On a Simultaneous Generalization of β-Normality and Almost Normality

A. K. Das ${ }^{\text {a }}$, Pratibha Bhat ${ }^{\text {a }}$, J. K. Tartir ${ }^{\text {b }}$
${ }^{a}$ School of Mathematics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir-182320, INDIA
${ }^{b}$ Department of Mathematics and Statistics, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA

Abstract

A new generalization of normality called almost β-normality is introduced and studied which is a simultaneous generalization of almost normality and β-normality. A topological space is called almost β-normal if for every pair of disjoint closed sets A and B one of which is regularly closed, there exist disjoint open sets U and V such that $\overline{U \cap A}=A, \overline{U \cap B}=B$ and $\bar{U} \cap \bar{V}=\phi$.

1. Introduction and Preliminaries

Normality plays a prominent role in general topology and behaves differently from other separation axioms in terms of subspaces and products. Several generalized notions of normality such as (weakly) θ normal [8, 9], almost normal [13], κ-normal (mildly normal) [14, 15], γ-normal [6], π-normal [7], Δ-normal [4] (semi-nearly normal [11]) etc. exist in the literature. These spaces were introduced in different situations to study normality. Some of these variants of normality were utilized to obtain factorizations of normality (see [4, 5, 8]). In [1], A. V. Arhangel'skii and L. Ludwig introduced the concept of α-normal and β-normal spaces and Eva Murtinova in [12] provided an example of a β-normal Tychonoff space which is not normal. In this paper, we introduce the notion of almost β-normality which is a simultaneous generalization of almost normality and β-normality and obtain a decomposition of almost normality in terms of β-normality.

Let X be a topological space and let $A \subset X$. Throughout the present paper the closure of a set A will be denoted by \bar{A} and the interior by int A. A set $U \subset X$ is said to be regularly open [10] if $U=$ int \bar{U}. The complement of a regularly open set is called regularly closed. A space is κ-normal [15] (mildly normal [14]) if for every pair of disjoint regularly closed sets E, F of X there exist disjoint open subsets U and V of X such that $E \subseteq U$ and $F \subseteq V$. A topological space is said to be almost normal [13] if for every pair of disjoint closed sets A and B one of which is regularly closed, there exist disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$. A topological space X is said to be almost regular if for every regularly closed set A and a point $x \notin A$, there exist disjoint open sets U and V such that $A \subseteq U$ and $x \in V$. A topological space X is said to be α-normal [1] if for any two disjoint closed subsets A and B of X there exist disjoint open subsets U and V of X such that $A \cap U$ is dense in A and $B \cap U$ is dense in B. A space X is β-normal [1] if for any two disjoint closed subsets A and B of X there exist open subsets U and V of X such that $A \cap U$ is dense in $A, B \cap U$ is

[^0]dense in B, and $\bar{U} \cap \bar{V}=\emptyset$. A space X is said to be semi-normal if for every closed set A contained in an open set U, there exists a regularly open set V such that $A \subset V \subset U$.

2. Almost β-Normality

Definition 2.1. A topological space is called almost β-normal if for every pair of disjoint closed sets A and B, one of which is regularly closed, there exist disjoint open sets U and V such that $\overline{U \cap A}=A, \overline{V \cap B}=B$, and $\bar{U} \cap \bar{V}=\phi$.

From the definitions it is obvious that every normal space is β-normal and every β-normal space is almost β-normal.

Theorem 2.2. Every almost normal space is almost β-normal.
Proof. Let X be an almost normal space. Let A and B be two disjoint closed sets in X one of which (say A) is regularly closed. Since X is almost normal there exist disjoint open sets W and V containing A and B respectively. Since $W \cap V=\phi, W \cap \bar{V}=\phi$. Let $U=\operatorname{int} A$. Then $\bar{U} \cap \bar{V}=\phi, \overline{U \cap A}=A$, and $\overline{V \cap B}=B$. So, the space is almost β-normal.

The following implications hold but none are reversible.

Example 2.3. Let $X=\{a, b, c, d\}$ and $\tau=\{\phi, X,\{b\},\{c\},\{a, b, c\},\{c, d\},\{b, c\},\{b, c, d\}\}$. Then the space (X, τ) is not almost β-normal since for regularly closed $A=\{a, b\}$ and disjoint closed set $B=\{\mathrm{d}\}$ there does not exist two open sets U and V such that $\overline{U \cap A}=A, \overline{B \cap V}=B$, and $\bar{U} \cap \bar{V}=\phi$.

