On a singular nonlinear semilinear elliptic problem

Junping Shi*
Department of Mathematics, Brigham Young University, Provo, Utah 84602-6539, U.S.A.
Miaoxin Yao
Department of Mathematics, Brigham Young University, Provo, Utah 84602-6539, U.S.A., and Department of Mathematics, Tianjin University, Tainjin 300072, P.R. China
(MS received 2 May 1997)

We consider the singular boundary value problem

$$
-\Delta u+K(x) u^{-\alpha}=\lambda u^{p} \text { in } \Omega, \quad u=0 \text { on } \partial \Omega .
$$

We study the existence, uniqueness, regularity and the dependency on parameters of the positive solutions under various assumptions.

1. Introduction

Let Ω be a bounded domain in $\mathbf{R}^{\mathbf{n}}, n \geqq 2$, with $C^{2, \beta}$ boundary $\partial \Omega$, where $\beta \in(0,1)$. We consider a singular boundary value problem

$$
\begin{align*}
-\Delta u+K(x) u^{-\alpha}=\lambda u^{p} & \text { in } \Omega, \\
u>0 & \text { in } \Omega, \tag{1.1}\\
u=0 & \text { on } \partial \Omega .
\end{align*}
$$

where $K(x) \in C^{2, \beta}(\bar{\Omega}), \alpha, p \in(0,1)$ and λ is a real parameter. Such singular elliptic problems arise in the contexts of chemical heterogeneous catalysts, nonNewtonian fluids and also the theory of heat conduction in electrically conducting materials, see $[3,5,8,9]$ for a detailed discussion.

Obviously (1.1) cannot have a solution $u \in C^{2}(\bar{\Omega})$ if $K(x)$ is not vanishing near $\partial \Omega$. However, under various appropriate assumptions on $K(x)$, we will obtain classical solutions of (1.1) for λ belonging to a certain range, and we will also obtain some uniqueness criteria. Here a classical solution is a solution u of (1.1) which belongs to $C^{2}(\Omega) \cap C(\bar{\Omega})$ with $u>0$ in Ω. We also study the boundary behaviour of solutions of (1.1), and we will show that the solution u of (1.1) lies in a certain Hölder class.

The special case when $K(x)$ is negative and $\lambda=0$ has been studied by several authors. The existence and uniqueness of the solution were established by Crandall, Rabinowitz and Tartar [6], Del Pino [7], Gomes [10] and Lazer and McKenna

[^0][13], while in $[6,7,12,13]$, the regularity and the boundary behaviour of solutions were investigated.
For $\lambda \neq 0$, if $K(x) \equiv 1$, Zhang [17] proved that (1.1) has a positive solution u_{λ} when λ is large enough; if $K(x) \equiv-1$, M. M. Coclite and G. Palmieri [4] proved that if $0<p<1$, then (1.1) has at least one solution u_{λ} for all $\lambda \geqq 0$ and $p \geqq 1$, there exists $\tilde{\lambda}>0$ such that (1.1) has a solution u_{λ} for $\lambda \in[0, \tilde{\lambda})$ and no solution for $\lambda>\tilde{\lambda}$.

If $K(x) \equiv 0$, it is well known that there exists a unique solution u_{λ} of (1.1) in $C^{2, \beta}(\Omega) \cap C^{2}(\bar{\Omega})$ if and only if $\lambda>0$. Thus throughout this paper we assume that $K(x) \not \equiv 0$ in $\bar{\Omega}$.

The main results of this paper are stated in the following theroems, where

$$
\begin{aligned}
K^{*}= & \max _{x \in \bar{\Omega}} K(x) \\
K_{*}= & \min _{x \in \bar{\Omega}} K(x) \\
E= & \left\{u \in C^{2, \beta}(\Omega) \cap C^{0}(\bar{\Omega}): u^{-\alpha} \in L^{1}(\Omega)\right\}, \\
d(x)= & \operatorname{dist}(x, \partial \Omega) .
\end{aligned}
$$

Theorem 1.1. Let $K^{*}<0\left[\right.$ respectively $\left.K^{*}=0\right]$; then:
(i) (1.1) has one and only one solution $u_{\lambda} \in E$ for any $\lambda \in \mathbf{R}[$ respectively $\lambda \geqq 0]$;
(ii) u_{λ} is increasing with respect to λ;
(iii) $c_{1} d(x) \leqq u_{\lambda}(x) \leqq c_{2} d(x)$ for any $x \in \bar{\Omega}$, and some $c_{1}, c_{2}>0$ independent of x;
(iv) $u_{\lambda} \in C^{1, \gamma}(\bar{\Omega})$, where $\gamma=1-\alpha$.

Theorem 1.2. Let $K_{*}>0$; then:
(i) there exists $a \lambda_{*}>0$ such that (1.1) has at least one classical solution u_{λ} for $\lambda>\lambda_{*}$, and (1.1) has no classical solution for $\lambda<\lambda_{*}$;
(ii) for $\lambda>\lambda_{*}$, (1.1) has a maximal solution $\bar{u}_{\lambda} \in E$ and \bar{u}_{λ} is increasing with respect to λ;
(iii) for $\lambda>\lambda_{*}, \quad c_{1} d(x) \leqq \bar{u}_{\lambda}(x) \leqq c_{2} d(x)$ for any $x \in \bar{\Omega}$, and some $c_{1}, c_{2}>0$ independent of x;
(iv) $\bar{u}_{\lambda} \in C^{1, \gamma}(\bar{\Omega})$, where $\gamma=1-\alpha$.

Theorem 1.3. Let $K^{*}>0>K_{*}$, then:
(i) there exists $a \lambda_{*}>0$ such that (1.1) has at least one solution $u_{\lambda} \in E$ for any $\lambda>\lambda_{*}$;
(ii) for $\lambda>\lambda_{*}, u_{\lambda}$ is increasing with respect to λ;
(iii) for $\lambda>\lambda_{*}, \quad c_{1} d(x) \leqq u_{\lambda}(x) \leqq c_{2} d(x)$ for any $x \in \bar{\Omega}$, and some $c_{1}, c_{2}>0$ independent of x;
(iv) $u_{\lambda} \in C^{1, \gamma}(\bar{\Omega})$, where $\gamma=1-\alpha$.

