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Abstract: This paper presents a formal description and analysis of an SIR (involving susceptible-

infectious-recovered subpopulations) epidemic model in a patchy environment with vaccination

controls being constant and proportional to the susceptible subpopulations. The patchy environment

is due to the fact that there is a partial interchange of all the subpopulations considered in the model

between the various patches what is modelled through the so-called travel matrices. It is assumed

that the vaccination controls are administered at each community health centre of a particular patch

while either the total information or a partial information of the total subpopulations, including

the interchanging ones, is shared by all the set of health centres of the whole environment under

study. In the case that not all the information of the subpopulations distributions at other patches

are known by the health centre of each particular patch, the feedback vaccination rule would have a

decentralized nature. The paper investigates the existence, allocation (depending on the vaccination

control gains) and uniqueness of the disease-free equilibrium point as well as the existence of at

least a stable endemic equilibrium point. Such a point coincides with the disease-free equilibrium

point if the reproduction number is unity. The stability and instability of the disease-free equilibrium

point are ensured under the values of the disease reproduction number guaranteeing, respectively,

the un-attainability (the reproduction number being less than unity) and stability (the reproduction

number being more than unity) of the endemic equilibrium point. The whole set of the potential

endemic equilibrium points is characterized and a particular case is also described related to its

uniqueness in the case when the patchy model reduces to a unique patch. Vaccination control laws

including feedback are proposed which can take into account shared information between the various

patches. It is not assumed that there are in the most general case, symmetry-type constrains on the

population fluxes between the various patches or in the associated control gains parameterizations.

Keywords: epidemic model; irreducible matrix; Metzler matrix; disease transition and transmission

matrices; decentralized control; disease-free and endemic equilibrium points; Moore–Penrose

pseudoinverse; next generation matrix; patchy environment; vaccination controls

1. Introduction

Usually, populations mutually interact through migrations and immigrations to and from other

environments. Therefore, the study of more general epidemic models based on interacting subsystems,

patches or frame-worked in patchy environments is of a major interest. See, for instance [1–8], and

references therein. Then, the implementation of decentralized treatment or vaccination strategies in
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health centres [9] is of interest, so as to increase their efficiency, by taking into account not only the

fixed population assigned to them but also the available information about the fluctuant population

associated with migration and punctual travelling. It can be pointed out that the topic of Decentralized

Control is very important in a variety of complex problems where control decisions have to be locally

taken for the integrated subsystems due to a lack of full information on the coupling dynamics from

and to the remaining coupled subsystems taking part of the whole dynamic systems [10–12], the first

one concerning with decentralized control while the two last ones are concerned with positivity. In [13],

some useful numerical tools are given concerning the non-singularity of perturbed matrices which

are used in this paper. Background literature on dynamic systems, including its role on epidemic

modelling, is given in [14–19]. In this context, typical situations which need relevant attention when

dealing with epidemic models, thinking of their usefulness in their practical implementation in health

centers are:

(a) The implementation of mixed constant and feedback controls with eventual alternative

controller parameterizations and supervisory switching actions between them according to

optimization trade-off criteria on the vaccine costs, or their availability, and the infection evolution

through time [15,20]. The supervisory scheme chooses online the best appropriate controller

parameterization that minimizes the loss function. These considerations could be also of potential

applicability interests in the cases of quarantine evaluation on certain parts of the population [17],

or occurring transfers from infectious to susceptible individuals [21].

(b) The need for a development of adequate strategies for online either commissioning data [22], or

intervention strategies [23], or even the programming of useful strategies for vaccine procurement

in due time towards its application to the population [24].

(c) The design of control strategies to fight against the epidemic spreading on multiplex networks

which are subject to nonlinear mutual interaction [25], or in cases when the vaccination [16,26–28]

is imperfect so that certain amounts of vaccinated susceptible subpopulation are not, in fact,

removed from the susceptible subpopulation and transferred to the recovered one.

It can be pointed out that patch models have also been used for description of diseases spreading

in the real world. In particular, these kind of models have been used to simulate and predict the spatial

spreading of infectious diseases. For instance, it is concluded in [29] that the analysis the disease

dynamics by considering the effective distances leads to understand complex contagion mechanisms in

multiscale networks. The performed analysis showed that network and flux information are sufficient

to predict the dynamics and the arrival times. Finally, it was pointed out that the study could be

extended to other contagion phenomena, such as activated bio invasion or the spread of rumors. On the

other hand, an operational forecast system was developed and verified in [30] that can successfully

predict the spatial transmission of influenza in the United States at the state and county levels. On the

other hand, we point out that there are other epidemic problems which involve couplings of dynamics

between different compartments and subsystems like, for instance, when there are combined diseases

and/or the influence of vectors in their propagation. See, for instance [31]. The designed system

included processes of surveillance data from multiple locations, forecast accuracy for onset week,

peak week, and peak intensity. This paper is focused on the study of the disease-free and endemic

equilibrium points as well as the global stability in a patchy environment with multiple patches

when there are travelling populations coming into and leaving the various patches. Vaccination

strategies are proposed so that each health centre at a particular patch can have and use some certain

crossed shared complete or partial information from the remaining patches. It is not assumed, in the

most general case, that there are symmetry-type constraints related to the mutual interchanges of

populations between pairs of patches or in the control gain parameterizations. The paper is organized

as follows. Section 2 describes the proposed SIR epidemic model in a patchy environment of n

patches under vaccination control laws which consist of constant and proportional to the susceptible

subpopulation actions and which are implemented at each compartment of the patchy structure.
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The model has travel matrices which take into account the acquisitions and loses of the subpopulations

from the other patches due to populations travelling interchanges between each particular patches.

The complete model is described in the presence of a feedback vaccination law which contains, in

general, constant and feedback linear information on the susceptible subpopulations. It is assumed, in

the most general case, that each community health centre can have either a total, a partial, or none

information about the susceptible subpopulations of the remaining patches. Such an information can

be suitably used, if desired, to generate the whole vaccination control law. Such a law might take into

account at each patch not only the subpopulation information of such a concrete patch but, eventually,

a total or a partial information of the remaining patches in the whole disposal. These above cases

related to the control synthesis rely on the well-known frameworks of centralized control, partially

decentralized control, or (fully) decentralized control which are usually invoked in classical Control

Theory research [10], especially when the controlled system is complex or distributed in patches which

can be physically distributed [10,18,19]. Section 2 also studies the non-negativity of the solutions

with initial conditions in the first orthant of the state space and the allocation and uniqueness of the

disease-free equilibrium point. Section 3 characterizes the basic reproduction number of the disease

by defining the next generation matrix and using its spectral radius as well as the local and global

stability and instability properties of the disease-free equilibrium point according to the value of the

disease reproduction number compared to unity. The disease-free equilibrium point is calculated

as being explicitly dependent on the disease parameters in the model and the control gains. Special

particular results are focused on in the cases when some of the relevant travel matrices are irreducible.

The endemic equilibrium points are also studied. It is proved that there is at least one endemic

equilibrium which is positive and stable (then attainable, that is, allocated within the first orthant

of the state space) if the reproduction number equals or exceeds unity. Such an equilibrium point is

confluent with the disease- free one if the reproduction number is unity. It is seen, in particular, that if

the infectious travel matrix is irreducible, then either all the infectious subpopulation are zero or none

of them is zero. This is a very relevant result since with such a kind of conditions, it can be argued that

the infectious subpopulations are non-zero at any patches for any endemic equilibrium point. Parallel

results are observed in cases when the susceptible travel matrix is irreducible. The characterization

of the whole set of endemic equilibrium points is described via the Moore–Penrose pseudoinverse

matrix tools [32] by defining a linear algebraic system which contains a partial information of the

potential existing set of endemic equilibrium points by neglecting the influence of the quadratic terms

associated with the coefficient transmission rates. A complementary nonlinear equation system which

is informative about the quadratic terms taking account from the contacts susceptible-infectious in all

the patches is then coupled to the above linear system as an extra constraint. If such an algebraic system

is compatible indeterminate then there are infinitely many endemic equilibrium solutions including

the attainable and un-attainable ones. Section 4 is devoted to the study of the proposed vaccination

controls and their implementation in a fully or partly decentralized control context. In particular, the

proportional vaccination to the susceptible subpopulation at each patch can be applied only on the

susceptible of that patch by taking into account the susceptible subpopulations of those of the other

patches which supply it with such an information. The main objective is to distribute the whole set of

available vaccines among all the community health centres by sharing such an information. Another

potential strategy can be the implementation of vaccination control strategies at each particular health

centre of a concrete patch not only on its assigned recorded susceptible but on the travelling susceptible

subpopulations coming into it from other patches. Simulated Examples are given and discussed in

Section 5. Finally, conclusions end the paper. The proofs of some of the involved results of Section 3

are given in the Appendices A and B.

