Filomat 31:2 (2017), 425–430 DOI 10.2298/FIL1702425D

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On a Simultaneous Generalization of β -Normality and Almost Normality

A. K. Das^a, Pratibha Bhat^a, J. K. Tartir^b

^a School of Mathematics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir-182320, INDIA ^bDepartment of Mathematics and Statistics, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA

Abstract. A new generalization of normality called almost β -normality is introduced and studied which is a simultaneous generalization of almost normality and β -normality. A topological space is called almost β -normal if for every pair of disjoint closed sets *A* and *B* one of which is regularly closed, there exist disjoint open sets *U* and *V* such that $\overline{U \cap A} = A$, $\overline{U \cap B} = B$ and $\overline{U} \cap \overline{V} = \phi$.

1. Introduction and Preliminaries

Normality plays a prominent role in general topology and behaves differently from other separation axioms in terms of subspaces and products. Several generalized notions of normality such as (weakly) θ -normal [8, 9], almost normal [13], κ -normal (mildly normal) [14, 15], γ -normal [6], π -normal [7], Δ -normal [4] (semi-nearly normal [11]) etc. exist in the literature. These spaces were introduced in different situations to study normality. Some of these variants of normality were utilized to obtain factorizations of normality (see [4, 5, 8]). In [1], A. V. Arhangel'skii and L. Ludwig introduced the concept of α -normal and β -normal spaces and Eva Murtinova in [12] provided an example of a β -normal Tychonoff space which is not normal. In this paper, we introduce the notion of almost β -normality which is a simultaneous generalization of almost normality and β -normality and obtain a decomposition of almost normality in terms of β -normality.

Let *X* be a topological space and let $A \subset X$. Throughout the present paper the closure of a set *A* will be denoted by \overline{A} and the interior by *intA*. A set $U \subset X$ is said to be regularly open [10] if $U = int \overline{U}$. The complement of a regularly open set is called regularly closed. A space is κ -normal [15] (mildly normal [14]) if for every pair of disjoint regularly closed sets *E*, *F* of *X* there exist disjoint open subsets *U* and *V* of *X* such that $E \subseteq U$ and $F \subseteq V$. A topological space is said to be almost normal [13] if for every pair of disjoint closed sets *A* and *B* one of which is regularly closed, there exist disjoint open sets *U* and *V* such that $A \subseteq U$ and $B \subseteq V$. A topological space *X* is said to be almost regular if for every regularly closed set *A* and a point $x \notin A$, there exist disjoint open sets *U* and *V* such that $A \subseteq U$ and $x \in V$. A topological space *X* is said to be α -normal [1] if for any two disjoint closed subsets *A* and *B* of *X* there exist disjoint open subsets *U* and *V* of *X* such that $A \cap U$ is dense in *A* and $B \cap U$ is dense in *B*. A space *X* is β -normal [1] if for any two disjoint closed subsets *A* and *B* of *X* there exist open subsets *U* and *V* of *X* such that $A \cap U$ is dense in *A*, $B \cap U$ is

²⁰¹⁰ Mathematics Subject Classification. Primary 54D15

Keywords. Normal, α -normal, β -normal, almost β -normal, almost normal, almost regular, κ -normal, θ -normal, weakly θ normal. Received: 17 November 2014; Revised: 24 March 24, 2015; Accepted: 25 March 2015

Communicated by Ljubiša D.R. Kočinac

Email addresses: akdasdu@yahoo.co.in, ak.das@smvdu.ac.in (A. K. Das), pratibha87bhat@gmail.com (Pratibha Bhat), jktartir@ysu.edu (J. K. Tartir)

dense in *B*, and $\overline{U} \cap \overline{V} = \emptyset$. A space *X* is said to be semi-normal if for every closed set *A* contained in an open set *U*, there exists a regularly open set *V* such that $A \subset V \subset U$.

2. Almost β -Normality

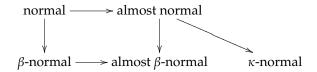
Definition 2.1. A topological space is called *almost* β -*normal* if for every pair of disjoint closed sets A and B, one of which is regularly closed, there exist disjoint open sets U and V such that $\overline{U \cap A} = A$, $\overline{V \cap B} = B$, and $\overline{U} \cap \overline{V} = \phi$.

From the definitions it is obvious that every normal space is β -normal and every β -normal space is almost β -normal.