Remark 1.4. (a) In contrast to the case $K(x)<0$, the uniqueness of the solution does not hold when $K(x)>0$. In [14], the present authors and Ouyang studied the equation (1.1) with $K(x) \equiv 1$, and $\Omega=B^{n}$, the unit ball in \mathbf{R}^{n}. We showed that (1.1) has at least two solutions for $\lambda>\lambda_{*}$ and sufficiently close to λ_{*} by a bifurcation method, and that $\lambda=\lambda_{*}$ is a turning point on a solution curve.
(b) The bounds of solution in Theorem 1.2 or Theorem 1.3 may not hold for all the solutions of (1.1). In [14], the present authors and Ouyang showed that when
$K(x) \equiv 1$, and $\Omega=B^{n}$, the unit ball in \mathbf{R}^{n}, (1.1) has a solution u_{λ} such that

$$
u_{\lambda}(x)=\frac{\partial u_{\lambda}}{\partial n}(x)=0 \quad \text { for any } x \in \partial \Omega,
$$

and

$$
c_{1} d(x)^{2 /(1+\alpha)} \leqq u_{\lambda}(x) \leqq c_{2} d(x)^{2 /(1+\alpha)} .
$$

It is interesting to know, for the general bounded smooth domain, whether some solutions with vanishing normal derivative exist, and if they exist, whether the normal derivative vanishes at isolated points or on the entire boundary. We conjecture that such a positive solution exists for any bounded smooth domain, and in general, the normal dervative only vanishes at isolated points.

The paper is organised as follows. Some preliminary lemmas are stated and proved in Section 2. In Section 3, we give the proofs of all the theorems.

2. Preliminaries

Let $\Psi_{1}(x)$ denote the normalized positive eigenfunction corresponding to the first eigenvalue λ_{1} of the problem

$$
\begin{aligned}
-\Delta u & =\lambda u & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Then, as is well known, $\lambda_{1}>0$ and $\Psi_{1} \in C^{2}(\bar{\Omega})$. Moreover, we have the following property of Ψ_{1} :
Lemma 2.1 [13]. Let $s>0$; then

$$
\int_{\Omega}\left[\Psi_{1}(x)\right]^{-s} d s<\infty \quad \text { if and only if } s<1
$$

With the regularity theory and this lemma, we have $\Psi_{1} \in E$. We will also need the following result from [17], which is proved by using a super-subsolution method.
Lemma 2.2 [17]. Suppose that $K(x) \equiv 1$; then there exists a $\tilde{\lambda}>0$ such that (1.1) has a solution $u_{\lambda} \in E$ for all $\lambda>\tilde{\lambda}$. Moreover, $u_{\lambda}(x) \geqq C(\lambda)\left(\Psi_{1}\right)^{2 /(1+\alpha)}(x)$ for $x \in \bar{\Omega}$ and $\lambda>\tilde{\lambda}$.

Next we establish a comparison lemma, which is proved by using a method motivated by method II in [2, p. 103]; see also [1, Lemma 3.3].

Lemma 2.3. Suppose that $f: \Omega \times \mathbf{R}^{+} \rightarrow \mathbf{R}$ is a continuous function such that $s^{-1} f(x, s)$ is strictly decreasing for $s>0$ at each $x \in \Omega$. Let $w, v \in C(\bar{\Omega}) \cap C^{2}(\Omega)$ satisfy:
(a) $\Delta w+f(x, w) \leqq 0 \leqq \Delta v+f(x, v)$ in Ω;
(b) $w, v>0$ in Ω and $w \geqq v$ on $\partial \Omega$;
(c) $\Delta v \in L^{1}(\Omega)$.

Then $w \geqq v$ in $\bar{\Omega}$.
Proof. We argue by contradiction. If $w \geqq v$ is not true, then there exist $\varepsilon_{0}, \delta_{0}>0$ and a ball $\mathrm{B} \subset \subset \Omega$ such that

$$
\begin{equation*}
v(x)-w(x) \geqq \varepsilon_{0}, \quad x \in \mathrm{~B} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathrm{B}} v w\left(\frac{f(x, w)}{w}-\frac{f(x, v)}{v}\right) d x \geqq \delta_{0} . \tag{2.2}
\end{equation*}
$$

Let

$$
M=\max \left\{1,\|\Delta v\|_{L^{1}(\Omega)}\right\}
$$

and

$$
\varepsilon=\min \left\{1, \varepsilon_{0}, \frac{\delta_{0}}{4 M}\right\} .
$$

Let θ be a smooth function on \mathbf{R} such that $\theta(t)=0$ if $t \leqq \frac{1}{2}, \theta(t)=1$ if $t \geqq 1, \theta(t) \in(0,1)$ if $t \in\left(\frac{1}{2}, 1\right)$, and $\theta^{\prime}(t) \geqq 0$ for $t \in \mathbf{R}$. Then, for $\varepsilon>0$, define the function $\theta_{\varepsilon}(t)$ by

$$
\theta_{\varepsilon}(t)=\theta\left(\frac{t}{\varepsilon}\right), \quad t \in \mathbf{R} .
$$

It then follows from (a) and the fact that $\theta_{\varepsilon}(t) \geqq 0$ for $t \in \mathbf{R}$ that

$$
(w \Delta v-v \Delta w) \theta_{\varepsilon}(v-w) \geqq v w\left(\frac{f(x, w)}{w}-\frac{f(x, v)}{v}\right) \theta_{\varepsilon}(v-w) \quad \text { in } \Omega .
$$

On the other hand, by the continuity of w, v and θ_{ε}, and the fact that $w \geqq v$ on $\partial \Omega$, it is easy to see that there exists a subdomain Ω^{*} with smooth boundary, such that $B \subset \Omega^{*} \subset \subset \Omega$ satisfying that $v(x)-w(x)<(\varepsilon / 2)$, for all $x \in \Omega \backslash \Omega^{*}$. Then we have

$$
\int_{\Omega^{*}}(w \Delta v-v \Delta w) \theta_{\varepsilon}(v-w) d x \geqq \int_{\Omega^{*}} v w\left(\frac{f(x, w)}{w}-\frac{f(x, v)}{v}\right) \theta_{\varepsilon}(v-w) d x .
$$