Notation

n = {1 , 2 , ... , n}, ei is the i-th unity Euclidean canonical vector of Rn and In is the n-th

identity matrix.
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R+ = R0+ ∪ {0}; R0+ {z ∈ R:z ≥ 0} are the sets of positive and non-negative real

numbers, respectively.

Z+ = Z0+ ∪ {0}; Z0+ {z ∈ R:z ≥ 0} are the sets of positive and non-negative integer

numbers, respectively.

A ∈ Rn×n is a Metzler matrix, denoted by A ∈ Mn×n
E , if all its off-diagonal entries

are non-negative.

A≻ 0 (in words, A is non-negative) means that the real matrix A =
(
aij

)
has non-negative entries;

A ≻ 0 (in words, A is positive) means that aij ≥ 0; ∀i, j ∈ n and there is some (i, j) ∈ n × n such that

aij > 0; and A ≻≻ 0 (in words, A is strictly positive) means that all the entries of the real matrix or real

vector A are positive. Similar notations are kept for vectors being non-negative (all the components

are non-negative), positive (if non-negative with at least one positive component), and strictly positive

(all the components are positive).

A≻B, respectively A ≻ B, respectively, A ≻≻ B means that A − B≻0, respectively A − B ≻ 0,

respectively, A − B ≻≻ 0. On the other hand, A ≺ 0 is identical to −A ≻ 0, and A ≺ B to

B ≻ A. Similar considerations stand “mutatis–mutandis” for the various notations with the symbols

“≺”, “≺≺”.

ei is the i-th canonical Euclidean vector of the real space Rr whose i-th canonical is unity where

the dimension r depends on context.

The superscripts T and † stand for transpose and Moore–Penrose pseudoinverses, respectively.

If A is a square real non-singular matrix then the transpose of the inverse, identical to inverse of the

transpose is denoted by A−T .

The symbols ∨ and ∧ stand for logic disjunction and conjunction, respectively.

If A =
(

Aij

)
is a real matrix |A | =

( ∣∣Aij

∣∣). If A = (A1 , A2 , .... , An)
T is a real vector, then

|A| = (|A1| , |A2| , .... , |An|)
T .

If A is a square matrix then ρ(A) is its spectral radius, ‖ A‖2 is the ℓ2 (or spectral) norm and

λmax(A), and respectively, λmin(A) is its maximum, and respectively, minimum eigenvalue provided

that it is real. ‖ A‖1 and ‖ A‖∞ denote, respectively, the ℓ1 and ℓ∞ norms.

The time argument in the time-varying variables of differential equations is suppressed for the

sake of simplicity when no confusion is expected.

We point out that patches could also be referred to as “nodes” (villages, suburbs, towns or regions,

each one with a health centre) while “compartment” is each individual subpopulation of susceptible

infectious or recovered at each node and “subsystem” is each SIR epidemic mathematical model

located at each node in the sense that its describes the self-dynamics at any patch of the whole model

including the effects of couplings to other compartments or subsystems. Thus, in our model, the whole

system has n subsystems, each one located at one of the n patches, and each subsystem has three

compartments, one for each subpopulation.

2. SIR Epidemic Model in a Patchy Environment Under Constant and Proportional
Vaccination Controls

Consider the following epidemic model in a patchy environment with constant and proportional

to the susceptible vaccination controls, which are assumed being monitored in a patchy environment

as well: .
Si(t) = Λi − βiSi(t)Ii(t)− dS

i Si(t) + ∑
n
j( 6=i)=1

(
aijSj(t)− ajiSi(t)

)
− Vi

(t)
.
Ii(t) = βiSi(t)Ii(t)−

(
dI

i + γi

)
Ii(t) + ∑

n
j( 6=i)=1

(
bij Ij(t)− bji Ii(t)

)
.
Ri(t) = γi Ii(t)− dR

i Ri(t) + ∑
n
j( 6=i)=1

(
cijRj(t)− cjiRi(t)

)
+ Vi(t),

(1)

∀i ∈ n, subject to initial conditions Si0 = Si(0) ≥ 0, Ii0 = Ii(0) ≥ 0 and Ri0 = Ri(0) ≥ 0. In the above

model, Si(t), Ii(t) and Ri(t) are the susceptible, infectious and recovered (or immune) subpopulations

in the i-th patch for i ∈ n, respectively, while βi and γi are, respectively, the disease transmission

coefficient rate between susceptible and infectious individuals and the recovery rate of the infectious
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in the i-th patch. The parameter Λi is the influx of population into the i-th patch. It can be mentioned

that in the real word, the influx may also include infectious and immunized subpopulations. However,

the influx to infectious and immunized subpopulations is smaller in general than the one to the

susceptible subpopulation. In this way, the model only considers the influx affecting the susceptible.

The parameters dS
i , dI

i and dR
i are death rates of the susceptible, infectious and recovered, respectively,

in the i-th patch. All the parameters of the epidemic model (1) are assumed non-negative and,

furthermore, Λi, βi, dS
i , dI

i and dR
i are assumed to be positive for any i ∈ n. The travel matrices

A =
(
aij

)
≻0, B =

(
bij

)
≻0 and C =

(
cij

)
≻0 are not necessarily symmetric and this fact does not affect

to the problem formulation. Note that the immigration and outmigration amounts are proportional

to the subpopulation values at the various patches. However, the stationary populations never

reach zero values at any patch if the respective influx term is nonzero. The description of (1) can

be made through the susceptible, infectious and recovered vectors S(t) = (S1(t) , S2(t) , ... , Sn(t))
T ,

I(t) = (I1(t) , I2(t) , ... , In(t))
T and R(t) = (R1(t) , R2(t) , ... , Rn(t))

T , respectively. The vaccination

controls are assumed to be monitored via linear feedback information from the susceptible and have

the form:

Vi(t) = Vi0 +
n

∑
j=1

KijSj(t), i = 1, 2, · · · , n(n ≥ 2) (2)

for given prefixed control gains Kij. The replacement of (2) into (1) yields:

.
Si(t) = −βiSi(t)Ii(t)− dS

i Si(t) + ∑
n
j( 6=i)=1

( (
aij − Kij

)
Sj(t)− ajiSi(t)

)
+ Λi − Vi0 − KiiSi(t)

.
Ii(t) = βiSi(t)Ii(t)−

(
dI

i + γi

)
Ii(t) + ∑

n
j( 6=i)=1

(
bij Ij(t)− bji Ii(t)

)
.
Ri(t) = γi Ii(t)− dR

i Ri(t) + ∑
n
j( 6=i)=1

(
cijRj(t)− cjiRi(t) + KijSj(t)

)
+ Vi0 + KiiSi(t),

(3)

∀i ∈ n. In the sequel, and for the sake of simplicity, the dependence of the variables from time is deleted

in the notation when no confusion is expected. The first part of the subsequent result relies on the

existence, uniqueness and attainability (or reachability), in the sense that it has no negative component,

of the disease-free equilibrium point. The second part of such a result establishes that, for identically

zero infection levels through time, the disease-free equilibrium point is globally exponentially stable.

