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ON A SINGULAR NONLINEAR ELLIPTIC
BOUNDARY-VALUE PROBLEM

A. C. LAZER AND P. J. MCKENNA

(Communicated by Barbara L. Keyfitz)

Abstract. We consider the singular boundary-value problem Au+p(x)u~7 = 0

in d, u | 9Í2 = 0 , where y > 0 . Under the assumption p(x) > 0 and certain

smoothness assumptions, we show that there exists a solution which is smooth

on £2 and continuous on Í2 .

1. Introduction

In this paper we consider the singular boundary-value problem

Í Au(x) + p(x)u(x)~7 = 0   xeSl

( } I u\dSl = 0,

where Q is a sufficiently regular bounded domain in R^, TV > 1, and p is

a sufficiently regular function which is positive in SI. In the case N = 1 , this

problem arises in certain problems in fluid mechanics and pseudoplastic flow [6],

[7]. The TV-dimensional problem (1) has been studied in [1] for general regions

and, in [2], under the assumption that Si is the open unit ball in R^ and

p(x) = q(\x\), where q is a continuous function which is defined continuous

and nonnegative on [0, 1). In [1], it is shown that solutions exist if SI is C ,

and estimates are given for the behavior of the solution as the boundary of SI

is approached. In particular, if y > 1, it is shown that solutions fail to be in

C'(Q).
Actually, the authors in [1] prove more general results for the existence of

solutions, but the above is the case where behavior near the boundary is studied.

In [1], the results are divided into two sections; first, the existence of solutions

is proved, by an upper-lower solution method, and later, in an extremely com-

plicated way, using localization near the boundary, the boundary behavior is

deduced.
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In this note we show that if Q has a regular boundary, p is regular on

Si, and y is any positive number, we can give a unified simple proof that

there is a unique solution of (1), positive on Si, which is in C +a(Si) n C(Si).

We emphasize that there is no restriction on the shape of Si. We also give

a necessary and sufficient condition that this solution have a finite Dirichlet

integral.

This unified proof is made possible by the choice of new upper and lower

solutions.

In this sense, we show that equation ( 1 ) can have a classical solution but not

a weak solution. Finally, we briefly discuss two cases not covered by the results

of [1], namely, the case where Si can have corners, such as a square, and the

case where p(x) is not assumed to be strictly positive on Si.

Theorem 1. Let QcRf, N > 1, be a bounded domain with smooth boundary

dSi (of class C2+a, 0 < a < 1). If p e Ca(Si),p(x) > 0 for all x e Q

and y > 0, then there exists a unique function ueC +a(Si) n C(Si) such that

u(x) > 0 for all x eSi and u is a solution of (1). If cpx denotes an eigenfunction

corresponding to the smallest eigenvalue A, of the problem Atp + kcp = 0, 4> \

dSi = 0 such that 4>x(x) > 0 on Si and y > 1, then there exist positive constants

bx and b2 such that bx<px(x)2,[x+y) < u(x) < b2cpx(x)2/{X+y) on H.

The proof of this theorem is the main result of [1].

Theorem 2. The solution u of Theorem 1 is in Wx'    if and only if y < 3. If

y > 1, then u is not in C (Si).

2. Proof of Theorem 1

As is well known,

V</»,(x)^0,     Vxe9f2.

Assume first that y > 1. In this case, let t = 2/(1 + y) and let ^(x)

where b > 0 is a constant. We have that

A*¥(x) + q(x, b)V(xfy = 0, xeSi,

where q(x, b) = bx+y[t(l - t) | V<^(x)|2 + tkxtpx(x)2]. Since 0 < t < 1 , it

follows from (2) that we can choose numbers bx and b2 with 0 < bx < b2

such that

(3) q(x, bx) <p(x) <q(x,b2),    Vx e Q.

For k = 1, 2, let uk(x) = bk<px(x)'. Since for x e Si

Auk(x) + p(x)uk(x)~y = [p(x)-q(x, bk)]uk~y(x),

it follows from (3) that

Awj(x) + p(x)ux(x)  y>0

= btpx(x)t,
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and

Au2(x) + p(x)u2(x)~y < 0

for all x e Si.