Denote

$$
\Theta_{\varepsilon}(t)=\int_{0}^{t} s \theta_{\varepsilon}^{\prime}(s) d s, \quad t \in \mathbf{R}
$$

then it is easy to verify that

$$
\begin{equation*}
0 \leqq \Theta_{\varepsilon}(t) \leqq 2 \varepsilon, t \in \mathbf{R} \quad \text { and } \quad \Theta_{\varepsilon}(t)=0, \quad \text { if } t<\frac{\varepsilon}{2} \tag{2.3}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
& \int_{\Omega^{*}}(w \Delta v-v \Delta w) \theta_{\varepsilon}(v-w) d x \\
& =\int_{\partial \Omega^{*}} w \theta_{\varepsilon}(v-w) \frac{\partial v}{\partial n} d s-\int_{\Omega^{*}}(\nabla v \cdot \nabla w) \theta_{\varepsilon}(v-w) d x \\
& \quad-\int_{\Omega^{*}} w \theta_{\varepsilon}^{\prime}(v-w) \nabla v \cdot(\nabla v-\nabla w) d x-\int_{\partial \Omega^{*}} v \theta_{\varepsilon}(v-w) \frac{\partial w}{\partial n} d s \\
& \quad+\int_{\Omega^{*}}(\nabla w \cdot \nabla v) \theta_{\varepsilon}(v-w) d x+\int_{\Omega^{*}} v \theta_{\varepsilon}^{\prime}(v-w) \nabla w \cdot(\nabla v-\nabla w) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\Omega^{*}} v \theta_{\varepsilon}^{\prime}(v-w)(\nabla w-\nabla v) \cdot(\nabla v-\nabla w) d x+\int_{\Omega^{*}}(v-w) \theta_{\varepsilon}^{\prime}(v-w) \nabla v \cdot(\nabla v-\nabla w) d x \\
& \leqq \int_{\Omega^{*}} \nabla v \cdot \nabla\left(\Theta_{\varepsilon}(v-w)\right) d x \\
& =\int_{\partial \Omega^{*}} \Theta_{\varepsilon}(v-w) \frac{\partial v}{\partial n} d s-\int_{\Omega^{*}} \Theta_{\varepsilon}(v-w) \Delta v d x \\
& \leqq 2 \varepsilon \int_{\Omega^{*}}|\Delta v| d x \quad(\text { by }(2.3)) \\
& \leqq 2 \varepsilon M<\frac{\delta_{0}}{2}
\end{aligned}
$$

But we have

$$
\begin{aligned}
\int_{\Omega^{*}} v w\left(\frac{f(x, w)}{w}-\frac{f(x, v)}{v}\right) \theta_{\varepsilon}(v-w) d x & \geqq \int_{\mathrm{B}} v w\left(\frac{f(x, w)}{w}-\frac{f(x, v)}{v}\right) \theta_{\varepsilon}(v-w) d x \\
& =\int_{\mathrm{B}} v w\left(\frac{f(x, w)}{w}-\frac{f(x, v)}{v}\right) d x \quad(\text { by }(2.1)) \\
& \geqq \delta_{0} \quad(\text { by }(2.2)),
\end{aligned}
$$

which is a contradiction. Thus the lemma is proved.
To end this section, we state a lemma which is proved in [16]. For the proof, readers are referred to [16, Theorem 2].

Lemma 2.4. Suppose that function f satisfies:
(F1) $f: \bar{\Omega} \times(0,+\infty) \rightarrow \mathbf{R}$ is Hölder continuous with exponent $\beta \in(0,1)$ on each compact subset of $\bar{\Omega} \times(0,+\infty)$;
(F2)

$$
\limsup _{s \rightarrow+\infty}\left(s^{-1} \max _{x \in \bar{\Omega}} f(x, s)\right)<\lambda_{1}
$$

(F3) for each $t>0$, there exists a constant $D(t)>0$ such that

$$
f(x, r)-f(x, s) \geqq-D(t)(r-s) \quad \text { for } x \in \bar{\Omega} \quad \text { and } \quad r \geqq s \geqq t ;
$$

(F4) there exist a $\delta>0$ and an open subset Ω_{0} of Ω such that

$$
\min _{x \in \bar{\Omega}} f(x, s) \geqq 0 \quad \text { for } s \in(0, \delta)
$$

and

$$
s^{-1} f(x, s) \rightarrow+\infty \quad \text { as } s \rightarrow 0^{+} \quad \text { uniformly for } x \in \Omega_{0}
$$

Then for any non-negative function $\varphi_{0}(x) \in C^{2, \beta}(\partial \Omega)$, the problem

$$
\begin{align*}
\Delta u+f(x, u)=0 & \text { in } \Omega, \\
u>0 & \text { in } \Omega, \tag{2.4}\\
u=\varphi_{0} & \text { on } \partial \Omega,
\end{align*}
$$

has at least one positive solution $u(x)$ of problem (2.4) such that, for any compact subsets G of $\Omega \cup\left\{x \in \partial \Omega: \varphi_{0}(x)>0\right\}, u(x) \in C^{2, \beta}(G) \cap C^{0}(\bar{\Omega})$.

3. Proofs of main theorems

In this section, we will always assume that $f_{\lambda}(x, u)=\lambda u^{p}-K(x) u^{-\alpha}$.
Proof of Theorem 1.1. (i) (Existence) Let $\varphi_{0}(x) \equiv 0$; then we can apply Lemma 2.4 to obtain the existence of a solution $u_{\lambda}(x) \in C^{2, \beta}(\Omega) \cap C^{0}(\bar{\Omega})$ for any $\lambda \in \mathbf{R}$ (respectively $\lambda \geqq 0$).
(ii) (Uniqueness) If $\lambda \leqq 0, f_{\lambda}(x, u)$ is decreasing in u on $(0, \infty)$. Thus, by a standard argument of the maximum principle, we obtain the uniqueness of u_{λ} for $\lambda \leqq 0$.