The proof is based on the fact that the opposed matrix to an M-matrix is a Metzler matrix and a Metzler

matrix is a stability matrix if and only if it is non-singular and its minus inverse is positive:

Theorem 1. Define two real vectors P and Λ and a real square matrix D as follows:

P =
[
ST , RT

]T
∈ R2n; Λ =

[
ΛT

S , ΛT
R

]T
∈ R2n; D =

[
DSS DSR

DRS DRR

]
∈ R2n×2n (4)

where:

S = [S1 , S2 , ... , Sn]
T ; R = [R1 , R2 , ... , Rn]

T (5)

ΛS = Λ − ΛR; Λ = [Λ1 , Λ2 , · · · , Λn]
T ; ΛR = V0 = [V10 , V20 , · · · , Vn0]

T (6)

DSS =




dS
1 + ∑

n
j=2 aj1 + K11 K12 − a12 · · · K1n − a1n

K21 − a21 dS
2 + ∑

n
j( 6=2)=1 aj2 + K22 · · · K2n − a2n

...
...

. . .
...

Kn1 − an1 Kn2 − an2 · · · dS
n + ∑

n−1
j=1 ajn + Knn




(7)
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DRR =




dR
1 + ∑

n
j=2 cj1 −c12 · · · −c1n

−c21 dR
2 + ∑

n
j( 6=2)=1 cj2 · · · −c2n

...
...

. . .
...

−cn1 −cn2 · · · dR
n + ∑

n−1
j=1 cjn




DRS = −K =




−K11 −K12 · · · −K1n

−K21 −K22 · · · −K2n
...

...
. . .

...

−Kn1 −Kn2 · · · −Knn




; DSR = 0 ∈ Rn×n

(8)

and assume that the control gains are fixed as follows:

Vi0 ∈ [0 , Λi] ; Kij ∈
[

0 , aij

]
; ∀i, j( 6= i) ∈ n

Kii > −
(

dS
i + ∑

n
j( 6=i)=1 aij

)
; Kii ≥ −∑

n
j( 6=i)=1 Kij; ∀i, j( 6= i) ∈ n

(9)

such that Vi0 = Λi for some i ∈ n. Then, the following properties hold:

(i) The disease-free equilibrium point of Equation (1), under the vaccination control Equation (2) exists, it

is unique and attainable, and given by

x∗d f =
(

x∗1
d f

T
, x∗2

d f
T

, .... , x∗n
d f

T
)T

; x∗i
d f

T
=
(

S∗
id f , 0 , R∗

id f

)
; ∀i ∈ n (10)

with S∗
id f = eT

i S∗
d f , R∗

id f = eT
i R∗

d f ; ∀i ∈ n, where:

S∗
d f =

(
S∗

1d f , S∗
2d f , · · · , S∗

nd f

)T
= D−1

SS ΛS (11)

R∗
d f =

(
R∗

1d f , R∗
2d f , · · · , R∗

nd f

)T
= D−1

RR

(
ΛR + |DRS| S∗

d f

)
= D−1

RR

(
|DRS| D−1

SS ΛS + V0

)

leading to a disease-free equilibrium total population vector:

N∗
d f =

(
N∗

1d f , N∗
2d f , · · · , N∗

nd f

)T
= S∗

d f + R∗
d f =

(
In + D−1

RR|DRS|
)

D−1
SS ΛS + D−1

RRV0 (12)

and, in the particular case that di = dS
i = dR

i ; ∀i ∈ n to the following disease-free equilibrium total

population amount:

N∗
Td f =

n

∑
i=1

N∗
id f =

n

∑
i=1

Λi

di
(13)

This limit total population is also reached under any existing endemic equilibrium points. Furthermore, the

total population N(t) is bounded for any finite initial conditions and all t ≥ 0.

(ii) The solution trajectory of the linearized system around the disease-free equilibrium point of the model

Equation (3) within the zero-infective (I ≡ 0 ∈ Rn)2n-dimensional subspace of R3n is non-negative for any

non-negative initial conditions Si(0), Ri(0); ∀i ∈ n and it is also globally exponentially stable irrespective of

the vaccination controls.

Proof. Note that the epidemic model (1) is subject to the parametrical constraints that Λi, βi, dS
i , dI

i and

dR
i are positive for any i ∈ n, and A =

(
aij

)
≻0, B =

(
bij

)
≻0 and C =

(
cij

)
≻0 under the vaccination

controls (2) subject to (9). Therefore each two terms aiiSi and each two terms ciiRi, with opposed signs,

become cancelled, respectively, in the first and third equation of Equations (3) for all i ∈ n. Then,
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one can fix aii = cii = 0 for i ∈ n in Equations (7) and (8) with no loss in generality by keeping the

summations from one to n. The disease-free equilibrium point satisfies the constraints:

− dS
i Si +

n

∑
j=1

((
aij − Kij

)
Sj − ajiSj

)
+ Λi − Vi0 = 0

− dR
i Ri +

n

∑
j=1

(
cijRj − cjiRi + KijSj

)
+ Vi0 = 0;

∀i ∈ n, by fixing aii = cii = 0 for i ∈ n. Note that DRR has non-positive off-diagonal entries

with the sum of all the entries per column being positive. Thus, it is a non-singular M-matrix

with D−1
RR ≻ 0. Also, DSS is has non-positive off-diagonal entries with the sum of all the entries

per column being positive from Equation (9). Thus, it is a non-singular M-matrix with D−1
SS ≻ 0 [1].

Furthermore, −DRS = |DRS| ≻ 0. Therefore, the disease-free equilibrium point is unique and defined

by Equations (10) and (11) subject to Equations (4)–(9). The total disease-free equilibrium population

Equation (12) follows directly from Equation (11) and the disease-free total population vector is

N∗
d f = S∗

d f + R∗
d f . It is attainable in the sense that it has no negative components and it is also nonzero,

since DSS and DRR are non-singular from Equation (11), subject to Equations (4)–(9). Equation (13)

follows since the total population satisfies the constraint:

.
NT =

n

∑
i=1

Ni =
n

∑
i=1

(
Si + Ii + Ri

)
=

n

∑
i=1

[
Λi −

(
dS

i Si + dI
i Ii + dR

i Ri

)]

and, for the disease-free equilibrium point with di = dS
i = dR

i ; ∀i ∈ n,

.
N

∗

Td f = ∑
n
i=1

[
Λi − di N

∗
id f

]
+ ∑

n
i=1 ∑

n
j=1

[(
aijSj − ajiSi

)
+
(

bij Ij − bji Ii

)
+
(

cijRj − cjiRi

)]

= ∑
n
i=1

[
Λi − di N

∗
id f

]
+ 0 = ∑

n
i=1(0) = 0

so that N∗
d f = ∑

n
i=1 N∗

id f = ∑
n
i=1

Λi
di

. It follows that N(t) is bounded for any finite initial conditions

for all t ≥ 0 and N(t) → N∗
Td f as t → ∞ . Property (i) has been proved. To prove Property (ii), first

note that the Jacobian matrix of the linearized system (1), subject to Equation (2), or equivalently

Equation (3), about x∗d f within the manifold I ≡ 0 is J∗d f = −D. Since the conditions Equations (9) hold

then D is an M-matrix with D−1 ≻ 0. Thus, J∗d f ∈ Mn×n
E so that the linearized solution trajectory is

non-negative for any given set of non-negative initial conditions since a time-invariant linear system

has a non-negative solution trajectory irrespective of any given non-negative initial conditions if and

only if its matrix of dynamics is a Metzler matrix [11,12]. Furthermore, the Jacobian matrix is invertible

satisfying −J∗
−1

d f = D−1 ≻ 0. Since a Metzler matrix is a stability matrix if and only if it is non-singular

and its minus inverse is positive, one concludes that the linearized system around the disease-free

equilibrium point is globally exponentially stable since it is time-invariant so that the asymptotic

stability is also exponential. �

If, for generality purposes and coherency with the generality of the model, it is supposed in

Theorem 1 (i), Equation (13), that, in general, di 6= dR
i , with di = dR

i = dS
i + d̃i; ∀i ∈ n in the sense

that if the parameters differ from each other, then the mortality of the recovered who already suffered

the disease is slightly higher than that of the susceptible since they suffered from the illness. Thus,

one gets:

N∗
Td f =

n

∑
i=1

N∗
id f =

n

∑
i=1

Λi − d̃iR
∗
id f

di
(<) ≈

n

∑
i=1

Λi

di
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Remark 1. Note from Equation (1) and Equation (2) that if Ii(0) = 0; for some i ∈ n then Ii(t) = 0; ∀i ∈ n,

t ≥ 0. Under these conditions Theorem 1 (ii) applies.