Example 2.4. Let X be the union of any infinite set Y and two distinct one point sets p and q. The modified Fort space on X as defined in [17] is almost β-normal but not β-normal. In X any subset of Y is open and any set containing p or q open if and only if it contains all but a finite number of points in Y. This space is not β-normal even not α-normal [1] because for disjoint closed sets $\{p\}$ and $\{q\}$ there does not exist two disjoint open sets separating them. The regularly closed sets of this space are finite subsets of Y and sets of the form $A \cup\{p, q\}$, where $A \subseteq \mathbb{Y}$ is infinite. Thus the space is almost β-normal.

Remark 2.5. If a β-normal space X satisfies the T_{1} separation axiom, then the space X is regular is observed by A. V. Arhangel'skii and L. Ludwig in [1]. But if β-normality is replaced by almost β-normality then the proposition is not valid as Example 2.4 is an example of a T_{1} almost β-normal space which is not regular, even not Hausdorff. Thus it is obvious to ask the question: which almost β-normal, T_{1}-spaces are regular? In the sequel, Theorem 2.17 provides a partial answer to this question.

Arhangel'skii and Ludwig in [1] have shown that a space is normal if and only if it is κ-normal and β-normal. Therefore, every non-normal space which is almost normal is an example of a κ-normal, almost β-normal space which is not β-normal.

Remark 2.6. In [12], Eva Murtinova provided an example of a β-normal Tyconoff space which is not normal. Such a space must also be almost β-normal and cannot be κ-normal.

It is very natural to ask under which additional conditions almost β-normality coincides with either almost normality or β-normality. The following results (Theorem 2.8, Theorem 2.21, Corollary 2.11, Corollary 2.12) provide answers to this question. Recall that a Hausdorff space X is said to be extremally disconnected if the closure of every open set in X is open. Further, the following generalized notions of normality defined by Kohli and Das are useful in the sequel to establish that almost β-normality coincides with almost normality under certain conditions.

A point $x \in X$ is called a θ-limit point [18] of A if every closed neighbourhood of x intersects A. Let $c l_{\theta} A$ denotes the set of all θ-limit points of A. The set A is called θ-closed if $A=c l_{\theta} A$.

Definition 2.7. A topological space X is said to be
(i) θ-normal [8] if every pair of disjoint closed sets one of which is θ-closed are contained in disjoint open sets;
(ii) Weakly θ-normal (w θ-normal)[8] if every pair of disjoint θ-closed sets are contained in disjoint open sets.

Theorem 2.8. Every extremally disconnected almost β-normal space is almost normal.
Proof. Let X be an extremally disconnected almost β-normal space and let A be a regularly closed set disjoint from the closed set B . By almost β-normality of X, there exist disjoint open sets U and V such that $\overline{U \cap A}=A$, $\overline{V \cap B}=B$ and $\bar{U} \cap \bar{V}=\phi$. Thus $A \subset \bar{U}$ and $B \subset \bar{V}$. By the extremally disconnectedness of X, \bar{U} and \bar{V} are disjoint open sets containing A and B respectively.

Theorem 2.9. Every T_{1} almost β-normal space is almost regular.
Proof. Let A be a regularly closed set in X and x be a point outside A. Since X is a T_{1}-space and every singleton is closed in a T_{1}-space, by almost β-normality there exist disjoint open sets U and V such that $x \in U, \overline{V \cap A}=A, \bar{U} \cap \bar{V}=\phi$. Since $A \subset \bar{V}, U$ and $X-\bar{U}$ are disjoint open sets containing $\{x\}$ and A, respectively. Thus, the space is almost regular.

Corollary 2.10. In a T_{1}-space, weak θ-normality and almost β-normality implies κ-normality.
Proof. Let X be a T_{1} weakly θ-normal, almost β-normal space. Then by Theorem 2.9, X is almost regular. By a result of Kohli and Das [9] that every almost regular weakly θ-normal space is κ-normal, X is κ-normal.

Corollary 2.11. In the class of T_{1}, θ-normal spaces, every almost β-normal space is almost normal.
Proof. Let X be a T_{1} space which is θ-normal as well as almost β-normal. By Theorem 5.16 of Kohli and Das[9], X is almost normal.

Corollary 2.12. In the class of T_{1}, paracompact spaces, every almost β-normal space is almost normal.
Proof. Since every paracompact space is θ-normal [8], the result holds by Corollary 2.11.
Recall that a space X is said to be almost compact [3] if every open cover of X has a finite subcollection, the closure of whose members covers X.