Theorem 2.2. *Every almost normal space is almost* β *-normal.*

Proof. Let *X* be an almost normal space. Let *A* and *B* be two disjoint closed sets in *X* one of which (say *A*) is regularly closed. Since *X* is almost normal there exist disjoint open sets *W* and *V* containing *A* and *B* respectively. Since $W \cap V = \phi$, $W \cap \overline{V} = \phi$. Let U = intA. Then $\overline{U} \cap \overline{V} = \phi$, $\overline{U \cap A} = A$, and $\overline{V \cap B} = B$. So, the space is almost β -normal. \Box

The following implications hold but none are reversible.



Example 2.3. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{b\}, \{c\}, \{a, b, c\}, \{c, d\}, \{b, c\}, \{b, c, d\}\}$. Then the space (X, τ) is not almost β -normal since for regularly closed $A = \{a, b\}$ and disjoint closed set $B = \{d\}$ there does not exist two open sets U and V such that $\overline{U \cap A} = A$, $\overline{B \cap V} = B$, and $\overline{U} \cap \overline{V} = \phi$.

Example 2.4. Let *X* be the union of any infinite set Υ and two distinct one point sets *p* and *q*. The modified Fort space on *X* as defined in [17] is almost β -normal but not β -normal. In *X* any subset of Υ is open and any set containing *p* or *q* open if and only if it contains all but a finite number of points in Υ . This space is not β -normal even not α -normal [1] because for disjoint closed sets {p} and {q} there does not exist two disjoint open sets separating them. The regularly closed sets of this space are finite subsets of Υ and sets of the form $A \cup \{p, q\}$, where $A \subseteq \Upsilon$ is infinite. Thus the space is almost β -normal.

Remark 2.5. If a β -normal space *X* satisfies the T_1 separation axiom, then the space *X* is regular is observed by A. V. Arhangel'skii and L. Ludwig in [1]. But if β -normality is replaced by almost β -normality then the proposition is not valid as Example 2.4 is an example of a T_1 almost β -normal space which is not regular, even not Hausdorff. Thus it is obvious to ask the question: which almost β -normal, T_1 -spaces are regular? In the sequel, Theorem 2.17 provides a partial answer to this question.

Arhangel'skii and Ludwig in [1] have shown that a space is normal if and only if it is κ -normal and β -normal. Therefore, every non-normal space which is almost normal is an example of a κ -normal, almost β -normal space which is not β -normal.

Remark 2.6. In [12], Eva Murtinova provided an example of a β -normal Tyconoff space which is not normal. Such a space must also be almost β -normal and cannot be κ -normal.

It is very natural to ask under which additional conditions almost β -normality coincides with either almost normality or β -normality. The following results (Theorem 2.8, Theorem 2.21, Corollary 2.11, Corollary 2.12) provide answers to this question. Recall that a Hausdorff space *X* is said to be extremally disconnected if the closure of every open set in *X* is open. Further, the following generalized notions of normality defined by Kohli and Das are useful in the sequel to establish that almost β -normality coincides with almost normality under certain conditions.

A point $x \in X$ is called a θ -*limit point* [18] of A if every closed neighbourhood of x intersects A. Let $cl_{\theta}A$ denotes the set of all θ -limit points of A. The set A is called θ -closed if $A = cl_{\theta}A$.

Definition 2.7. A topological space *X* is said to be

- (*i*) θ-normal [8] if every pair of disjoint closed sets one of which is θ-closed are contained in disjoint open sets;
- (*ii*) Weakly θ-normal (wθ-normal)[8] if every pair of disjoint θ-closed sets are contained in disjoint open sets.

Theorem 2.8. *Every extremally disconnected almost* β *-normal space is almost normal.*

Proof. Let *X* be an extremally disconnected almost β -normal space and let *A* be a regularly closed set disjoint from the closed set B. By almost β -normality of *X*, there exist disjoint open sets *U* and *V* such that $\overline{U \cap A} = A$, $\overline{V \cap B} = B$ and $\overline{U} \cap \overline{V} = \phi$. Thus $A \subset \overline{U}$ and $B \subset \overline{V}$. By the extremally disconnectedness of *X*, \overline{U} and \overline{V} are disjoint open sets containing *A* and *B* respectively. \Box

Theorem 2.9. *Every* T_1 *almost* β *-normal space is almost regular.*

Proof. Let A be a regularly closed set in X and x be a point outside A. Since X is a T_1 -space and every singleton is closed in a T_1 -space, by almost β -normality there exist disjoint open sets U and V such that $x \in U$, $\overline{V \cap A} = A$, $\overline{U} \cap \overline{V} = \phi$. Since $A \subset \overline{V}$, U and $X - \overline{U}$ are disjoint open sets containing $\{x\}$ and A, respectively. Thus, the space is almost regular. \Box

Corollary 2.10. In a T_1 -space, weak θ -normality and almost β -normality implies κ -normality.