Remark 2. Note from Equations (2), (3), (4) and (9) that, although Kij ≥ 0; ∀i ∈ n in the vaccination law, it is

not requested for any particular gain Kii to be positive.

The subsequent result relies on some disease-free equilibrium point results based on the positivity

and irreducibility of some relevant travel matrices and constraints on the vaccination control describing

population fluxes between patches of the model.

Theorem 2. The following properties hold:

(i) Assume that B =
(
bij

)
is irreducible. Then, Ii(t) = 0; ∀t ∈ [t1 , t2] for some i ∈ n implies that Ij(t) = 0;

∀t ∈ [t1 , t2], ∀j ∈ n irrespectively of the vaccination control law.

(ii) Assume that Vi0 = Λi; ∀i ∈ n and assume also that A − K =
(
aij − Kij

)
is irreducible with A ≻ K.

Then, Sj(t) = 0; ∀t ∈ [t1 , t2], ∀j ∈ n if Si(t) = 0; ∀t ∈ [t1 , t2] for some i ∈ n. If B =
(
bij

)

and C =
(
cij

)
are irreducible, K = 0 and Vi0 = 0; ∀i ∈ n then Rj(t) = 0; ∀t ∈ [t1 , t2], ∀j ∈ n if

Ri(t) = Ii(t) = 0; ∀t ∈ [t1 , t2] for some i ∈ n.

(iii) Assume that the conditions of Property (ii) hold and that, furthermore, Kij ∈
[

0 , aij

]
; ∀i, j( 6= i) ∈ n,

Kii > −
(

dS
i + ∑

n
j( 6=i)=1 aij

)
and Kii ≥ −∑

n
j( 6=i)=1 Kij; ∀i ∈ n. Then, N∗

d f = R∗
d f and N∗

Td f =

∑
n
i=1 R∗

id f , that is the total population is recovered at the disease-free equilibrium point.

Proof. Assume that Ii(t) = 0; ∀t ∈ [t1 , t2], then
.
Ii(t) = 0; ∀t ∈ (t1 , t2) for some i ∈ n, ∀t ∈ (t1 , t2)

and assume also that there are j( 6= i) ∈ n and t ∈ [t1 , t2] such that Ij(t) 6= 0. One concludes

from the second equation of (3), if Ii(t) = 0 for t ∈ [t1 , t2], so that
.
Ii(t) = 0 for t ∈ (t1 , t2), that

∑
n
j( 6=i)=1 bij Ij(t) = ∑

n
j=1 bij Ij(t) = BI(t) = 0; ∀t ∈ [t1 , t2]. Then,

(
∑

n−1
j=0 Bj

)
I(t) = 0; ∀t ∈ [t1 , t2].

But B is irreducible if and only if ∑
n−1
j=0 Bj ≻≻ 0, since B ≻ 0, and then

(
∑

n−1
j=0 Bj

)
I(t) ≻≻ 0 for any

t ∈ [t1 , t2] if there is at least one Ij(t) 6= 0 for some j( 6= i) ∈ n and some t ∈ [t1 , t2], a contradiction

to ∑
n
j( 6=i)=1 bij Ij(t) = 0; ∀t ∈ [t1 , t2]. Then, Ij(t) = 0; ∀t ∈ [t1 , t2] so that

.
I j(t) = 0; ∀t ∈ (t1 , t2),

∀j ∈ n. Property (i) has been proved. On the other hand, one concludes from the first equation of (3) if

Si(t) = 0 for t ∈ [t1 , t2], so that
.
Si(t) = 0 for t ∈ (t1 , t2), that

n

∑
j( 6=i)=1

(
aij − Kij

)
Sj =

n

∑
j=1

(
aij − Kij

)
Sj = 0; ∀t ∈ [t1 , t2]

provided that Vi0 = Λi; ∀i ∈ n and, if Ri(t) = 0 and Ii(t) = 0 for t ∈ [t1 , t2], so that
.
Ri(t) = 0

for t ∈ (t1 , t2), one concludes that, if in addition Vi0 = 0; ∀i ∈ n then ∑
n
j( 6=i)=1

(
cijRj − cjiRi

)
= 0.

The proof of Property (ii) is completed under similar reasoning as that used in the proof of Property

(i). Finally, Property (iii) follows directly from Property (ii) and Theorem 1 (i) via Equation (9). �

It has to be pointed out that a particular version of Theorem 2 (i) for the case of absence of

vaccination controls has been proved in another way in [1]. In the total absence of vaccination

parameterized by the vector Ω = 0, the vectors and matrices of Equations (4)–(8) are subject

to the following replacements ΛR → 0 , DSS → DSS0 , DRS → 0 ; and DRR and DSR = 0 are kept

identical with:
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DSS0 = DSS]Ω=0 =




dS
1 + ∑

n
j=2 aj1 −a12 · · · −a1n

−a21 dS
2 + ∑

n
j( 6=2)=1 aj2 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · dS
n + ∑

n−1
j=1 ajn




3. Basic Reproduction Number: Attainability of the Endemic Equilibrium versus Instability of
the Disease-Free One

Define the following matrices:

F = Diag
(

β1S∗
1d f , β2S∗

2d f , · · · , βnS∗
nd f

)
(14)

U =




dI
1 + γ1 + ∑

n
j=2 bj1 −b12 · · · −b1n

−b21 dI
2 + γ2 + ∑

n
j( 6=2)=1 bj2 · · · −b2n

...
...

. . .
...

−bn1 −bn2 · · · dI
n + γn + ∑

n−1
j=1 bjn




(15)

The basic reproduction number is R0 = ρ
(

FU−1
)
, where (−U) is the transition matrix, F is the

transmission matrix and FU−1 is the next generation matrix. The following positivity and stability

result, proven in Appendix A, holds:

Theorem 3. The following properties hold:

(i) (−U) ∈ Mn×n
E is stability matrix.

(ii) If βi = 0; ∀i ∈ n then the disease-free equilibrium point is globally exponentially stable and any solution

trajectory is non-negative for all time for any given non-negative initial conditions.

(iii) If R0 < 1 then the disease-free equilibrium point x∗d f is locally asymptotically stable and, if R0 > 1, such

an equilibrium point is unstable.

(iv) The reproduction number satisfies the subsequent upper-bounding constraint:

R0 ≤ R01 = β max
1≤i≤n

(βir)‖D−1
SS (Λ − V0)‖2

ρ1/2
(

UTU
)−1

(16)

where βir = βi/β; ∀i ∈ n, are relative transmission coefficient rates. Assume, in addition, that

‖U0d‖2 < 1/‖U−1
d ‖

2
and ‖DSS0d‖2 < 1/‖D−1

SSd‖2
, where Ud and Uod are the diagonal and off-diagonal

parts part of U = Ud + U0d and DSSd and DSSod are the diagonal and off-diagonal parts of DSS. Then,

R0 ≤ R02 = β max
1≤i≤n

(βir)
‖D−1

SSd‖2

1 − ‖D−1
SSd‖2

‖DSS0d‖2

‖U−1
d ‖

2

1 − ‖U−1
d ‖

2
‖U0d‖2

‖Λ − V0‖2 (17)

with β ≥ 0 being a prefixed reference value of the coefficient transmission rate.