We claim that if u is continuous on Si, smooth on Si, and satisfies ( 1 ) and

u(x) > 0 on Si, then

ux(x) < u(x) < u2(x)

for all x e Si. Indeed, if the first inequality did not hold, then there would exist

an x0 in Q such that 0 < u(x0) < ux(x0) and the minimum of the continuous

functions u - ux on Si is assumed at x0. But according to the above, this

would imply that

A(w - w,)(x0) < p(x0)[ux(xoyy - u(x0)~y] < 0,

which is impossible since x0 is a point of minimum. This contradiction proves

the first inequality, and the proof of the second is similar.

For 0 < y, let ut = ecpx , where e > 0 is a small positive number to be

determined. If S > 0, then, for x eSi,

Aut(x) + p(x)[ut(x) + ô]~y = p(x)(e<j>x(x) + S)~y - e.kxcpx(x).

Therefore, since cpx \ dSi = 0, we may choose e > 0 and S0 > 0 such that if

0 < S < ô0 , then

(4) Au^(x) + p(x)[ut(x) + ô]~y > 0,    Vxeñ.

If y > 1, we let u(x) = w2(x) = b2<px(x)1. Clearly, if r50 is as above,

(5) AH*(x)-r-/?(x)[w*(x) + f5rî' <0,    VxeQ.

If y > 1, we also suppose that e > 0 is chosen so that w»(x) = e<px(x) <

u2(x) = u(x).

If 0 < y < 1, let s be chosen to satisfy the two inequalities

(6) 0<s<l, s(l + y)<2.

Let u*(x) = ccpx(x)s where c is a large positive constant to be chosen. For

x 6 Si we have

Au*(x) + p(x)u* (x)~y

= -4>x(x)s-2[\Vcpx(x)\2cs(l-s)-p(x)c~y4>1(x)2'([+y)s]-ckxs<Px(x)s.

Since the inequalities (6) hold, we can choose c > 0 so large that Au*(x) +

p(x)u*(x)~y < 0 for all x e Si. Therefore, if ¿0 is as above, then (5) holds

for 0 < S < â0 .

Since 0 < 5 < 1 and <px(x) = 0 for x e dSi, we can assume c is so large

that Ecpx(x) < ccpx(x)s. It follows that with both the definitions of m,(x) and

w*(x) given for y > 1 and the definitions of these functions when 0 < y < 1,

we have

(7) 0 < u.(x) < u (x),    VXGÍ2.
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Let ô be a fixed number, with 0 < ô < ôQ, and let k > 0 be so large

that the function f(x, £,) = kÇ + p(x)[ô +£]~y is strictly increasing in t\ for

0 < ¿; < M = max{«*(x)|x e Si} and x eSi. Let w(x) be a smooth function

such that

-Aw(x) + kw(x) = f(x, u*(x)),    xeSi
(8)
y {w\dSi = 0.

Since, according to (6), -A«*(x) + ku(x) > f(x, u(x)) for all x € Si, it

follows that -A(u - w)(x) + k(u(x) - w(x)) > 0 for all x e Si. Therefore,

since (u -w)\dSi = 0 and u - w e C(Si) n C2(f2), it follows that u(x) -

w(x) > 0 for all x e Si. Hence, it follows from (8) that

Aw(x) + kw(x) > f(x, w(x)),    Vx e Si
(9)

1 w\dSi = 0.

According to (5), we have

-Aut(x) + kut(x) < f(x, ut(x)),    Vx e Si

u„ \dSi = 0.

By the same type of argument as given above, it follows that if v(x) is a smooth

function such that

-Av(x) + kv(x) = f(x, w»(x)),    xeQ

v\dSi = 0,

then ut(x) < v(x) for x € Si, so

( -Av(x) + kv(x)<f(x,v(x))

{    ' \v\dSi = 0.

Since

-A(w -v) + k(w - v) = f(x, u) - f(x, u„) > 0,

we have

(11) v(x)<w(x),    VxeQ.

Since u and w are smooth on Si, it follows from (9), (10), and (11) and

the basic result on the method of subsolutions and supersolutions [4] that there

exists a smooth function z defined on Si such that

J -Az + kz = f(x, z) in Q

\ z|dQ = 0,

and ut(x) < v(x) < z(x) < w(x) < u*(x) for x eSi. This means that

Az(x) + p(x)[z(x) + of7 = 0,     xeQ
12)

1 z \dSi = o.
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Let {¿„}f be a sequence of numbers such that 0 < ôn+x < ôn < S0 for all

n > 1 and, for n > 1, let Zn(x) be a smooth positive solution of (12) when

ô = Sn such that w„(x) < Zn(x) < u(x) on Q. From (12) we have that

AZn(x)+p(x)[ôn+x+Zn(x)]-y > AZn(x)+p(x)[ôn + Zn(x)]-y = 0 for all x e Si.