Proof. Let X be a T_1 weakly θ -normal, almost β -normal space. Then by Theorem 2.9, X is almost regular. By a result of Kohli and Das [9] that every almost regular weakly θ -normal space is κ -normal, X is κ -normal.

Corollary 2.11. In the class of T_1 , θ -normal spaces, every almost β -normal space is almost normal.

Proof. Let *X* be a T_1 space which is θ -normal as well as almost β -normal. By Theorem 5.16 of Kohli and Das[9], *X* is almost normal. \Box

Corollary 2.12. In the class of T_1 , paracompact spaces, every almost β -normal space is almost normal.

Proof. Since every paracompact space is θ -normal [8], the result holds by Corollary 2.11.

Recall that a space *X* is said to be *almost compact* [3] if every open cover of *X* has a finite subcollection, the closure of whose members covers *X*.

Corollary 2.13. An almost compact, almost β -normal, T_1 -space is κ -normal.

Proof. The proof is immediate from the result of Singal and Singal [14] that an almost regular almost compact space is κ -normal. \Box

Corollary 2.14. *A Lindelöf, almost* β *-normal,* T_1 *-space is* κ *-normal.*

Proof. Since an almost regular Lindelöf space is κ -normal [14], the proof is immediate. \Box

Remark 2.15. The T_1 axiom in the above theorem cannot be relaxed since there exist almost β -normal spaces which are not almost regular.

Example 2.16. Let $X = \{a, b, c\}$ and $\tau = \{\{a\}, \{c\}, \{a, c\}, \phi, X\}$. Then X is vacuously normal, thus almost β -normal but not almost regular as the regularly closed set $\{a, b\}$ and any point outside it cannot be separated by disjoint open sets.

Theorem 2.17. In the class of T_1 , semi-normal spaces, every almost β -normal space is regular.

Proof. Let *X* be a T_1 , semi-normal, and almost β -normal space. Let *A* be a closed subset of *X* and $x \notin A$. Since *X* is a T_1 -space, the singlton set $\{x\}$ is closed. So by semi-normality of *X*, there exists a regularly open set *U* such that $\{x\} \subset U \subset X - A$. Here F = X - U is a regularly closed set containing *A* with $x \notin F$. As *X* is an almost β -normal T_1 -space, *X* is almost regular by Theorem 2.9. Thus there exist disjoint open sets *V* and *W* such that $x \in V$ and $A \subset F \subset W$. Hence *X* is regular. \Box

The following theorem provides a characterization of almost β -normality.

Theorem 2.18. *For any topological space X, the following are equivalent:*

- 1. *X* is almost β -normal;
- 2. whenever $E, F \subseteq X$ are disjoint closed sets and E is regularly closed, there is an open set V such that $F = \overline{V \cap F}$ and $E \cap \overline{V} = \emptyset$;
- 3. whenever $E \subseteq X$ is closed, $U \subseteq X$ is regularly open, and $E \subseteq U$, there is an open set V such that $E = \overline{E \cap V} \subseteq \overline{V} \subseteq U$.

Proof. [(1) \Rightarrow (2)] Suppose that $E, F \subseteq X$ are disjoint closed sets and E is regularly closed. Since X is almost β -normal, there exist open sets U and V such that $E = \overline{U \cap E} \subseteq \overline{U}, F = \overline{V \cap F} \subseteq \overline{V}$, and $\overline{U} \cap \overline{V} = \emptyset$. Then $E \cap \overline{V} = \emptyset$.

 $[(2) \Rightarrow (1)]$ Suppose that $E, F \subseteq X$ are disjoint closed sets and E is regularly closed. By the assumption, there exists an open set V such that $F = \overline{V \cap F}$ and $E \cap \overline{V} = \emptyset$. Let U = int(E). Then $E = \overline{U \cap E}$ and $\overline{U} \cap \overline{V} = E \cap \overline{V} = \emptyset$.

 $[(1) \Rightarrow (3)]$ Suppose that *E* is closed, *U* is regularly open, and $E \subseteq U$. Since *U* is regularly open, $X \setminus U$ is regularly closed. Since *X* is almost β -normal, there are open sets *O* and *V* such that $X \setminus U = \overline{O \cap (X \setminus U)} \subseteq \overline{O}$, $E = \overline{V \cap E} \subseteq \overline{V}$, and $\overline{O} \cap \overline{V} = \emptyset$. Then $(X \setminus U) \cap \overline{V} = \emptyset$ which means that $\overline{V} \subseteq U$.