(v) R02 is minimized for any given model parameterization and any given constant vaccination vector V0

if the vaccination control gains for the susceptible are chosen as Kij = aij; ∀i, j ∈ n\{1}. Such a

reproduction number upper-bound is zeroed if each whole influx of population in all patches are vaccinated

by constant controls.

Remark 3. Note that β can be, in practice, one of the coefficient rates (for instance, its maximum or minimum

value). Note that the choice β = 0 is feasible if and only if βi = 0; ∀i ∈ n.

The non-negativity of the linearized solution proved in Theorem 1 (ii) also applies to the whole non-linear

system under weak conditions as follows.
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Theorem 4. Assume that the vaccination control constrains Equations (9) hold and that A≻K. Then, the

following properties hold:

(i) Any solution trajectory of the whole non-linear system Equation (1) is non-negative and bounded for all

time for any given finite non-negative initial conditions

(ii) Assume, furthermore, that R0 ≥ 1. Then, there exists at least one endemic equilibrium point. If, in

addition, B ≻ 0 then any endemic equilibrium point has a positive infective population at any patch. If

A − K ≻ 0 is irreducible then any endemic equilibrium point has a positive susceptible population at any

patch even under a maximum constant vaccination Vi0 = Λi; ∀i ∈ n.

(iii) There is no attainable endemic equilibrium point if R0 < 1 while, if R0 ≤ 1, then the unique disease-free

equilibrium point is globally asymptotically stable. If R0 = 1 then such a disease-free equilibrium point

coincides with one of the existing attainable endemic equilibrium points.

Proof. From Theorem 1 (i), the total population N(t) is bounded for all time. By inspecting Equation (1),

one concludes that if any susceptible, infectious or recovered subpopulation at any patch and time

instant is zero then its time-derivative cannot be negative since A≻K, B≻0 and C≻0 and Equation (9)

hold. Therefore,

min
i∈n

(Si(t) , Ii(t) , Ri(t)) ≥ 0 ⇒ min
i∈n

(Si(t) , Ii(t) , Ri(t)) ≥ 0 ; ∀t ≥ 0.

If, furthermore, max
i∈n

(Si(0) , Ii(0) , Ri(0)) < +∞ then, sup
t∈R0+

max
i∈n

(Si(t) , Ii(t) , Ri(t)) < +∞ since

N(t) < +∞; ∀t ≥ 0. Property (i) has been proved. Property (ii) is proved by contradiction for the case

R0 > 1. Assume that R0 > 1 and since no endemic equilibrium point exists. Thus, the disease-free

equilibrium point is unstable, any state solution trajectory has bounded non-negative components for

any time and any finite non-negative initial conditions, and no endemic equilibrium point exists. Thus,

it follows from Poincaré’s index that a stable bounded limit cycle should surround the disease-free

equilibrium point which is the unique (unstable) equilibrium point which has a unity Poincaré’s

index. But this feature contradicts that the state solution trajectory is non-negative for all time and

any non-negative initial conditions so that no stable limit cycle can surround the unstable disease-free

equilibrium point. Therefore, at least one endemic equilibrium point muss exist if R0 > 1. The first

part of Property (ii) has been proved. Now, if, in addition, B is irreducible then any zero infectious

subpopulation at any patch implies that the infectious total population is zero from Theorem 2 (i).

By its equivalent contra-positive implication logic proposition, since the endemic equilibrium point has

a nonzero total infectious population, any endemic equilibrium infectious subpopulation is nonzero

at any patch. Thus, the infectious subpopulation is nonzero at any patch at the endemic equilibrium

points. It follows in the same way that, if (A − K) ≻ 0 is irreducible, then the endemic susceptible

subpopulation has to be nonzero at any patch. Property (ii) has been proved for R0 > 1. Now,

assume that R0 = 1. In this case, the disease-free equilibrium point is critically stable so that it has

at least either one centre (i.e., a critical point with two imaginary complex eigenvalues in one of the

two-dimensional partial Jacobian matrices) or one spurious patch (i.e., a critical point with one zero

eigenvalue and the other one real positive in one of the two-dimensional partial Jacobian matrices)

in at least a two-dimensional hyperplane of the phase space. This situation is also incompatible with

the non-negativity of the solution trajectory so that the conclusion on the existence of an endemic

equilibrium point is similar to the former part of the proof of this property. Proposition (ii) has been

proved. To prove Property (iii), assume that there is an attainable (i.e., with no negative component)

endemic equilibrium point if R0 < 1 and note, from Equations (1), (14) and (15), that

I∗iend + eT
i (F − U)−1(−β1S∗

1end I∗1end,−β2S∗
2end I∗2end, . . . ,−βnS∗

nend I∗nend)
T ; ∀i ∈ n (18)
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where (F − U)−1 exists and −(F − U)−1 ≻ 0 since (F − U) ∈ Mn×n
E is a stability matrix since (−U) ∈

Mn×n
E is a stability matrix, so U−1 ≻ 0, and R0 = ρ

(
FU−1

)
< 1. Thus, (F − U)−1 has at least

one positive entry per column and one positive entry per row. Then, the above equation holds for

min
i∈n

βi > 0 with I∗iend > 0; ∀i ∈ n if and only if S∗
jend < 0 for at least a j ∈ n. Thus, there is no attainable

endemic equilibrium point if R0 < 1 and min
i∈n

βi > 0. Since an endemic equilibrium point exists for

R0 = 1 from Property (ii), the fact that Equation (18) also holds for R0 = 1, as a result, and the fact that

the subsequent constraint stands for the disease-free equilibrium point if R0 < 1:

I∗idf = eT
i (−U)−1

(
−β1S∗

1df I∗1df ,−β2S∗
2df I∗2df , . . . ,−βnS∗

ndf I∗ndf

)
= 0; ∀i ∈ n (19)

it follows from continuity arguments of the equilibrium points with respect to R0 that one of the

endemic equilibrium points necessarily coincide with the disease-free one for R0 = 1. Now since:

(a) the disease-free equilibrium point is unique and the unique attainable equilibrium point for

R0 < 1 (Theorem 1 (i)); and (b) such a point is furthermore locally asymptotically stable, since its

linearized version around it is asymptotically stable (Theorem 3 (iii), one concludes that the disease-free

equilibrium point is globally asymptotically stable if R0 ≤ 1. Property (iii) has been proved. �

Remark 4. Theorem 4 (ii) establishes that, if the disease-free equilibrium point is unstable or critically

stable, then an endemic equilibrium point has to exist. With some extra irreducibility-type conditions on the

B-travel matrix and on the (A − K)-travel matrix, it is proved that the infectious and susceptible endemic

equilibrium amounts are nonzero at any patch. It can be argued that the matrix of proportional vaccination

gains K can modify the irreducibility or reducibility properties of the travel matrix A related to the respective

properties of (A − K). This fact can imply that, if in the absence of proportional vaccination to the susceptible

subpopulation, the endemic equilibrium point has nonzero susceptible (respectively, zero amounts of susceptible

at least at one patch) subpopulations at any patch, then, under some kind of proportional vaccination law

even for a constant vaccination constraint Vi0 = Λi; ∀i ∈ n, the endemic susceptible could be zeroed at

least at one patch but not in all patches. To visualize the above argument, note that the matrix constraint

∑
n−1
i=0 Ai ≻≻ −∑

n−1
i=0 ∑

i
j=1

(
i

j

)
Ai−j (−K)j guarantees that (A − K) is irreducible since

n−1

∑
i=0

(A − K)

i

=
n−1

∑
i=0

i

∑
j=0

(
i

j

)
Ai−j (−K)j=

n−1

∑
i=0

Ai +
n−1

∑
i=0

i

∑
j=1

(
i

j

)
Ai−j (−K)j ≻≻ 0.