If $\lambda>0$, we have that $u^{-1} f_{\lambda}(x, u)$ is strictly decreasing in u for $u>0$ and $x \in \bar{\Omega}$. Hence, if u_{1} and u_{2} are two solutions to (1.1), then $u_{1} \equiv u_{2}$ by Lemma 2.3 (noting that $\Delta u_{i} \in L^{1}(\Omega)$ by (iii) below.) Therefore the uniqueness of u_{λ} for $\lambda>0$ is also proved.
(iii) (Dependence on λ) First, we assume that $\lambda_{1}<\lambda_{2} \leqq 0$ and $u_{\lambda_{1}}, u_{\lambda_{2}}$ are the corresponding unique solutions to (1.1). We prove by contradiction that $u_{\lambda_{1}}(x) \leqq u_{\lambda_{2}}(x)$. Suppose not; then

$$
A=\left\{x \in \Omega: u_{\lambda_{1}}(x)>u_{\lambda_{2}}(x)\right\} \neq \varnothing .
$$

The function $w(x)=u_{\lambda_{1}}(x)-u_{\lambda_{2}}(x)$ satisfies

$$
\begin{aligned}
\Delta w(x) & =\lambda_{2} u_{\lambda_{2}}^{p}-\lambda_{1} u_{\lambda_{1}}^{p}+K(x) u_{\lambda_{1}}^{-\alpha}-K(x) u_{\lambda_{2}}^{-\alpha} \\
& \geqq 0, \quad x \in A,
\end{aligned}
$$

and

$$
w(x)=0 \quad x \in \partial A .
$$

By the maximum principle, $w(x)<0$ in A, which is a contradiction.
Secondly, we assume that $0 \leqq \lambda_{1}<\lambda_{2}$ and $u_{\lambda_{1}}, u_{\lambda_{2}}$ are the corresponding unique solutions to (1.1). Since $u_{\lambda}(x) \geqq c_{1} \Psi_{1}(x)$, it is easy to see that $\Delta u_{\lambda_{1}} \in L^{1}(\Omega)$ by Lemma 2.1,

$$
\Delta u_{\lambda_{2}}-K(x) u_{\lambda_{2}}^{-\alpha}+\lambda_{2} u_{\lambda_{2}}^{p}=0<\Delta u_{\lambda_{1}}-K(x) u_{\lambda_{1}}^{-\alpha}+\lambda_{2} u_{\lambda_{1}}^{p}
$$

for $x \in \Omega$, and $u_{\lambda_{1}}(x)=u_{\lambda_{2}}(x)$ on $\partial \Omega$. Therefore, by Lemma 2.3,

$$
u_{\lambda_{1}}(x) \leqq u_{\lambda_{2}}(x) \quad \text { in } \bar{\Omega} .
$$

Moreover, by the maximum principle, we have $u_{\lambda_{1}}(x)<u_{\lambda_{2}}(x), x \in \Omega$, for both cases. So u_{λ} is increasing with respect to λ.
(iv) (Bounds of solutions) First, let $v(x)=c \zeta(x)$, where $\zeta(x)$ is the solution of the
problem:

$$
\begin{aligned}
\Delta \zeta & =K(x) \quad x \in \Omega \\
\zeta(x) & =0 \quad x \in \partial \Omega
\end{aligned}
$$

Then, for $\lambda<0$ when $K^{*}<0$, or $\lambda=0$ when $K^{*}=0$, we have

$$
\begin{align*}
-\Delta v-f_{\lambda}(x, v) & =-\Delta v+K(x) v^{-\alpha}-\lambda v^{p} \\
& =-c K(x)+K(x)(c \zeta)^{-\alpha}-\lambda(c \zeta)^{p} \\
& \leqq-c K(x)+\frac{K(x)}{2} c^{-\alpha \zeta^{-\alpha}}+\frac{K^{*}}{2} c^{-\alpha \zeta^{-\alpha}}-\lambda c^{p \zeta^{p}} \\
& =K(x) c^{-\alpha \zeta^{-\alpha}}\left(\frac{1}{2}-c^{1+\alpha \zeta^{\alpha}}\right)+c^{-\alpha \zeta^{-\alpha}}\left(\frac{K^{*}}{2}-\lambda c^{p+\alpha \zeta p+\alpha}\right) \\
& \leqq 0 \tag{3.1}
\end{align*}
$$

for $c>0$ small enough. Fixing $c_{0}>0$ such that (3.1) holds, we claim that $u_{\lambda}(x) \geqq c_{0} \zeta(x)$. Suppose not; then $A=\left\{x \in \Omega: u_{\lambda}(x)<c_{0} \zeta(x)\right\}$ is not empty, and we have

$$
\Delta\left[u_{\lambda}(x)-c_{0} \zeta(x)\right] \leqq-\left[f_{\lambda}\left(x, u_{\lambda}\right)-f_{\lambda}\left(x, c_{0} \zeta\right)\right] \leqq 0, \quad x \in A
$$

and

$$
u_{\lambda}(x)-c_{0} \zeta(x)=0, \quad x \in \partial A,
$$

which gives $u_{\lambda}(x) \geqq c_{0} \zeta(x), x \in A$, a contradiction. Therefore, $u_{\lambda}(x) \geqq c_{0} \zeta(x) \geqq c_{1} d(x)$ for some $c_{1}>0$. For any $\lambda \geqq 0$, we fix $\lambda_{1}<0$ when $K^{*}<0$, or $\lambda_{1}=0$ when $K^{*}=0$; then

$$
u_{\lambda}(x) \geqq u_{\lambda_{1}}(x) \geqq c_{1} d(x)
$$

since u_{λ} is increasing with respect to λ. Therefore, for any $\lambda \in \mathbf{R}$ when $K^{*}<0$ or any $\lambda \geqq 0$ when $K^{*}=0$, we have $u_{\lambda}(x) \geqq c_{1} d(x)$. In particular, $u_{\lambda}^{-\alpha} \in L^{1}(\Omega)$ by Lemma 2.1 and hence $u_{\lambda} \in E$.

Next, we prove that $u_{\lambda}(x) \leqq c_{2} d(x)$. Since u_{λ} is increasing with respect to λ, it suffices to prove the case $\lambda>0$. Our following method is similar to and motivated by the proof in [12, pp. 1024-5]. Let $B_{r}(x)$ denote the ball in \mathbf{R}^{n} with radius r and centred at the x, and w_{K} be the unique solution of

$$
\begin{aligned}
\Delta w+w^{-\alpha}+\lambda w^{p}=0 & \text { in } B_{K}(0) \backslash B_{1}(0), \\
w>0 & \text { in } B_{K}(0) \backslash B_{1}(0), \\
w=0 & \text { on } \partial\left(B_{K}(0) \backslash B_{1}(0)\right),
\end{aligned}
$$

where $K>1$ will be determined later. By the uniqueness of the solution, we know that w_{K} is radially symmetric and satisfies

$$
\begin{gather*}
w^{\prime \prime}+\frac{n-1}{r} w^{\prime}+w^{-\alpha}+\lambda w^{p}=0 \quad \text { in }(1, K) \tag{3.2}\\
w(1)=w(K)=0
\end{gather*}
$$