 $[(3) \Rightarrow (2)]$ Suppose that $E, F \subseteq X$ are disjoint closed sets and E is regularly closed. Then $F \subseteq X \setminus E$ and $X \setminus E$ is regularly open. By the hypothesis, there is an open set V such that $F = \overline{V \cap F} \subseteq \overline{V} \subseteq X \setminus E$. Then $\overline{V} \cap E = \emptyset$, as desired. \Box

The following result gives a decomposition of almost normality.

Theorem 2.19. A space is almost normal if and only if it is almost β -normal and κ -normal.

Proof. Let *X* be an almost β -normal and κ -normal space. Let *A* and *B* be two disjoint closed sets in *X* in which *A* is regularly closed. By almost β -normality of *X*, there exist disjoint open sets *U* and *V* such that $\overline{U} \cap \overline{V} = \phi$, $\overline{A \cap U} = A$ and $\overline{B \cap V} = B$. Thus $A \subset \overline{U}$ and $B \subset \overline{V}$. Here \overline{U} and \overline{V} are disjoint regularly closed sets . So by κ -normality, there exist disjoint open sets W_1 and W_2 such that $\overline{U} \subseteq W_1$ and $\overline{V} \subseteq W_2$. Hence *X* is almost normal. \Box

Corollary 2.20. In a semi-normal and κ -normal space the following statements are equivalent :

- 1. X is normal;
- 2. X is almost normal;
- 3. *X* is β -normal;

4. X is almost β -normal.

Proof. (1) \Rightarrow (3) \Rightarrow (4) and (1) \Rightarrow (2) \Rightarrow (4) are obvious. [(4) \Rightarrow (1)] Let X be semi-normal, κ -normal and almost β -normal space. We have to show X is normal. By Theorem 2.19, X is almost normal. Since every almost normal, semi-normal space is normal [13], X is normal.

Theorem 2.21. *Let X be a dense subspace of a product of metrizable spaces. Then X is almost normal if and only if X is almost* β *-normal.*

Proof. Since every dense subspace of any product of metrizable spaces is κ -normal ([2], [16]), by Theorem 2.19, the proof is immediate. \Box

It is known that, every β -normal space is α -normal, but in contrast almost β -normal spaces need not be α -normal which is evident from the Example 2.4 which is almost β -normal but not α -normal. The following Theorem provides a partial answer to the question: which almost β -normal spaces are α -normal ?

Theorem 2.22. *Every semi-normal, almost* β *-normal space is* α *-normal.*

Proof. Let *X* be a semi-normal, almost β -normal space. Let *A* and *B* be two disjoint closed sets in *X*. Thus $A \subset (X - B)$. By semi-normality, there exists a regularly open set *F* such that $A \subset F \subset (X - B)$. Now *A* and (X - F) are two disjoint closed sets in *X* in which X - F is a regularly closed set containing *B*. Thus by almost β -normality, there exist disjoint open sets *U* and *V* such that $\overline{U \cap A} = A$, $(\overline{X - F}) \cap \overline{V} = X - F$, and $\overline{U} \cap \overline{V} = \phi$. Here $A = \overline{U \cap A} \subset \overline{U}$ and $(X - F) = (\overline{X - F}) \cap \overline{V} \subset \overline{V}$. Thus *U* and $W = X - \overline{U}$ are two disjoint open sets such that $\overline{U \cap A} = A$ and $B \subset W$. Therefore, $\overline{W \cap B} = B$ and *X* is α -normal. \Box

The following examples show that a continuous image of an almost β -normal space need not be almost β -normal.

Example 2.23. Let *X* be the union of the set of integers \mathbb{Z} and two distinct one point sets *p* and *q* with the modified Fort topology as defined in Example 2.4 and let $Y = \{a, b, c, d\}$ with the topology defined in Example 2.3. Define a function $f : X \to Y$ by

$$f(x) = \begin{cases} c & ; & if \quad x \in \mathbb{Z} - \{0, 1\} \\ a & ; & if \quad x = 0 \\ b & ; & if \quad x = 1 \\ d & ; & otherwise \end{cases}$$

Then *f* is a continuous function from *X* into *Y*. It is clear that *X* is almost β -normal but *f*(*X*) is not.

Example 2.24. Let (X, τ) be a topological space which is not almost β -normal and let τ_D be the discrete topology on *X*. Define $f : (X, \tau_D) \rightarrow (X, \tau)$ by f(x) = x. Clearly, (X, τ_D) is almost β -normal and f is continuous, one-to-one, and onto.

Theorem 2.25. Suppose that X and Y are topological spaces, X is almost β -normal, and $f : X \rightarrow Y$ is onto, continuous, open, and closed. Then Y is almost β -normal.