Corollary 2.13. An almost compact, almost β-normal, T_{1}-space is κ-normal.
Proof. The proof is immediate from the result of Singal and Singal [14] that an almost regular almost compact space is κ-normal.
Corollary 2.14. A Lindelöf, almost β-normal, T_{1}-space is κ-normal.
Proof. Since an almost regular Lindelöf space is κ-normal [14], the proof is immediate.

Remark 2.15. The T_{1} axiom in the above theorem cannot be relaxed since there exist almost β-normal spaces which are not almost regular.

Example 2.16. Let $X=\{a, b, c\}$ and $\tau=\{\{a\},\{c\},\{a, c\}, \phi, X\}$. Then X is vacuously normal, thus almost β normal but not almost regular as the regularly closed set $\{a, b\}$ and any point outside it cannot be separated by disjoint open sets.

Theorem 2.17. In the class of T_{1}, semi-normal spaces, every almost β-normal space is regular.
Proof. Let X be a T_{1}, semi-normal, and almost β-normal space. Let A be a closed subset of X and $x \notin A$. Since X is a T_{1}-space, the singlton set $\{x\}$ is closed. So by semi-normality of X, there exists a regularly open set U such that $\{x\} \subset U \subset X-A$. Here $F=X-U$ is a regularly closed set containing A with $x \notin F$. As X is an almost β-normal T_{1}-space, X is almost regular by Theorem 2.9. Thus there exist disjoint open sets V and W such that $x \in V$ and $A \subset F \subset W$. Hence X is regular.

The following theorem provides a characterization of almost β-normality.
Theorem 2.18. For any topological space X, the following are equivalent:

1. X is almost β-normal;
2. whenever $E, F \subseteq X$ are disjoint closed sets and E is regularly closed, there is an open set V such that $F=\overline{V \cap F}$ and $E \cap \bar{V}=\emptyset$;
3. whenever $E \subseteq X$ is closed, $U \subseteq X$ is regularly open, and $E \subseteq U$, there is an open set V such that $E=\overline{E \cap V} \subseteq$ $\bar{V} \subseteq U$.

Proof. $[(1) \Rightarrow(2)]$ Suppose that $E, F \subseteq X$ are disjoint closed sets and E is regularly closed. Since X is almost β-normal, there exist open sets U and V such that $E=\overline{U \cap E} \subseteq \bar{U}, F=\overline{V \cap F} \subseteq \bar{V}$, and $\bar{U} \cap \bar{V}=\emptyset$. Then $E \cap \bar{V}$ $=\emptyset$.
$[(2) \Rightarrow(1)]$ Suppose that $E, F \subseteq X$ are disjoint closed sets and E is regularly closed. By the assumption, there exists an open set V such that $F=\overline{V \cap F}$ and $E \cap \bar{V}=\emptyset$. Let $U=\operatorname{int}(E)$. Then $E=\overline{U \cap E}$ and $\bar{U} \cap \bar{V}=$ $E \cap \bar{V}=\emptyset$.
$[(1) \Rightarrow(3)]$ Suppose that E is closed, U is regularly open, and $E \subseteq U$. Since U is regularly open, $X \backslash U$ is regularly closed. Since X is almost β-normal, there are open sets O and V such that $X \backslash U=\overline{O \cap(X \backslash U)} \subseteq$ $\bar{O}, E=\overline{V \cap E} \subseteq \bar{V}$, and $\bar{O} \cap \bar{V}=\emptyset$. Then $(X \backslash U) \cap \bar{V}=\emptyset$ which means that $\bar{V} \subseteq U$.
$[(3) \Rightarrow(2)]$ Suppose that $E, F \subseteq X$ are disjoint closed sets and E is regularly closed. Then $F \subseteq X \backslash E$ and $X \backslash E$ is regularly open. By the hypothesis, there is an open set V such that $F=\overline{V \cap F} \subseteq \bar{V} \subseteq X \backslash E$. Then $\bar{V} \cap E=\emptyset$, as desired.

The following result gives a decomposition of almost normality.
Theorem 2.19. A space is almost normal if and only if it is almost β-normal and κ-normal.
Proof. Let X be an almost β-normal and κ-normal space. Let A and B be two disjoint closed sets in X in which A is regularly closed. By almost β-normality of X, there exist disjoint open sets U and V such that $\bar{U} \cap \bar{V}=\phi, \overline{A \cap U}=A$ and $\overline{B \cap V}=B$. Thus $A \subset \bar{U}$ and $B \subset \bar{V}$. Here \bar{U} and \bar{V} are disjoint regularly closed sets . So by κ-normality, there exist disjoint open sets W_{1} and W_{2} such that $\bar{U} \subseteq W_{1}$ and $\bar{V} \subseteq W_{2}$. Hence X is almost normal.