Since $w_{K}(x) \geqq c_{1} d(x)$, then we can obtain that both $w_{K}^{\prime}(1)$ and $w_{K}^{\prime}(K)$ are finite by integrating (3.2). Consequently,

$$
w_{K}(x) \leqq C \min \{K-|x|,|x|-1\},
$$

for any $x \in B_{K}(0) \backslash B_{1}(0)$ and some $C>0$. By the smoothness of $\partial \Omega$, there exists $\delta>0$, $K>0$ such that for any $x_{0} \in \Omega_{\delta}=\{x \in \Omega: d(x) \leqq \delta\}$, we have $\Omega \subset\left(B_{2 K \delta}(y) \backslash B_{\delta}(y)\right)$, and

$$
d\left(x_{0}\right)=\left|x_{0}-y\right|-\delta,
$$

for some $y \notin \Omega$. Let

$$
v(x)=c_{0} w_{K}\left(\frac{x-y}{\delta}\right), \quad x \in \Omega
$$

then $v(x)$ satisfies

$$
\Delta v-K_{*} v^{-\alpha}+\lambda v^{p} \leqq 0, \quad x \in \Omega,
$$

provided $c_{0}>\Lambda$, where Λ depends on $\alpha, \delta, K\left(\right.$ not on $\left.x_{0}\right)$. On the other hand, we have

$$
\Delta u_{\lambda}-K_{*} u_{\lambda}^{-\alpha}+\lambda u_{\lambda}^{p} \geqq 0, \quad x \in \Omega
$$

and $\Delta u_{\lambda} \in L^{1}(\Omega)$. Since $u^{-1}\left(\lambda u^{p}-K_{*} u^{-\alpha}\right)$ is strictly decreasing in u for $u>0$ and $x \in \bar{\Omega}$, then by Lemma 2.3,

$$
u_{\lambda}(x) \leqq v(x), \quad x \in \Omega .
$$

In particular,

$$
u_{\lambda}\left(x_{0}\right) \leqq c_{0} w_{K}\left(\frac{x_{0}-y}{\delta}\right) \leqq c_{2} d\left(x_{0}\right)
$$

for any $x_{0} \in \Omega_{\delta}$ and some $c_{2}>0$ independent of x_{0}. Therefore, $u_{\lambda}(x) \leqq c_{2} d(x)$ for $x \in \Omega$.
(v) (Regularity) By Green's formula, we have

$$
\begin{aligned}
u_{\lambda}(x) & =\int_{\Omega} G(x, y)\left[K(y) u^{-\alpha}(y)-\lambda u^{p}(y)\right] d y, \quad x \in \Omega \\
\nabla u_{\lambda}(x) & =\int_{\Omega} G_{x}(x, y)\left[K(y) u^{-\alpha}(y)-\lambda u^{p}(y)\right] d y, \quad x \in \Omega
\end{aligned}
$$

If $x_{1}, x_{2} \in \Omega$, then

$$
\begin{aligned}
\left|\nabla u_{\lambda}\left(x_{1}\right)-\nabla u_{\lambda}\left(x_{2}\right)\right| \leqq & \int_{\Omega}\left|G_{x}\left(x_{1}, y\right)-G_{x}\left(x_{2}, y\right)\right| \cdot\left|K(y) u^{-\alpha}(y)-\lambda u^{p}(y)\right| d y \\
\leqq & \int_{\Omega}\left|G_{x}\left(x_{1}, y\right)-G_{x}\left(x_{2}, y\right)\right| \cdot\left|K(y) u^{-\alpha}(y)\right| d y \\
& +|\lambda| \int_{\Omega}\left|G_{x}\left(x_{1}, y\right)-G_{x}\left(x_{2}, y\right)\right| \cdot u^{p}(y) d y \\
\equiv & I+I I
\end{aligned}
$$

Since $c_{1} d(x) \leqq u_{\lambda}(x) \leqq c_{2} d(x)$, we have

$$
I \leqq c d^{1-\alpha}\left(x_{1}, x_{2}\right)
$$

by the proof of $\left[\mathbf{1 2}\right.$, Theorem 1]. On the other hand, $u_{\lambda} \in C^{0}(\bar{\Omega})$; then

$$
I I \leqq c d\left(x_{1}, x_{2}\right)
$$

by the standard regularity theory (see for example [11]). Therefore, $u_{\lambda} \in C^{1, \gamma}(\bar{\Omega})$, where $\gamma=1-\alpha$. This completes the proof of Theorem 1.1.
Proof of Theorem 1.2. (i) (Existence) By Lemma 2.2, for $\mu>\tilde{\lambda}$, there is a solution $v_{\mu} \in E$ to the problem

$$
\begin{aligned}
-\Delta v+v^{-\alpha}=\mu v^{p} & \text { in } \Omega, \\
v>0 & \text { in } \Omega, \\
v=0 & \text { on } \partial \Omega
\end{aligned}
$$

Let

$$
\lambda=\mu\left(K^{*}\right)^{(1-p) /(1+\alpha)}, \quad \underline{u}_{\lambda}=\left(K^{*}\right)^{1 /(1+\alpha)} v_{\mu}
$$

then $\underline{u}_{\lambda} \in E$ is a solution of

$$
\begin{aligned}
-\Delta v+K^{*} v^{-\alpha}=\lambda v^{p} & \text { in } \Omega, \\
v>0 & \text { in } \Omega \\
v=0 & \text { on } \partial \Omega
\end{aligned}
$$

Now we consider an approximate problem $P_{k}(\lambda)$ of (1.1) as follows,

$$
\begin{aligned}
-\Delta v+K(x) v^{-\alpha} & =\lambda v^{p} \\
& \text { in } \Omega, \\
v & =\frac{1}{k}
\end{aligned} \quad \text { on } \partial \Omega,
$$

where $k=1,2, \ldots$. It is easy to verify that $v_{k}(x)=\underline{u}_{\lambda}(x)+(1 / k)$ is a subsolution to $P_{k}(\lambda)$. On the other hand, by Lemma 2.4, there exists a solution $w \in C^{2, \beta}(\bar{\Omega})$ to the problem

$$
\begin{array}{cl}
-\Delta w=\lambda w^{p} & \text { in } \Omega \\
w>0 & \text { in } \Omega \\
w=1 & \text { on } \partial \Omega .
\end{array}
$$