The characterization of the whole set of endemic equilibrium points is addressed in the following

result, which is proved in Appendix B, by using algebraic tools:

Theorem 5. Assume that R0 ≥ 1 and define the following matrices:

AS =




a11 −a12 · · · −a1n

−a21 a22 · · · −a2n

· · · · · · · · · · · ·

−an1 −an2 · · · ann


; AI =




b11 −b12 · · · −b1n

−b21 b22 · · · −b2n

· · · · · · · · · · · ·

−bn1 −bn2 · · · bnn


 (20)

ARI = Diag [−γ1,−γ2, . . . ,−γn]; AR =




c11 −c12 · · · −c1n

−c21 c22 · · · −c2n

· · · · · · · · · · · ·

−cn1 −cn2 · · · cnn


 (21)
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Λi − Vi0 = aiiS
∗
iend + bii I

∗
iend −

n

∑
j( 6=i)=1

((
aij − Kij

)
S∗

jend + bij I
∗
jend

)
(22)

Vi0 = ciiR
∗
iend + γi I

∗
iend −

n

∑
j( 6=i)=1

cijR
∗
jend + KijS

∗
jend (23)

where

aii = dS
i + Kii +

n

∑
j( 6=i)=1

aji, bii = dI
i + γi +

n

∑
j( 6=i)=1

bji, cii = dR
i +

n

∑
j( 6=i)=1

cji; ∀i ∈ n (24)

Then, the following properties hold:

(i) The following rank condition holds:

rank(b, A) = rank A (25)

where the limit total population is N∗ irrespective of the equilibrium point as time tends to infinity, and

A =




1 1 · · · 1 1

AS AI 0

0 ARI AR


 ∈ R(2n+1)×3n; b =




N∗

Λ1 − V10
...

Λn − Vn0

V10
...

Vn0




∈ R2n+1 (26)

The whole set of endemic equilibrium solutions, including both the attainable and unattainable ones, is

given by

x(y) = A†b + (I3n − A†A)y (27)

subject to the n constraints:

βi =
[(

dI
i + γi + ∑

n
j( 6=i)=1 bji

)
eT

n+i − ∑
n
j( 6=i)=1 bije

T
n+j

][
A†b +

(
I3n − A† A

)
y
]

eT
i [A

†b + (I3n − A† A)y][A†b + (I3n − A† A)y]
T

en+i

; ∀i ∈ n (28)

with x(y) =
(
S∗1end(y), S∗2end(y), . . . S∗nend(y), I∗1end(y), I∗2end(y), . . . I∗nend(y), R∗

1end(y), R∗
2end(y), . . . R∗

nend(y)
)T

and ei is the Euclidean canonical vector whose its ith component is unity; ∀i ∈ 3n,

An = DT
(

DDT
)−1(

CTC
)−1

CT ∈ R3n×(2n+1) is the Moore–Penrose pseudoinverse of A, provided

that A of rank p ≤ 2n + 1 is factorized as A = CD with existing matrices C ∈ R2(n+1)×p and

D ∈ Rp×(2n+1) both or rank p, and y ∈ R3n is arbitrary except that it is subject to fulfill Equation (28)

for the given coefficient transmission rates βi for i ∈ n, where A†T = AT [32]. The set of attainable

endemic equilibrium points is given by Equation (27) subject to the constraints Equation (28) for any

y ∈ Y with Y = {z ∈ R3n:x(z)(∈ R3n) 0}.

(ii) If B =
(
bij

)
is irreducible then the set of attainable endemic equilibrium points is given by (27), subject to

the constraints (28), for any y ∈ Ya with

Ya = {z ∈ R3n:(x(z)(∈ R3n) 0) ∧ (xi(z) > 0; i = n + 1, n + 2, ..., 2n)} ⊂ Y

(iii) Vi0 = Λi; ∀i ∈ n and both B =
(
bij

)
and A − K =

(
aij − Kij

)
, with A ≻ K, are irreducible then the set

of attainable endemic equilibrium points is given by Equation (27), subject to the constraints Equation (28),

for any y ∈ Yb with

Yb = {z ∈ R3n:(x(z)(∈ R3n) 0) ∧ ([xi(z) > 0; i = 1,2,..., n] ∨ [xi(z) = 0; i = 1,2,..., n]) ∧ (xi(z) > 0; i = n+1,n+2,..., 2n)} ⊂ Ya
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(iv) If K = 0, Vi0 = Λi = 0; ∀i ∈ n and B =
(
bij

)
, A − K =

(
aij − Kij

)
, with A ≻ K, and C =

(
cij

)
are

irreducible, then the set of attainable endemic equilibrium points is given by Equation (27) subject to the

constraints Equation (28) for any y ∈ Yc ⊂ Yb with Yc =
{

z ∈ R3n : (ℓ1 ∧ ℓ2 ∧ ℓ3 ∧ ℓ4) holds
}

ℓ1 := x(z)
(
∈ R3n

)
≻ 0

ℓ2 := (xi(z) > 0; i = 1, 2, ..., n) ∨ (xi(z) = 0; i = 1, 2, ..., n)

ℓ3 := (xi(z) > 0; i = n + 1, n + 2, ..., 2n + 1)

ℓ4 := (xi(z) > 0; i = 2n + 1, 2n + 2, ..., 3n) ∨ (xi(z) = 0; i = 2n + 1, 2n + 2, ..., 3n)

The conditions for the uniqueness of the existing attainable endemic equilibrium point for R0 ≥ 1

are given in the following result which is a direct conclusion of Theorem 5:

Corollary 1. Assume that R0 ≥ 1. Then, the attainable equilibrium point is unique if and only there is a

y ∈ R3n such that

(1) y + A†(b − Ay) ≻ 0,

(2) E
(
y + A†(b − Ay)

)
≻ 0(respectively, ≻≻ 0 if B is irreducible), where E = [0n×n In×n 0n×n] ∈ Rn×3n,

(3) The n constraints (28) hold.

One such a vector y ∈ R3n always exists.

The following counterpart result to Theorem 5 and Corollary 1 holds for the case when there is

only one patch in the epidemic model so that the transportation matrices are zero. The result, proved

in Appendix B, gives a nice physical interpretation of the basic reproduction number and its relation to

the stability properties and to the attainability of the endemic equilibrium point.

Theorem 6. Assume that there is only one patch (i.e., n = 1) and that Λ > V with V being a constant

vaccination effort. Then, there is a unique stable attainable endemic equilibrium point if the coefficient

transmission rate fulfills β ≥ βc =
dS(dI+γ)

Λ−V , equivalently, if the reproduction number, R0 =
S∗

d f

S∗
end

≥ 1,

where S∗
d f =

Λ−V
dS is the susceptible subpopulation at the disease- free equilibrium point, the immune one at the

disease-free equilibrium being R∗
d f =

V
dR . Such an endemic equilibrium point is:

S∗
end = dI+γ

β ; I∗end =
β(Λ−V)−dS(dI+γ)

β(dI+γ)
;R∗

end =
β(dI+γ)V+γ[β(Λ−V)−dS(dI+γ) ]

βdR(dI+γ)
(29)

And the following properties hold:

(i) If Λ = V then there is a unique disease-free equilibrium point S∗
d f = I∗d f = 0 ; R∗

d f = V
dR while the

endemic one does not exist.

(ii) If R0 = 1 then the disease- free and the endemic equilibrium points coincide.

(iii) If R0 < 1 then the disease- free equilibrium point is globally asymptotically stable and the endemic one is

not attainable.

(iv) If V(t) = V0 + KS(t) then S∗
d f =

Λ−V0

dS+K
, R∗

d f =
KΛ+dSV0

dR(dS+K)
, and

N∗
d f =

Λ

dS
+

(
dS − dR

)(
dSV0 + KΛ

)

dSdR(dS + K)
=

Λ

dS

(
1 +

K
(
dS − dR

)

dR(dS + K)

)
+

(
dS − dR

)
V0

dR(dS + K)

In the absence of vaccination, N∗
d f = S∗

d f =
Λ
dS and R∗

d f = 0.
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The following result, which is proved in Appendix C, relies on the feature that the reproduction

number can be reduced by the vaccination controls. This feature implies that the global asymptotic

stability towards the disease-free equilibrium point can be guaranteed under smaller values of the

coefficient transmission rates via an appropriate monitoring of such controls. Although the proposed

model has an identical transmission matrix U for the vaccination-free and vaccinated models, it is

assumed for analysis generality purposes that that associated to the vaccination case Uc can be distinct

to that associated to the vaccination-free one Uun. This is the case, for instance, if an additional

treatment control is injected on the infectious subpopulation. See, for instance [14,15].

