log t^{-1}}{t^{2}} d t\right) \\
& =O\left(\int_{1 / n}^{\delta} \frac{\log t^{-1}}{t^{2}} d t \int_{0}^{t}|\psi(u)| d u\right) \\
& =O\left(\int_{1 / n}^{\delta}|\psi(u)| d u \int_{u}^{\delta} \frac{\log t^{-1}}{t^{2}} d t+\int_{0}^{1 / n}|\psi(u)| d u \int_{1 / n}^{\delta} \frac{\log t^{-1}}{t^{2}} d t\right) \\
& =O\left(\int_{1 / n}^{\delta}|\psi(u)| \log \frac{1}{u} d u \int_{u}^{\delta} \frac{1}{t^{2}} d t\right)+O\left(\int_{0}^{1 / n}|\psi(u)| d u(\log n) \int_{1 / n}^{\delta} \frac{1}{t^{2}} d t\right) \\
& =O\left(\int_{1 / n}^{\delta} \frac{|\psi(u)|}{u} \log \frac{1}{u} d u\right)+O(\Psi(1 / n) n \log n) \\
& =o(\log n) \\
& =o\left(P_{n}\right),
\end{aligned}
$$

from (2.3) and (2.2). Thus the condition (2.9) is satisfied.
Next, concerning Theorem C, we have, from (2.5),

$$
\begin{aligned}
\int_{1 / n}^{\delta} \Psi(t) \frac{d}{d t} \frac{P(1 / t)}{t} d t & =O\left(\int_{1 / n}^{\delta} \Psi(t) \frac{P(1 / t)}{t^{2}} d t\right) \\
& =o\left(\int_{1 / n}^{\delta} \frac{t \beta(1 / t)}{P_{\tau}} \frac{P(1 / t)}{t^{2}} d t\right)
\end{aligned}
$$

$$
\begin{aligned}
& =o\left(\int_{1 / n}^{\delta} \frac{1}{t} \beta\left(\frac{1}{t}\right) d t\right) \\
& =o(\beta(n) \log n) \\
& =o\left(P_{n}\right),
\end{aligned}
$$

since the function $\beta(t)$ is non-decreasing. Thus the condition (2.9) is satisfied.

Lastly, concerning Theorem D, we have, from (2.7) and (2.6),

$$
\begin{aligned}
\int_{1 / n}^{\delta} \Psi(t) \frac{d}{d t} \frac{P(1 / t)}{t} d t & =O\left(\int_{1 / n}^{\delta} \Psi(t) \frac{P(1 / t)}{t^{2}} d t\right) \\
& =o\left(\int_{1 / n}^{\delta} \frac{t_{\gamma}(1 / t)}{\log t^{-1}} \frac{P(1 / t)}{t^{2}} d t\right) \\
& =o\left(\int_{1 / n}^{\delta} \frac{\gamma(1 / t) P(1 / t)}{t \log t^{-1}} d t\right) \\
& =o\left(\int_{1 / \delta}^{n} \frac{\gamma(u) P(u)}{u \log u} d u\right) \\
& =o\left(\sum_{k=2}^{n} \frac{\gamma(k) P_{k}}{k \log k}\right) \\
& =o\left(P_{n}\right),
\end{aligned}
$$

since the function $\gamma(t) /(t \log t)$ is monotone. Thus the condition (2.9) is satisfied.
Therefore, the proof of Theorem 2 is complete.
§5. The proof of Theorem 2 together with known theorems ([5], Theorem 1 and [3], Theorem 1) shows that the following theorems are obtained. In the rest of this paper, we use the following notations.

$$
\begin{array}{cc}
g(t)=\frac{1}{2}\{f(x+t)+f(x-t)-2 f(x)\}, & G(t)=\int_{0}^{t}|g(u)| d u, \\
h(t)=\frac{1}{2}\{f(x+t)-f(x-t)\}, & H(t)=\int_{0}^{t}|h(u)| d u .
\end{array}
$$

Theorem 3. Under the conditions of Theorem A, if we replace $\psi(t)$ by $g(t)$ and $\Psi(t)$ by $G(t)$, then the series $\sum_{n=0}^{\infty} A_{n}(x)$ is summable $(N, 1 /(n+1))$ to $f(x)$.

Theorem 4. Under the conditions of Theorem A, if we replace $\psi(t)$ by $h(t)$ and $\Psi(t)$ by $H(t)$, then the series $\sum_{n=1}^{\infty} B_{n}(x)$ is summable $(N, 1 /(n+1))$ to

$$
\begin{equation*}
\bar{f}(x)=\frac{1}{\pi} \int_{0}^{\pi} h(u) \cot \frac{u}{2} d u \tag{5.1}
\end{equation*}
$$

provided that this integral exists as a Cauchy integral at origin.
Theorem 5. Under the conditions of Theorem D, if we replace $\Psi(t)$ by $G(t)$, then the series $\sum_{n=0}^{\infty} A_{n}(x)$ is summable $\left(N, p_{n}\right)$ to $f(x)$.

Theorem 6. Under the conditions of Theorem D, if we replace $\Psi(t)$
by $H(t)$, then the series $\sum_{n=1}^{\infty} B_{n}(x)$ is summable $\left(N, p_{n}\right)$ to $\bar{f}(x)$ provided that the integral in (5.1) exists as a Cauchy integral at origin.

References

[1] H. P. Dikshit: On the Nörlund summability of a sequence of Fourier coefficients. J. Math. (Jabalpur), 1, 17-22 (1965).
[2] H. Hirokawa: On the Nörlund summability of Fourier series and its conjugate series. Proc. Japan Acad., 44, 449-451 (1968).
[3] H. Hirokawa and I. Kayashima: On the Nörlund summability of the conjugate series of Fourier series. Proc. Japan Acad., 44, 301-306 (1968).
[4] R. Mohanty and M. Nanda: On the behaviour of Fourier coefficients. Proc. Amer. Math. Soc., 5, 79-84 (1954).
[5] C. T. Rajagopal: On the Nörlund summability of Fourier series. Proc. Cambridge Phil. Soc., 59, 47-53 (1963).
[6] R. M. Sharma: On a sequence of Fourier coefficients. Bull. Cal. Math. Soc., 61, 89-93 (1969).
[7] T. Singh: Nörlund summability of a sequence of Fourier coefficients. Proc. Japan Acad., 39, 439-443 (1963).
[8] M. K. Singhal: On the behaviour of a sequence of Fourier coefficients. Rend. Circ. Mat. Palermo, 20, 269-276 (1971).
[9] O. P. Varshney: On the sequence of Fourier coefficients. Proc. Amer. Math. Soc., 10, 790-795 (1959).