It is clear that w is a supersolution of $P_{1}(\lambda)$. Moreover, since

$$
\begin{gathered}
\Delta v_{1}+\lambda v_{1}^{p} \geqq 0 \geqq \Delta w+\lambda w^{p} \quad \text { in } \Omega, \\
v_{1}=w \quad \text { on } \partial \Omega,
\end{gathered}
$$

and $\Delta v_{1} \in L^{1}(\Omega)$, it follows from Lemma 2.3 that

$$
1 \leqq v_{1}(x) \leqq w(x) \quad \text { for } x \in \bar{\Omega}
$$

Thus, by the standard super- and subsolution argument, there exists a solution $u_{\lambda}^{(1)} \in C^{2, \beta}(\bar{\Omega})$ of $P_{1}(\lambda)$ such that $v_{1}(x) \leqq u_{\lambda}^{(1)} \leqq w(x)$. Similarly, taking $u_{\lambda}^{(1)}$ and v_{2} as a
pair of super- and subsolutions for $P_{2}(\lambda)$, we conclude that there exists a solution $u_{\lambda}^{(2)} \in C^{2, \beta}(\bar{\Omega})$ of $P_{2}(\lambda)$ such that $v_{2}(x) \leqq u_{\lambda}^{(2)}(x) \leqq u_{\lambda}^{(1)}(x)$.

Repeating the above arguments, we obtain a sequence $\left\{u_{\lambda}^{(i)}\right\}$ which is decreasing in i, for $i=1,2, \ldots$, and is uniformly bounded from below by \underline{u}_{λ} in $\bar{\Omega}$. Thus, as in the proof of Lemma 2.4 (see [16]), let

$$
u_{\lambda}(x)=\lim _{i \rightarrow \infty} u_{\lambda}^{(i)}(x), \quad x \in \bar{\Omega}
$$

then by a standard argument using the Schauder-type estimates and the regularity theory (see [11]), we conclude that u_{λ} is a solution of (1.1) in E if $\lambda>\tilde{\lambda}\left(K^{*}\right)^{(1-p) /(1+\alpha)}$.
(ii) (Existence of the maximal solution) We observe the problem

$$
\begin{align*}
-\Delta w=\lambda w^{p} & \text { in } \Omega, \\
w>0 & \text { in } \Omega, \tag{3.3}\\
w=0 & \text { on } \partial \Omega,
\end{align*}
$$

has a unique solution w_{λ} for any $\lambda>0$ by Lemmas 2.3 and 2.4. We claim that for any classical solution u_{λ} of (1.1) we have

$$
u_{\lambda} \leqq w_{\lambda} .
$$

If $u_{\lambda} \in E$, then $\Delta u_{\lambda} \in L^{1}(\Omega)$. By Lemma 2.3, we have $u_{\lambda} \leqq w_{\lambda}$. If $u_{\lambda} \notin E$, Lemma 2.3 is not applicable. But we can still use the proof of lemma 2.3 to prove it. In fact, if $S=\left\{u_{\lambda}>w_{\lambda}\right\}$ is not empty, then for any $x \in S, u_{\lambda}(x)>w_{\lambda}(x) \geqq c d(x)$, for some $c>0$ independent of x, since $w_{\lambda} \in C^{2, \beta}(\bar{\Omega})$ and $\partial w_{\lambda} / \partial n<0$ for any $x \in \partial \Omega$. On the other hand, u_{λ} satisfies equation (1.1), then $\left|\Delta u_{\lambda}(x)\right| \leqq c d(x)^{-\alpha}$. Therefore $\Delta u_{\lambda} \in L^{1}(S)$. Now let $f(x, u)=\lambda u^{p}, w=w_{\lambda}$ and $v=u_{\lambda}$; we can repeat the proof of Lemma 2.3 word by word, only replacing the definition of M by

$$
M=\min \left\{1,\left\|\Delta u_{\lambda}\right\|_{L^{1}(S)}\right\} .
$$

Note that $\Theta(v-w)=0$ if $x \notin S$, so

$$
\int_{\Omega^{*}} \Theta(v-w) \Delta v d x \leqq 2 \varepsilon \int_{S}|\Delta v| d x,
$$

in the proof of Lemma 2.3. The other part of the proof remains the same. So we still have a contradiction, and the claim is proved.

Let $\Omega_{j}=\{x \in \Omega: d(x)>(1 / j)\}, j=1,2, \ldots$, and w_{j} be the solution of

$$
\begin{aligned}
-\Delta v+K(x) w_{j-1}^{-\alpha} & =\lambda w_{j-1}^{p} & & \text { in } \Omega_{j}, \\
v & =w_{j-1} & & \text { in } \bar{\Omega} \backslash \Omega_{j},
\end{aligned}
$$

for $j=1,2,3, \ldots$, with $w_{0}=w_{\lambda}$ defined in (3.3). Let u_{λ} be a classical solution of (1.1). By the maximum principle, we have

$$
u_{\lambda}(x) \leqq w_{j+1}(x) \leqq w_{j}(x) \leqq w_{0}(x), \quad x \in \bar{\Omega} .
$$

Furthermore, for any compact subset $G \subset \subset \Omega, w_{j} \in C^{2, \beta}(G)$ for j large enough, and $\left\{w_{j}\right\}$ is bounded from below by u_{λ}. Thus, similar to (i), the function

$$
\bar{u}_{\lambda}(x)=\lim _{j \rightarrow \infty} w_{j}(x)
$$

is a solution of (1.1), and for any $u_{\lambda}, \bar{u}_{\lambda} \geqq u_{\lambda}$. Therefore \bar{u}_{λ} is the maximal solution of (1.1). By (i), we have proved that for $\lambda>\tilde{\lambda}\left(K^{*}\right)^{(1-p) /(1+\alpha)}$, (1.1) has a maximal solution \bar{u}_{λ}.
(iii) (Nonexistence when λ is small) Since $K_{*}>0$, then there exists a $k(\lambda)>0$ such that $f_{\lambda}(x, u) \leqq k(\lambda) u$ for $x \in \bar{\Omega}$ and $u>0$. Moreover, $k(\lambda)$ can be chosen such that $k(\lambda) \rightarrow 0$ if $\lambda \rightarrow 0$. Suppose that u_{λ} is a solution of (1.1); then