Proof. Suppose that $E, F \subseteq Y$ are disjoint closed sets and E is regularly closed. Since f is continuous, $f^{-1}(E)$ and $f^{-1}(F)$ are disjoint closed sets. To see that $f^{-1}(E) = \overline{f^{-1}(\operatorname{int}(E))}$, suppose that $W \subseteq X$ is open such that $W \cap f^{-1}(E) \neq \emptyset$. Then f(W) is open in Y and $f(W) \cap E = f(W) \cap \operatorname{int}(E) \neq \emptyset$ which implies that $f(W) \cap \operatorname{int}(E) \neq \emptyset$. Hence, $W \cap f^{-1}(\operatorname{int}(E)) \neq \emptyset$ and so $f^{-1}(E) = \overline{f^{-1}(\operatorname{int}(E))}$. Since $f^{-1}(E) = \overline{f^{-1}(\operatorname{int}(E))}$, $f^{-1}(E)$ is a regularly closed set. So there exists an open set $U \subseteq X$ such that $f^{-1}(F) = \overline{f^{-1}(F) \cap U}$ and $\overline{U} \cap f^{-1}(E) = \emptyset$. Since $\overline{U} \cap f^{-1}(E) = \emptyset$, $f(\overline{U}) \cap E = \emptyset$. Also, note that f(U) is open and $f(\overline{U})$ is closed. Since $f(\overline{U})$ is a closed set containing f(U), $\overline{f(U)} \subseteq f(\overline{U})$. So $\overline{f(U)} \cap E = \emptyset$. It remains to show that $F = \overline{F} \cap f(U)$. To see this, let $y \in F$ and O be an open set containing y. Then $f^{-1}(y) \subseteq [f^{-1}(F) \cap f^{-1}(O)]$. Since $f^{-1}(F) \cap \overline{U}, f^{-1}(F) \cap U \cap f^{-1}(O) \neq \emptyset$. Hence, $F \cap f(U) \cap O = f(f^{-1}(F)) \cap f(U) \cap f(f^{-1}(O)) \supseteq f[f^{-1}(F) \cap U \cap f^{-1}(O)] \neq \emptyset$, as desired. \Box

References

- [1] A.V. Arhangel'skii, L. Ludwig, On α-normal and β-normal spaces, Comment. Math. Univ. Carolin. 42:3 (2001) 507–519.
- [2] R.L. Blair, Spaces in which special sets are z-embedded, Canad. J. Math. 28:4 (1976) 673-690.
- [3] Á. Császár, General Topology, Adam Higler Ltd, Bristol, 1978.
- [4] A.K. Das, Δ-normal spaces and decompositions of normality, Applied General Topology 10:2 (2009) 197–206.
- [5] A.K. Das, A note on spaces between normal and κ -normal spaces, Filomat 27:1 (2013) 85–88.
- [6] E. Ekici, On γ-normal spaces, Bull. Math. Soc. Sci. Math. Roumanie 50(98):3 (2007) 259–272.
- [7] L.N. Kalantan, π -normal topological spaces, Filomat 22:1 (2008) 173–181.
- [8] J.K. Kohli, A.K. Das, New normality axioms and decompositions of normality, Glasnik Mat. 37(57)(2002) 165–175.
- [9] J.K. Kohli, A.K. Das, On functionally θ -normal spaces, Applied General Topology, 6:1 (2005) 1–14.
- [10] K. Kuratowski, Topologie I, Hafner, New York, 1958.
- [11] M.N. Mukherjee, D. Mandal, On countably nearly paracompact spaces, Mat. Vesnik 66:3 (2014) 265–273.
- [12] E. Murtinova, A β-normal Tyconoff space which is not normal, Comment. Math. Univ. Carolin. 43:1 (2002) 159–164.
 [13] M.K. Singal, S.P. Arya, Almost normal and almost completely regular spaces, Glasnik Mat. 5(25) (1970) 141–152.
- [14] M.K. Singal, A.R. Singal, Mildly normal spaces, Kyungpook Math J. 13 (1973) 27-31.
- [15] E.V. Schepin, Real-valued functions, and spaces close to normal, Sib. Matem. Journ. 13:5 (1972) 1182–1196.
- [16] E.V. Schepin, On topological products, groups, and a new class of spaces more general than metric spaces, Soviet Math. Dokl. 17:1 (1976) 152-155.
- [17] L.A. Steen, J.A. Seebach Jr., Counterexamples in Topology, Springer Verlag, New york, 1978.
- [18] N.V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. 78:2 (1968) 103–118.