Theorem 7. Define Uc = Uun + Ũ and Fc = Fun + F̃, where F̃ and
(
−Ũ

)
are the disturbed transmission

and transition matrix of the controlled epidemic model under a vaccination control law with respect to those of

the uncontrolled (i.e., for the case when the vaccination control is null) one. Define R0un = ρ
(

FunU−1
un

)
and

R0c = ρ
(

FcU−1
c

)
as the respective reproduction numbers in the vaccination-free and under vaccination. Assume

that the following constraints hold:

(1) (−Uun) ∈ M3n×3n
E is a stability matrix,

(2) Fun ≻ 0,

(3) ‖Ũ‖2 < 1/2 ‖U−1
un ‖2,

(4) −Fun ≺ F̃ ≺ Fun U−1
un Ũ

(
I3n + U−1

un Ũ
)(

I3n − Ũ
(

I3n + U−1
un Ũ

)−1
U−1

un

)−1

Uun.

Then, Uc ∈ M3n×3n
E is a stability matrix and the following properties hold:

(i) R0c ≤ R0un.

(ii) If, the conditions Equations (1)–(3) hold, F̃ = −
∣∣∣F̃
∣∣∣ ≺ 0 and the constraint equation (4) is replaced with

following constraints:

(4′) −Fun U−1
un Ũ

(
I3n + U−1

un Ũ
)(

I3n − Ũ
(

I3n + U−1
un Ũ

)−1
U−1

un

)−1

Uun ≺
∣∣∣F̃
∣∣∣ ≺ Fun.

Then R0c ≤ R0un. In addition, R0c < R0un if either FunU−1
un or

∣∣∣F̃
∣∣∣U−1

un is irreducible. This property

result still holds if one but not both) of the two “≺”-symbols of the above equation is replaced with “≺”.

Remark 5. Note that the applicability of Theorem 7 (ii) is very feasible in practice according to the following

considerations. Assume that the pairs (Fun, Uun) and (Fc, Uc) are the pairs defining the vaccination-free and

vaccination cases linear dynamics around the disease-free equilibrium point which depends on the control gains

such that U = Uc = Uun from (14) and (15) for the model dealt with.(Note that Theorem 7 has been worked for

the more general case when Uc 6= Uun). Now, F̃ = −
∣∣∣F̃
∣∣∣ ≺ 0 if Fc ≺ Fun, that is, if S∗

d f (Fc) < S∗
d f (Fun). This

is directly achievable by using appropriate control gains (see Theorem 1). In the simplest case of just one patch

in the model (i.e., n = 1), note that this is achievable by choosing max (V0 , K) > 0 from Theorem 6 (iv). The

choices of the values of the control gains V0 and K monitor the susceptible amounts S∗
d f (Fc) at the disease- free

equilibrium. Now, assume that R0un = 1. This value of the reproduction number corresponds to a certain critical

disease transmission rate βcun for given remaining modeling parameters in the vaccination-free case. This fact

leads to the coincidence of the disease-free equilibrium point with the attainable endemic one and the critical

stability of the disease-free equilibrium point. However, under Theorem 7, and since F̃ < 0, the vaccination

control leads to the asymptotic stability of the modified disease-free equilibrium point and the un-attainability of

the endemic one since R0c < R0un = 1. Therefore, a properly designed vaccination law increases the range of

the stability boundary of the disease-free equilibrium point to reach a larger critical disease transmission rate

compared to the vaccination-free case.

4. Use of Available Patch-Crossed Information in Decentralized Vaccination Control Designs

The following situations can occur related to the vaccination controls monitoring actions:
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(a) Centralized Vaccination Control (CVC). Each subsystem has the information available about the

susceptible numbers of all the compartments and uses it for feedback vaccination control.

(b) Decentralized Vaccination Control (DVC) if Kij = 0; ∀i, j( 6= i) ∈ n and Kii 6= 0; ∀i ∈ n. Each

subsystem uses only self-information for control but there is no use of the susceptible number of

other compartments.

(c) Partially Decentralized Vaccination Control (PDVC) if Kii 6= 0; ∀i ∈ n, Kij 6= 0; ∀(i, j) ∈ np × nq and

Kij = 0; ∀(i, j) ∈ n × n\np × nq, where np and nq are nonempty proper subsets of n.

(d) nw-Weak Decentralized Vaccination Control (nw-WDVC) if Kij = 0; ∀i, j( 6= i) ∈ n, Kii 6= 0; ∀i ∈ np

and Kii = 0; ∀i ∈ n\ np. That is, at least one compartment of susceptible does not uses susceptible

self-information for feedback in the vaccination control law which has a decentralized structure.

(e) nw-Weak Partially Decentralized Vaccination Control (nw-WPDVC) if in the definition of

nw-WDVC, Kij 6= 0 for some i, j( 6= i) ∈ n.

Note that the various concepts of “centralized control” versus “decentralized control” refer to the

complete or partial shared information between dynamic subsystems and, in particular, subsystems

of the patchy model or just the use of own self- information for control rather than to the physical

disposal (generic one or local for each subsystem) of the controller. This is a widely admitted principle

in decentralized control of dynamic systems. See, for instance [10]. Two vaccination strategies are now

discussed if the vaccination controls are assumed to be monitored via linear feedback information

from the susceptible by using available information at each patch from some other patches:

Strategy 1. Only the susceptible subpopulation of each patch, even if travelling population from

other patches exists, is a candidate to be vaccinated while some total or partial information from the

corresponding subpopulations in other patches is known and monitored for the susceptible vaccination

through the crossed control gains associated with the control law (2). Such an information is used

to restrict the influence of the immigration from the remaining patches into the own susceptible

subpopulation of a patch in accordance with Equation (3). The control law Equation (2) is assumed to

be subject to the following constraints:

0 ≤ Kii ≤ Mi +
n

∑
j( 6=i)=1

Kji −
n

∑
j( 6=i)=1

Kij, 0 ≤ Kji ≤ aji, Vi0 ≤ Mi0 < Λi; ∀i, j( 6= i) ∈ n (30)

where Mi > 0 and Mi0 > 0are upper-bounding constant taking into account the vaccines availability

at the i-th patch for i ∈ n. The first constraint of Equation (30) reflects that a fraction of the travelling

susceptible populations coming from the remaining patches is vaccinated while the leaving one to

other patches is not vaccinated. The second constraint takes into account that DSS in Equation (7) is

an M-matrix so that its inverse exists and is positive, so that the disease-free equilibrium point is a

non-negative vector of the state space and locally asymptotically stable since (−DSS) ∈ Mn×n
E .

Strategy 2. Only the susceptible subpopulation proper of each patch is a candidate for vaccination

but there is some partial or total information from the susceptible subpopulations from other patches.