$$
\lambda_{1}(\Omega) \int_{\Omega} u_{\lambda}^{2}(x) d x \leqq \int_{\Omega}\left|\nabla u_{\lambda}(x)\right|^{2} d x=\int_{\Omega} u_{\lambda}(x) f_{\lambda}\left(x, u_{\lambda}\right) d x \leqq k(\lambda) \int_{\Omega} u_{\lambda}^{2}(x) d x
$$

where $\lambda_{1}(\Omega)$ is the first eigenvalue of $-\Delta$ in Ω. Therefore, (1.1) has a classical solution only if $\lambda>\lambda_{*}$, for some positive constant λ_{*}.
(iv) (Dependence on λ) Let

$$
H=\{\mu>0:(1.1) \text { has a classical solution with } \lambda=\mu\}
$$

and $\lambda_{*}=\inf \{\mu>0: \mu \in H\}$. By (i), $H \neq \varnothing$, and by (iii), $\lambda_{*}>0$. Let $\lambda_{1} \in H$, and $\bar{u}_{\lambda_{1}}$ be the corresponding maximal solution of (1.1) for $\lambda=\lambda_{1}$. Then for any $\lambda_{2}>\lambda_{1}$, $\Delta \bar{u}_{\lambda_{1}}+\lambda_{2} \bar{u}_{\lambda_{1}}^{p} \geqq 0$ in Ω. By Lemma 2.3, $\bar{u}_{\lambda_{1}} \leqq w_{\lambda_{2}}$ in $\bar{\Omega}$. By the same iteration scheme as in (ii), just replacing u_{λ} by $\bar{u}_{\lambda_{1}}$, one can prove that there is a solution $u_{\lambda_{2}}$ of (1.1) with $\lambda=\lambda_{2}$ such that $\bar{u}_{\lambda_{1}} \leqq u_{\lambda_{2}} \leqq w_{\lambda_{2}}$. Therefore, $\lambda_{2} \in H$, and $H \supset\left(\lambda_{*}, \infty\right)$. Moreover, by (ii), for any $\lambda_{2}>\lambda_{1}>\lambda_{*}, \bar{u}_{\lambda_{2}} \geqq \bar{u}_{\lambda_{1}}$. By the maximum principle, we have $\bar{u}_{\lambda_{1}}<\bar{u}_{\lambda_{2}}$.
(v) (Bounds of solutions and regularity) From the above proof, we have

$$
\underline{u}_{\lambda}(x) \leqq u_{\lambda}(x) \leqq \bar{u}_{\lambda}(x) \leqq w_{\lambda}(x)
$$

for $\lambda>\lambda_{*}$. Then from Lemma 2.2 and that $w_{\lambda}(x) \leqq c_{2} d(x)$, we obtain the bounds for w_{λ}

$$
c_{1} d(x)^{2 /(1+\alpha)} \leqq u_{\lambda}(x) \leqq c_{2} d(x),
$$

and $\bar{u}_{\lambda}(x) \leqq c_{2} d(x)$. To prove the lower bound for \bar{u}_{λ}, let $\lambda_{*}<\lambda_{2}<\lambda_{1}, \bar{u}_{\lambda_{1}}$ and $\bar{u}_{\lambda_{2}}$ be the corresponding maximal solutions of (1.1) for $\lambda=\lambda_{1}$ and λ_{2}. Then we have

$$
\Delta\left(\bar{u}_{\lambda_{1}}-\bar{u}_{\lambda_{2}}\right)+\lambda_{1}\left(\bar{u}_{\lambda_{1}}^{p}-\bar{u}_{\lambda_{2}}^{p}\right)-K(x)\left(\bar{u}_{\lambda_{1}}^{-\alpha}-\bar{u}_{\lambda_{2}}^{-\alpha}\right)+\left(\lambda_{1}-\lambda_{2}\right) \bar{u}_{\lambda_{2}}^{p}=0 .
$$

Since $\bar{u}_{\lambda_{1}}(x) \geqq \bar{u}_{\lambda_{2}}(x)$ by the monotonicity of \bar{u}_{λ}, then $\Delta\left(\bar{u}_{\lambda_{1}}-\bar{u}_{\lambda_{2}}\right)<0$ for any $x \in \Omega$. Also, $v=\bar{u}_{\lambda_{1}}-\bar{u}_{\lambda_{2}}$ is continuous up to $\partial \Omega$, and $\partial \Omega$ satisfies an interior sphere condition at any $x_{0} \in \partial \Omega$. Therefore, by the remark following the proof of the Strong Maximum Principle in [11, p. 34], we have, for any $x_{0} \in \Omega$,

$$
\liminf _{x \rightarrow x_{0}} \frac{v(x)}{\left|x-x_{0}\right|}=c\left(x_{0}\right)>0
$$

where the angle between the vector $x-x_{0}$ and the normal at x_{0} is less than $(\pi / 2)-\delta$ for some fixed $\delta>0$. Moreover, from the proof in [12, p. 34], we can see that $c\left(x_{0}\right)$ can be chosen continuously depending on x_{0}, hence there exists a $c(\Omega)>0$, such that for any $x \in \Omega_{\delta}=\{x \in \Omega: d(x) \leqq \delta\}$,

$$
v(x) \geqq c(\Omega)\left|x-x_{0}\right| \geqq c(\Omega) d(x)
$$

for some $x_{0} \in \partial \Omega$. Therefore $\bar{u}_{\lambda_{1}}(x)-\bar{u}_{\lambda_{2}}(x) \geqq c(\Omega) d(x)$. In particular, for any $\lambda>\lambda_{*}$, $\bar{u}_{\lambda}(x) \geqq c_{1} d(x)$. As long as the bounds of \bar{u}_{λ} are established, the regularity can be
proved in the same way as that of Theorem 1.1. We omit the details here. Notice that $\bar{u}_{\lambda} \in C^{1, \beta}(\bar{\Omega})$ and our above arguments imply that $\partial \bar{u}_{\lambda} / \partial n$ exists and is negative for any $x_{0} \in \partial \Omega$. This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. (i) (Existence) We first prove that the problem $P_{k}(\lambda)$ has a solution. Since $K^{*}>0>K_{*}$, then by Theorem 1.2, there exists a $\lambda_{*}>0$, such that for $\lambda>\lambda_{*}$, the problem

$$
\begin{aligned}
&-\Delta v+K * v^{-\alpha}=\lambda v^{p} \\
& \text { in } \Omega, \\
& v>0 \\
& \text { in } \Omega, \\
& v=0 \\
& \text { on } \partial \Omega .
\end{aligned}
$$