We claim that Zn+X(x) > Zn(x) for all x e Si. Assuming the contrary, it

would follow that, since (Zn+X - Z ) \ dCl = 0, there would be a point x0 e Si

where Zn - Zn+X assumes a nonnegative maximum. But, from the above,

A(Z„ - Z„+1)(x0) > p(x0)([Sn+x + Zn+X(x0)fy - [Sn+X + Zn(x0)fy) > 0,

which is a contradiction.

Since Zn(x) < Zn+X(x) < u(x) for all xeQ, lim^^ Zn(x) = u(x) exists

for all x e Si and

(13) ut(x) <u(x) <u*(x)

for x e Q. We claim that u e C2+a(Si) and that

(14) Au(x) + p(x)u(x)~y = 0,        VxeSi.

Although this follows from more or less standard arguments, we sketch the

details. _

Let x0 e Si and let r > 0 be chosen so that B(x0, r) c Si, where 77(x0, r)

denotes the open ball of radius r centered at x0. Let *F be a C°° function

which is equal to 1 on 77(x0, r/2) and equal to 0 off 77(x0, r). We have

A(VZn) = 2VV.VZn+pn

for n > 1 , where pn is a term whose 7.°° norm is bounded independently of

n . Therefore, for n > 1, we have

*ZnA(VZn) = £bn.?^ + an,dx}

where bnj, j = 1, ... , n , and qn are terms bounded independently of n for

n > 1 . Integrating the above equation, we have that there exist constants cx > 0

and c2 > 0, independent of n , such that

/      \vvzn\2dx<cx( f      \vyzn\2dx)    +c2.
JB(x0,r) \JB(x0,r) J

From this, it follows that the L2(B(xQ, r))-norm of |V*FZn| is bounded in-

dependently of n. Hence, the L2(B(x0, r/2))-norm of |VZn| is bounded

independently of n . Let x¥x be a C°° function which is equal to 1 on

77(x0, r/4) and equal to 0 off 77(x0, r/2). We have, for n > 1 , A(vF1Zn) =

2V*¥x-VZn+pXn, where pXn is a term whose L°°(B(x0, r/2))-norm is bounded
2  2

independently of n . From standard elliptic theory, the W ' (B(x0, r/2))-norm
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2   2
of xYxZn is bounded independently of n and hence, the W ' (B(x0, r/4))-

norm of Zn is bounded independently of n. Since the Wx ' (B(xQ, r/4))-

norms of the components of VZn are bounded independently of n , it follows

from the Sobolev imbedding theorem that, if q = 2N/(N - 2) > 2 if N > 2

and q > 2 is arbitrary if N < 2, then the Lq(B(x0, r/4))-norm of |VZJ is

bounded independently of n . If *P2 is a C°° function which is equal to 1 on

77(x0, r/8) and equal to 0 off 77(x0, r/4), then Ax¥2Zfl = 2V4/2 • VZ„ + p2n

where p2n is bounded independently of n in L°°(77(x0, r/4)). Since the right-

hand side of the above equation is bounded in L9(B(x0, r/4)), independently

of n , the W 'q(B(x0, r/4))-norm of xY2Zn is also bounded independently of

n . Hence, the W 'q(B(x0, r/8))-norm of Zn is bounded independently of n .

Continuing the line of reasoning, after a finite number of steps, we find a num-

ber rx > 0 and qx > N/(l - a) such that the W2'q< (77(x0, r^-norm of Zn is

bounded independently of n . Hence, there is a subsequence of {Zn}^° , which

we may assume is the sequence itself, which converges in C +a(B(x0, rx)). If

6 is a C°° function which is equal to 1 on 77(x0, rx/2) and equal to 0 off

77 (x0, r,), then

A(0Z„) = 2VÖ • VZ„ + pn , where pn = 6AZn + ZnAd.

