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ON A SIMPLE ESTIMATE OF THE RECIPROCAL OF THE DENSITY
FUNCTION

By DanNieL A. Brocr! anp JosErH L. GASTWIRTH®
The Johns Hopkins University

1. Introduction and summary. Let z; < 2, < - -+ < 2, be an ordered random
sample of size n from the absolutely continuous e¢df F(z) with positive density
f(x) having a continuous first derivative in a neighborhood of the pth population
quantile »,(= F7'(p)). In order to convert the median or any other ‘“quick
estimator” [1] into a test we must estimate its variance, or for large samples its
asymptotic variance which depends on 1/f(v,). Siddiqui [4] proposed the esti-
mator S,, = 7(2m) " (Tiplam — Zmpl-msr) for 1/f (vp), showed it is asymp-
totically normally distributed and suggested that m be chosen to be of order #’.
In this note we show that the value of m minimizing the asymptotic mean square
error (AMSE) is of order n® (yielding an AMSE of order n™%). Our analysis is
similar to Rosenblatt’s [2] study of a simple estimate of the density function.

2. Large sample theory. In order to develop the large sample theory of S,
it is convenient to consider the ordered sample 7; < z, < -+ - < z, as a transform
of an ordered sample u; < uz < -+ < u, from a uniform distribution on (0, 1)
where z; = F*(u;). For simplicity, let G = F™* (which exists as f(z) is positive).
We shall use the fact that the spacings from a uniform distribution have a beta
distribution ([6], p. 236).

(2.1)  E(Winprm — Utnpl-mt1)” = n!(2m + 7 — 2)1/[(n + 7)1(2m — 2)]
and
E(Ulnp-m1Uing)+m)
(2.2) c=nl(lnp] + s —m)([mp] +m +r + s — 1)!
[([np] — m)([np] +m + s — D)i(n 4+ r 4+ s)] ™

As Siddiqui did not prove that the estimator is consistent we now do so.

TrEOREM 1. If m = o(n) and m — « asn — o, then the statistic Swy s a con-
ststent estimator of g(p) = 1/f(v,).

Proor. Since Upnp4m and Uinp—mi1 converge to p in probability, expanding G
about p yields the following representation of S,,, :

(23) Smn ~ "(27")—19(?)(“["@]-}% = Upplomt1) + 0p(Uinpi4m — Unpl-m1).
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Using formula (2.1) and Chebyshev’s inequality, the random variable
n(2m) ™ (Unpr4m — Ummpl—ms1) can be shown to converge in probability to one as
m — . Thus, Sn. = g(p) + 0,(1). (The consistency of S,.. can also be proved
by using the methods of Sen [3].)

For completeness we include the asymptotic distribution of S,.. [4].

TareorEM 2 (Siddiqui). Under the conditions of Theorem 1,

(24) (2m)*[Smn — 9(p)1/g(p) —¢ N(O, 1).

For the remainder of the section we assume that the first three derivatives of
f exist in a neighborhood of », and proceed heuristically. From Theorem 2, the
variance of S,

(2.5) Var (Sm) ~ ¢*(p)/2m

as m — o« and m/n — 0.

In order to obtain the asymptotically optimal choice of m, we require an ex-
pression for the asymptotic bias of S., . Expanding G(uinpem) — G(Utnpl—mi1)
in a Taylor series it can be shown, using (2.1) and (2.2) that

(2.6) E(Smn) ~ g(p) + [¢" (p)/6](m/n)*
as m — o« and m/n — 0. Thus, the squared bias is given by
(2.7) (bias Sp)” = [B(Sma) — g(p)I* ~ [g" (p)*/36](m/n)*

as m — o« and m/n — 0. Now m will be chosen to minimize the asymptotic
mean square error

(2.8) ElSun — g(p)" ~ ¢*(p)/2m + lg" (p)*/36](m/n)*

asm — o« and m/n — 0. If m is set equal to en?, v > 0, it is easily seen from (2.8)
that the optimal choice for v is v = 4. Then (denoting Sm. , m = cn® by S,)

(2.9) E[S. — g(p)I ~ ¢*(p)/2en* + [g" (p)Ic"/36n
as n — o. The value of ¢ minimizing (2.9) is (assuming ¢” (p) = 0)
(2.10) ¢ = (99°(p)/2lg" ()

= (9 (r2) /2B ()" — Fo)f” ().
With this choice of ¢ and v we find that
(2.11) B[S, — g(p)I' ~ 19727 g(p)Flg" (p) '™
asn — . '

It should be noted that the above formulas are very similar to those obtained
by Rosenblatt [2], pp. 835-836, for his estimate of the density function. While the
problems considered by Rosenblatt and in this note are different, the solutions
are isomorphie.

Recently [5] Weiss and Wolfowitz proposed another estimator of the density
function which, in effect, estimates c. Presumably, their approach can be extended
to the problem considered here.

The choice of ¢ should be based on prior knowledge of the values of f(v,),
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f'(vp) and f” (v,). The values of ¢ when p = % for some common densities are as
follows: Normal (.5), Cauchy (.4), and Logistic (.58).

3. Extensions. It is also of interest to estimate p(1 — ¢)/nf(r,)f(vy), P < ¢,
the asymptotic covariance between the pth and ¢th sample quantiles. The dis-
cussion of the previous sections suggests that 1/f(v,)f(v,) be estimated by

2
(31) Smunzﬂ ="n (x[MJH-ml - x["p]—m1+l)(x[n¢1]+m2 - x[7L¢I]—"n2+l)/4m1m2 .

The consistency of Spymen (if m1 = 0(n), me = o(n), my — o asn — o« and
mg — o as n — ) follows from the fact that the product of two consistent
Siddiqui estimators is consistent. It is also easy to show that

(32)  ((Smimsn — 9(P)9(9))/9(P)g(D)[(2m)" 4+ (2my)7'T) —¢ N(O, 1).

Thus, the variance of the estimate

(3.3) Var (Smumen) ~ ¢ (2)g°()[(2m1) ™ + (2m2) 7]

as my — ©, me—> ©, my/n— 0asn — o and me/n — 0 as n —. Since Sy ymyn 1S
asymptotically the product of two independent Siddiqui-estimators, the mean
of the estimate

(34)  E(Spmsn) ~ 9(p)9(q) + 9(0)g" (0) (ma/n)*/6 + " (9)g(q) (mu/n)*/6

asmy — © my — ©,my/n—0asn— « and me/n — 0 asn — . We now as-
sume that ¢" (p) #= 0, ¢"(¢) ¥ 0and ¢"(p)/g" (¢) > 0. As before we choose m;
and m, to minimize the asymptotic mean square error.

ESnimsn — 9(0)9()T
(3.5) ~ [g(p)g”" (q) (ma/n)*/6 + g(@)g" (p) (mu/n)*/6]
+ @ (P)g (OI(2m) ™" + (2ma) 7).

Letting m; = ¢n™, v1 > 0 and me = cen”, v» > 0 we find that the optimum
choices of y; and v, are y1 = 72 = 4. The optimal value of ¢ is

(3.6) a = (9"(p)/2l" (P11 + (9(»)g" (0) /9" (PIg(0))'])*.
The optimal value of ¢, is given by the same formula with p and ¢ interchanged.
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