Corollary 2.20. In a semi-normal and κ-normal space the following statements are equivalent :

1. X is normal;
2. X is almost normal;
3. X is β-normal;

4. X is almost β-normal.

Proof. (1) $\Rightarrow(3) \Rightarrow(4)$ and $(1) \Rightarrow(2) \Rightarrow(4)$ are obvious. [(4) $\Rightarrow(1)$] Let X be semi-normal, κ-normal and almost β-normal space. We have to show X is normal. By Theorem $2.19, X$ is almost normal. Since every almost normal, semi-normal space is normal [13], X is normal.

Theorem 2.21. Let X be a dense subspace of a product of metrizable spaces. Then X is almost normal if and only if X is almost β-normal.

Proof. Since every dense subspace of any product of metrizable spaces is κ-normal ([2], [16]), by Theorem 2.19, the proof is immediate.

It is known that, every β-normal space is α-normal, but in contrast almost β-normal spaces need not be α-normal which is evident from the Example 2.4 which is almost β-normal but not α-normal. The following Theorem provides a partial answer to the question: which almost β-normal spaces are α-normal ?

Theorem 2.22. Every semi-normal, almost β-normal space is α-normal.
Proof. Let X be a semi-normal, almost β-normal space. Let A and B be two disjoint closed sets in X. Thus $A \subset(X-B)$. By semi-normality, there exists a regularly open set F such that $A \subset F \subset(X-B)$. Now A and $(X-F)$ are two disjoint closed sets in X in which $X-F$ is a regularly closed set containing B. Thus by almost β-normality, there exist disjoint open sets U and V such that $\overline{U \cap A}=A, \overline{(X-F) \cap V}=X-F$, and $\bar{U} \cap \bar{V}=\phi$. Here $A=\overline{U \cap A} \subset \bar{U}$ and $(X-F)=\overline{(X-F) \cap V} \subset \bar{V}$. Thus U and $W=X-\bar{U}$ are two disjoint open sets such that $\overline{U \cap A}=A$ and $B \subset W$. Therefore, $\overline{W \cap B}=B$ and X is α-normal.

The following examples show that a continuous image of an almost β-normal space need not be almost β-normal.
Example 2.23. Let X be the union of the set of integers \mathbb{Z} and two distinct one point sets p and q with the modified Fort topology as defined in Example 2.4 and let $Y=\{a, b, c, d\}$ with the topology defined in Example 2.3. Define a function $f: X \rightarrow Y$ by

$$
f(x)= \begin{cases}c & ; \text { if } x \in \mathbb{Z}-\{0,1\} \\ a & ; \text { if } x=0 \\ b & ; \text { if } x=1 \\ d & ; \text { otherwise }\end{cases}
$$

Then f is a continuous function from X into Y. It is clear that X is almost β-normal but $f(X)$ is not.
Example 2.24. Let (X, τ) be a topological space which is not almost β-normal and let τ_{D} be the discrete topology on X. Define $f:\left(X, \tau_{D}\right) \rightarrow(X, \tau)$ by $f(x)=x$. Clearly, $\left(X, \tau_{D}\right)$ is almost β-normal and f is continuous, one-to-one, and onto.

Theorem 2.25. Suppose that X and Y are topological spaces, X is almost β-normal, and $f: X \rightarrow Y$ is onto, continuous, open, and closed. Then Y is almost β-normal.