The right-hand side of the above equation converges in CQ(77(x0, r,)). So,

by Schauder theory, {6Zn}™ converges in C+Q(77(x0, r,)) and hence {Zn}^°

converges in C +a(77(x0, r,/2)). Since x0 e Si was arbitrary, this shows that

u e C2+a(Si). Clearly, (14) holds.

Since w„(x) < u(x) < u(x) for x e Si and ut \ dSi = u \ dSi = 0,

if xx e dSi, then lim^^^. u(x) = 0 = u(xx).  Since u is continuous at each

interior point of Si,  u e C(Si).

To prove the uniqueness of u, suppose that ü is also a function in C +a(Si)C\

C(Si) which is positive on Si such that Aû+p(x)û~y = 0 on Q and ü \ dSi =

0. If u ^ u, then we may assume that u-u assumes a positive value somewhere

in Si. This implies that u - u attains a positive maximum at a point x0eSi.

But A(u - u)(x0) = p(x0)[u(x0)~y - u(x0)~y] > 0, which is a contradiction.

Hence u = u. This concludes the proof of Theorem 1.

3. Proof of Theorem 2

To prove this theorem, we use the following:

Lemma.

/ (p\dx < oo
Jo.

if and only if r > -1.

Proof. Let x0 e dSi. By the smoothness of dSi, v/e may assume that x0 = 0

and that there exists a neighborhood U of x0 such that if V = UnSi, then V
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consists of points x = (x1, ... , x ) such that \xJ\ < r for 1 < j < N- 1 and

0 < xN < r and UndSi is the set of points x with |x;| < r for 1 < j < N-1

and xN = 0. Since 4>x(x) = 0 and |%(x) > 0 for x e dSi, we may assume

that r is so small that there exist constants cx > 0 and c2> 0 such that

(15) c,x   < <f>x(x) < c2x

for x e V. Since cpx is bounded below by a positive constant on any compact

subset of Si, the assertion of the lemma follows from (15) and a partition-of-

unity argument.

In the remainder of this paper, we modify the definition of u^ as follows:

If 0 < y < 1 , we define ut as before, while if 1 < y we set ut(x) = ux(x) =

bxcpx(x)'. It follows from what was shown above that in either case, if u is

the unique solution of (1) positive on Si, then (13) continues to hold for all

xeQ.

Suppose first that 1 < y < 3, so ut(x) = bx<px(x)', where t = 2/(1 + y).

Let the sequences {<5„}f and {Zn}^° be as above. Since m„(x) < Zn(x) for

xeQ and n > 1, it follows that

p(x)Zn(x)[Zn(x) + Snry < p(x)[Zn(x) + ôn]x~y

<p(x)[ut(x) + ân]x-y<Mu.(x)X-y,

for all xeQ, where M is the maximum of p(x) on Si. If r = 2(l-y)/(l+y),

then r > -1 so, by the lemma,

/ ut(x) ~ydx < oo.
Jn

Since for n > 1 ,

f \VZn\2dx= [ p(x)Zn(x)[Zn(x) + ônrydx.
Jn Ja

It follows that the W ' -norm of Zn is bounded independently of n . Therefore

some subsequence of {Zn}^° converges weakly in W ' (Si) to a function Z

in W '   . Since {Zn}^° converges pointwise to u in Q it is easy to see that

Z = u. Hence ue Wx'2(Si).

If 0 < 7 < 1 , then if

x e Sip(x)Zn(x)[Zn(x) + ¿J'7 < p(x)[Zn(x) + ôn]x-y

<p(x)[u(x) + ôn]x-y

where u*(x) = ccpx(x)s and 5 is a positive number satisfying the inequali-

ties (6). The above argument shows that the sequence {Zn}^° is bounded in

Wx'2(Si), and it follows that ue H^'2(Q).

Suppose now that y > 3 . In this case u(x) = b2cpx(x)1 where t = 2/(1 + y)

so t(l - y) < -1 . Since u(x) > u*(x) for x e Q and p(x) > m > 0 for all
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x e Q, it follows from the lemma that

(16) / p(x)u(x) ~ydx = oo.
Ja

Suppose, contrary to the assertion of the theorem, that u e W ' (Q). Since

it e C(Q) and u\dSi = 0, it follows that u e Wx'2(Si) [3, p. 147]. It follows

that there exists a sequence C°° functions {wn}^° having compact supports
1    2

contained in Q such that wn —> u in W ' (Si) as n -> oo. If for each n we

set w* = max(wn, 0), then w^ e Wx'2(Si), Vw* = Vwn where wn > 0,

and Vw* = 0 where wn < 0 [5]. From this it follows readily that {w„}™

converges to u in W ' . For n > 1 , w„(x)p(x)u(x)~y > 0 for all xeQ,

and some subsequence of {w*}™ converges to u almost everywhere on Q.