has a maximal solution $v_{\lambda} \in E$. Moreover, $v_{k}=v_{\lambda}+(1 / k)$ is a subsolution of $P_{k}(\lambda)$. On the other hand, the problem

$$
\begin{aligned}
-\Delta w+K_{*} w^{-\alpha} & =\lambda w^{p} & & \text { in } \Omega, \\
w & >0 & & \text { in } \Omega, \\
w & =\frac{1}{k} & & \text { on } \partial \Omega,
\end{aligned}
$$

has a solution w_{k} for any $k \in \mathbf{N}$, by Lemma 2.4. Also, w_{k} is a supersolution of $P_{k}(\lambda)$. Since

$$
\Delta w_{k}+\lambda w_{k}^{p} \leqq 0 \leqq \Delta v_{k}+\lambda v_{k}^{p},
$$

and $v_{k}=w_{k}$ on $\partial \Omega, \Delta v_{k} \in L^{1}(\Omega)$, then by Lemma 2.3,

$$
v_{k} \leqq w_{k} \quad \text { in } \bar{\Omega} .
$$

Therefore, by the standard super- and subsolution argument, there exists a minimal solution $u_{\lambda}^{(1)}$ of $P_{1}(\lambda)$, satisfying $v_{1} \leqq u_{\lambda}^{(1)} \leqq w_{1}$. Similarly, taking $u_{\lambda}^{(1)}$ and v_{2} as a pair of super- and subsolutions for $P_{2}(\lambda)$, we conclude that there exists a minimal solution $u_{\lambda}^{(2)} \in C^{2, \beta}(\bar{\Omega})$ of $P_{2}(\lambda)$ such that $v_{2}(x) \leqq u_{\lambda}^{(2)}(x) \leqq u_{\lambda}^{(1)}(x)$.

Repeating the above arguments, we obtain a sequence $\left\{u_{\lambda}^{(i)}\right\}$ which is decreasing in i, for $i=1,2, \ldots$. Therefore, similar to the proof of Theorem 1.2(i), we obtain a solution $u_{\lambda}(x)=\lim _{i \rightarrow \infty} u_{\lambda}^{(i)}(x)$, and $v_{\lambda} \leqq u_{\lambda} \leqq w_{1}$.
(ii) (Dependence on λ) Let $\lambda_{*}<\lambda_{1}<\lambda_{2}, \bar{u}_{\lambda_{1}}$ and $\bar{u}_{\lambda_{2}}$ be the corresponding solutions of (1.1) for $\lambda=\lambda_{1}$ and λ_{2} which we obtain in (i). We observe that for any $k \geqq 1, u_{\lambda_{2}}^{(k)}$ is a supersolution of $P_{k}\left(\lambda_{1}\right)$, and

$$
u_{\lambda_{2}}^{(k)} \geqq v_{\lambda_{2}}+\frac{1}{k} \geqq v_{\lambda_{1}}+\frac{1}{k} \quad \text { in } \bar{\Omega} .
$$

Therefore $u_{\lambda_{2}}^{(k)} \geqq u_{\lambda_{1}}^{(k)}$, since $u_{\lambda_{1}}^{(k)}$ is the minimal solution of $P_{k}\left(\lambda_{1}\right)$ which satisfies $u_{\lambda_{1}}^{(k)} \geqq v_{\lambda_{1}}+(1 / k)$. Therefore we must have $u_{\lambda_{1}} \leqq u_{\lambda_{2}}$.
(iii) (Bounds of solutions) This should come directly from the fact that

$$
v_{\lambda} \leqq u_{\lambda} \leqq w_{1}
$$

and the bounds of the solutions in Theorems 1.1 and 1.2.

Acknowledgment

The authors would like to thank Professor Tiancheng Ouyang for warm encouragement and helpful suggestions during the preparation of this paper. This work was done when the second author visited the Department of Mathematics, Brigham Young University in 1996-7, and he would like to thank BYU for their hospitality.

References

1 A. Ambrosetti, H. Brezis and G. Cerami. Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122 (1994), 519-43.
2 H. Brezis and S. Kamin. Sublinear elliptic equations in \mathbf{R}^{n}. Manuscripta Math. 74 (1992), 87-106.
3 A. Callegari and A. Nashman. A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J. Appl. Math. 38 (1980), 275-81.
4 M. M. Coclite and G. Palmieri. On a singular nonlinear Dirichlet problem. Comm. Partial Differential Equations 14 (1989), 1315-27.
5 D. S. Cohen and H. B. Keller. Some positive problems suggested by nonlinear heat generators. J. Math. Mech. 16 (1967), 1361-76.

6 M. G. Crandall, P. H. Rabinowitz and L. Tartar. On a Dirichlet problem with a singular nonlinearity. Comm. Partial Differential Equations 2 (1977), 193-222.
7 M. Del Pino. A global estimate for the gradient in a singular elliptic boundary value problem. Proc. Roy. Soc. Edinburgh Sect. A 122 (1992), 341-52.
8 J. I. Diaz, J. M. Morel and L. Oswald. An elliptic equation with singular nonlinearity. Comm. Partial Differential Equations 12 (1987), 1333-44.
9 W. Fulks and J. S. Maybee. A singular nonlinear equation. Osaka Math. J. 12 (1960), 1-19.
10 S. M. Gomes. On a singular nonlinear elliptic problem. SIAM J. Math. Anal. 17 (1986), 1359-69.
11 D. Gilberg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order, 2nd edn (Berlin: Springer, 1983).
12 C. Gui and F. Lin. Regularity of an elliptic problem with a singular nonlinearity. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 1021-9.
13 A. C. Lazer and P. J. McKenna. On a singular nonlinear elliptic boundary value problem. Proc. Amer. Math. Soc. 3 (1991), 720-30.
14 T. Ouyang, J. Shi and M. Yao. Exact multiplicity of positive solutions for a singular differential equation (Preprint, 1996).
15 C. A. Stuart. Existence and approximation of solutions of nonlinear elliptic equations. Math. Z. 147 (1976), 53-62.

16 J. Shi and M. Yao. Positive solutions of elliptic equations with singular nonlinearity (submitted, 1996).
17 Z. Zhang. On a Dirichlet problem with a singular nonlinearity. J. Math. Anal. 194 (1995), 103-13.

[^0]: * Current Address: Department of Mathematics, Tulane University, New Orleans, Louisiana 70118, U.S.A.