Proof. Suppose that $E, F \subseteq Y$ are disjoint closed sets and E is regularly closed. Since f is continuous, $f^{-1}(E)$ and $f^{-1}(F)$ are disjoint closed sets. To see that $f^{-1}(E)=\overline{f^{-1}(\operatorname{int}(E))}$, suppose that $W \subseteq X$ is open such that $W \cap f^{-1}(E) \neq \emptyset$. Then $f(W)$ is open in Y and $f(W) \cap E=f(W) \cap \overline{\operatorname{int}(E)} \neq \emptyset$ which implies that $f(W) \cap \operatorname{int}(E) \neq \emptyset$. Hence, $W \cap f^{-1}(\operatorname{int}(E)) \neq \emptyset$ and so $f^{-1}(E)=\overline{f^{-1}(\operatorname{int}(E))}$. Since $f^{-1}(E)=\overline{f^{-1}(\operatorname{int}(E))}, f^{-1}(E)$ is a regularly closed set. So there exists an open set $U \subseteq X$ such that $f^{-1}(F)=\overline{f^{-1}(F) \cap U}$ and $\bar{U} \cap f^{-1}(E)=\emptyset$. Since $\bar{U} \cap f^{-1}(E)=\emptyset$, $f(\bar{U}) \cap E=\emptyset$. Also, note that $f(U)$ is open and $f(\bar{U})$ is closed. Since $f(\bar{U})$ is a closed set containing $f(U)$, $\overline{f(U)} \subseteq f(\bar{U})$. So $\overline{f(U)} \cap E=\emptyset$. It remains to show that $F=\overline{F \cap f(U)}$. To see this, let $y \in F$ and O be an open set containing y. Then $f^{-1}(y) \subseteq\left[f^{-1}(F) \cap f^{-1}(O)\right]$. Since $f^{-1}(F)=\overline{f^{-1}(F) \cap U}, f^{-1}(F) \cap U \cap f^{-1}(O) \neq \emptyset$. Hence, $F \cap f(U) \cap O=f\left(f^{-1}(F)\right) \cap f(U) \cap f\left(f^{-1}(O)\right) \supseteq f\left[f^{-1}(F) \cap U \cap f^{-1}(O)\right] \neq \emptyset$, as desired.

References

[1] A.V. Arhangel'skii, L. Ludwig , On α-normal and β-normal spaces, Comment. Math. Univ. Carolin. 42:3 (2001) 507-519.
[2] R.L. Blair, Spaces in which special sets are z-embedded, Canad. J. Math. 28:4 (1976) 673-690.
[3] Á. Császár, General Topology, Adam Higler Ltd, Bristol, 1978.
[4] A.K. Das, Δ-normal spaces and decompositions of normality, Applied General Topology 10:2 (2009) 197-206.
[5] A.K. Das, A note on spaces between normal and κ-normal spaces, Filomat 27:1 (2013) 85-88.
[6] E. Ekici, On γ-normal spaces, Bull. Math. Soc. Sci. Math. Roumanie 50(98):3 (2007) 259-272.
[7] L.N. Kalantan, π-normal topological spaces, Filomat 22:1 (2008) 173-181.
[8] J.K. Kohli, A.K. Das, New normality axioms and decompositions of normality, Glasnik Mat. 37(57)(2002) 165-175.
[9] J.K. Kohli, A.K. Das, On functionally θ-normal spaces, Applied General Topology, 6:1 (2005) 1-14.
[10] K. Kuratowski, Topologie I, Hafner, New York, 1958.
[11] M.N. Mukherjee, D. Mandal, On countably nearly paracompact spaces, Mat. Vesnik 66:3 (2014) 265-273.
[12] E. Murtinova, A β-normal Tyconoff space which is not normal, Comment. Math. Univ. Carolin. 43:1 (2002) 159-164.
[13] M.K. Singal, S.P. Arya, Almost normal and almost completely regular spaces, Glasnik Mat. 5(25) (1970) 141-152.
[14] M.K. Singal, A.R. Singal, Mildly normal spaces, Kyungpook Math J. 13 (1973) 27-31.
[15] E.V. Schepin, Real-valued functions, and spaces close to normal, Sib. Matem. Journ. 13:5 (1972) 1182-1196.
[16] E.V. Schepin, On topological products, groups, and a new class of spaces more general than metric spaces, Soviet Math. Dokl. 17:1 (1976) 152-155.
[17] L.A. Steen, J.A. Seebach Jr., Counterexamples in Topology, Springer Verlag, New york, 1978.
[18] N.V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. 78:2 (1968) 103-118.

[^0]: 2010 Mathematics Subject Classification. Primary 54D15
 Keywords. Normal, α-normal, β-normal, almost β-normal, almost normal, almost regular, κ-normal, θ-normal, weakly θ normal. Received: 17 November 2014; Revised: 24 March 24, 2015; Accepted: 25 March 2015
 Communicated by Ljubiša D.R. Kočinac
 Email addresses: akdasdu@yahoo.co.in, ak.das@smvdu.ac.in(A. K. Das), pratibha87bhat@gmail.com (Pratibha Bhat),
 jktartir@ysu.edu (J. K. Tartir)