Therefore, if we replace {w^}^° by this subsequence it follows by (16) and

Fatou's Lemma that

■~y dx = 00.lim  / w^pu
n^°°Jn

r\,2,
Since Aw = -p(x)u     on Q and wn e W0 ' (Si) for n > 1 it follows that for

n> 1

Hence

/ Vw • Vw^dx = - I w^Audx = / w+npu ydx.
Jn Jn Jn

/ IVwl dx = lim  / Vu • Vw^dx = oo,
Jn n-+°° Jn

which contradicts the assumption that ueWx' (Si).

To prove the final statement, we note that if x0 e dSi and n denotes the

inner normal to dSi at x0 , then <73,(x0) = 0, and

lim ^° + ^ = lim U^^)-4>x(Xq) = v, (   ) ,g>Qm
s^0+ S s^0+ S ''     °

If y > 1, then t = 2/(1 + y) < 1  and, as shown above, for xeQ, u(x) >

bxtpx(x)', where bx > 0. Since u(x0) = 0, it follows that, for 5 > 0,

u(x0 + sñ) - u(xQ) ^ + sñ)t.l(px(x0 + sñ)

Therefore
u(Xr, + sn) -u(xA)

hm -—--A11- = +CO.
j->0+ 5

so u is not in C (Si). This proves the theorem.

4. Remarks and generalizations

In this section, we collect some obvious generalizations, where our method of

proof gives additional information. All of our results can be written in terms of
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a more general nonlinearity f(x, u) with the appropriate abstract hypotheses

on /, but we leave this as an exercise for the reader.

(i) In case Q and p are radially symmetric, our proof shows that u is

radially symmetric.

(ii) We do not know if it is always the case that u does not belong to

C (Si) if y = 1. The following simple example shows that, in general, u does

not belong to C'(Q) when 7=1.

Let N = 1,  7 = 1, Q = (0, 1), and y = 1 . In this case,

u (x) + u(x)~~   = 0

for 0 < x < 1 , u(0) = u(l) = 0, and u(x) > 0 for 0 < x < 1 .

It follows that

u (x) ¡2 + logw(x) = c,

where c is a constant. Since logu(x) —> -oo as x —► 0 or x —► 1, it follows

that u —► oo as x —> 0 or x —> 1. Hence u does not belong to C'(Q).

(iii) A careful examination of our proof shows that additional results are

available in the case where p(x) is not bounded away from zero.

If, instead of p(x) > c3> 0 uniformly on Q, we assume that p(x)cpx

> c3 > 0 uniformly on Q, where ô satisfies 0 < ô < y + 1, then instead

of ux(x) = bx(f>x(x)', we choose ux(x) = £,</>,(x)(2+ '^l+Y', then we still have

ux(x) < u2(x), and

A«,(x) + p(x)ux(x)~y > 0.

Thus we can show that bxcpx(x){2+ô)l{X+y) < u(x) < b2cpx(x)2/{x+y) on Q for bx

small and b2 large.

(iv) In the case where the region Q has corners, our method of proof still

gives some information. If one assumes that the region is a square in the plane,

one can show that if there exist constants cx and c2 such that, near the bound-

ary,

c, </j(x)/(|V0,|)2<c2

where, as before, cpx is the first eigenfunction of the Laplacian for this region,

then the conclusion of Theorem 1 applies.

We cannot give good boundary estimates in the case where the function

p(x) does not vanish at the corners.

(v) We can also give regularity results in the case where p(x) goes to infinity

at the boundary, at least in the case where the rate of growth is not too great.

If there exists a ô so that s = (2 - S)/(y + 1) is less than one, and

the function p(x) satisfies c4 > p(x)cpx > c3 > 0 uniformly on Q for some

positive constants c3  and c4, then, by choosing u2(x) = b2cpx(x)  ~ ,

we can conclude that ô1<^1(x)2/(1+'') < u(x) < b2<px(xf~S)/{x+y) on Q, for bx

small and b2 large.
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