The available information on the coming in and leaving travelling susceptible subpopulations from

the various patches is used to control the distribution of the vaccines to be administrated between the

various patches. Such an information is used to restrict the number of administered vaccines at each

patch. In this case, the vaccination control law Equation (2) is modified as follows:

Vi(t) = Vi0 + Ki(t)Si(t); ∀i ∈ n (31)

and the vaccination control proportional gains are given by:

Ki(t) = Ki(S(t)) = Kii +
n

∑
j( 6=i)=1

K0
ij(t); ∀i ∈ n (32)
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where:

K0
ij(t) = K0

ij

(
Si(t), Sj(t)

)
=





KijSj(t)

Si(t)
i f Si(t) > εi

0 i f Si(t) ≤ εi

; ∀i, j ∈ n (33)

for given prefixed control gains Kij and design constants εi ∈ R0+; ∀i, j ∈ n. It turns out from

Equations (31)–(33) that coupled information between distinct patch pairs can be available or not in

the vaccination controls. As a result, the vaccination control (31)–(33) becomes:

Vi(t) =

{
Vi0 + ∑

n
j=1 KijSj(t) if Si(t) > εi

Vi0 + KiiSi(t) if Si(t) ≤ εi
; ∀i ∈ n (34)

The constraints Equation (30) become modified as follows for each i ∈ n allowing some negative

crossed control gains:

Kij ≤ 0; 0 ≤ Kji ≤ aji; ; ∀j( 6= i) ∈ n (35)

Kii

∑
n
j( 6=i)=1

∣∣Kij

∣∣ ≥ sup
t∈R0+

max
1≤j( 6=i)≤n

(
Sj(t)

Si(t)

)
; Kii ≤ Mi +

n

∑
j( 6=i)=1

∣∣Kji

∣∣ inf
t∈R0+

min
1≤j( 6=i)≤n

(
Sj(t)

Si(t)

)
(36)

Note that Equations (35) and (36) may be jointly expressed as follows:




n

∑
j( 6=i)=1

∣∣∣∣∣∣
Kii

∣∣∣∣∣∣


 sup

t∈R0+

max
1≤j( 6=i)≤n

(
Sj(t)

Si(t)

)
≤ Kii ≤ Mi +

n

∑
j( 6=i)=1

∣∣Kji

∣∣ inf
t∈R0+

min
1≤j( 6=i)≤n

(
Sj(t)

Si(t)

)
(37)

provided that the following necessary condition holds:




n

∑
j( 6=i)=1

∣∣Kij

∣∣

 ≤

Mi

sup
t∈R0+

max
1≤j( 6=i)≤n

(
Sj(t)

Si(t)

)
− inf

t∈R0+

min
1≤j( 6=i)≤n

(
Sj(t)

Si(t)

) (38)

Note the following facts:

(1) If Si(t) = εi and Si(t
+) > εi fore some i ∈ n then Vi(t) switches from a constant term to a

combined constant plus a linear feedback term except if the control gains Kij = 0; ∀j ∈ n and

such a i ∈ n. In this case, the closed-loop linearized dynamic systems around any potential

equilibrium points, which are defined by their corresponding Jacobian matrices at such points

after absorbing the linear feedback from the susceptible subpopulations, are not time-invariant

through time.

(2) If either in f
t∈R0+

Si(t) > εi or sup
t∈R0+

Si(t) ≤ εi; ∀ i ∈ n, then the vaccination control law does not

switch from a combined constant plus a linear feedback term to a constant term or vice-versa at

any patch and at any time instant.

(3) Concerning the Centralized/Decentralized control frameworks, note that a CVC strategy is

implementable if the available information allows the use of gains Kij 6= 0; ∀i, j( 6= i) ∈ n since

all the susceptible subpopulation and its distribution between the various patches is known at

each patch. A PDVC, or a DVC strategy is adopted when some or, respectively, all the gains

Kij are zeroed; ∀i, j( 6= i) ∈ n because the global information on susceptible is not known, or not

used, at each patch. The (nw-WDVC) and (nw-WPDVC) vaccination strategies are implemented

if some of the self-proportional gains are not used at some patches (i.e., there is no vaccination

action at some health centre on its own susceptible subpopulation) or, if, in addition some of

the crossed susceptible information between the various patches is not available or simply not

used. It can be convenient to adopt vaccination strategies which allow to guarantee a worst-case

minimization, in some sense, of the disease-free equilibrium subpopulations in order to achieve
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a corresponding maximization of the recovered subpopulation when the infection is removed.

This idea is addressed in the sequel. Note that

‖DSS‖1 = max
1≤i≤n


Kii + dS

I +
n

∑
j( 6=i)=1

(
2aij − Kij

)

 (39)

‖DSS‖∞ = max
1≤i≤n


Kii + dS

I +
n

∑
j( 6=i)=1

(
aij + aji − Kji

)

 (40)

Then, one has from (11) via Equations (6) and (7) and using the constraints (30) for Strategy 1,

by taking into account the bounded relations between the matrix and vector spectral (ℓ2) and ℓ1 and

ℓ∞norms, that the following lower-bounds stand for the disease-free equilibrium susceptible vector:

‖S∗
d f ‖∞

= max
1≤i≤n

S∗
id f ≥

‖ΛS‖∞

‖DSS‖∞
=

max
1≤i≤n

(Λi−Vi0)

max
1≤i≤n

[
Kii+dS

I +∑
n
j( 6=i)=1(aij+aji−Kji)

]

≥
max

1≤i≤n
(Λi−Mi0)

Mi−∑
n
j( 6=i)=1 Kij+dS

I +∑
n
j( 6=i)=1(aij+aji)

(41)

‖S∗
d f ‖1

= ∑
n
i=1 S∗

id f ≥
‖ΛS‖1
‖DSS‖1

= ∑
n
i=1(Λi−Vi0)

max
1≤i≤n

[
Kii+dS

I +∑
n
j( 6=i)=1(2aij−Kij)

]

≥ ∑
n
i=1(Λi−Vi0)

max
1≤i≤n

[
Mi+∑

n
j( 6=i)=1 Kji+dS

I +2
(

∑
n
j( 6=i)=1(aij−Kij)

)] ≥ ∑
n
i=1(Λi−Vi0)

max
1≤i≤n

[
Mi+∑

n
j( 6=i)=1 Kji+dS

I +2
(

∑
n
j( 6=i)=1 aij

)]
(42)

‖S∗
d f ‖2

=
√

∑
n
i=1 S∗2

id f ≥
‖ΛS‖2
‖DSS‖2

=
‖ΛS‖2

λ1/2
max (DT

SSDSS)
≥

√
∑

n
i=1(Λi−Vi0)

2

n max
(

1
‖DSS‖1

, 1
‖DSS‖ ∞

)
(43)

Remark 6. In view of Equations (41)–(43), one concludes that available lower-bounds susceptible subpopulations

at the disease-free equilibrium points can be reduced in a suboptimal worst-case design which keeps the maximum

available vaccines and jointly minimizes the ℓ1 , ℓ∞ and ℓ2 norms by choosing:

Vi0 = Mi0; Kij = 0; Kji = aji; ∀i, j ∈ n

Kii = Mi +
n

∑
j( 6=i)=1

Kji −
n

∑
j( 6=i)=1

Kij = Mi +
n

∑
j( 6=i)=1

aji; ∀i ∈ n

In the case that some outsider travelers from other patches to a certain patch i ∈ n have to be vaccinated for

needs of global fulfillment of objectives, one can use normalizing factors ℓij ∈ [0 , 1] so that Kij = ℓijaij replaces

the standard strategy Kij = 0; ∀j ∈ n.

In the case that some travelers from a certain patch i ∈ n to other patches should be vaccinated, one can use

normalizing factors ℓji ∈ [0 , 1] so that Kji = ℓjiaji replaces the standard strategy Kji = aji; ∀j ∈ n.

Note from (31) to (34) that, in the case of Strategy 2, the vaccination control parameterization is

time-varying (see, for instance [20]), since there can exist switches if the susceptible subpopulation at

any patch is close to zero. The following two technical results are of usefulness for Strategy 2.

Lemma 1. Let A ∈ Rn×n be a stability matrix of stability abscissa −ρa < 0 and let be Ã : R0+ → Rn×n a

piecewise continuous uniformly bounded matrix function. Then, the matrix function B : R0+ → Rn×n , being

B(t) = A + Ã(t); ∀t ∈ R0+ is stable if (ρa/Ka) t >
∫ t

0

∥∥∥Ã(τ)
∥∥∥dτ; ∀t ∈ R+, guaranteed if sup

t∈R0+

‖ Ã(t)‖ <

ρa
Ka

, for some norm-dependent real constant Ka ≥ 1.
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Proof. Consider the n-th differential system
.
z(t) = B(t)z(t); z(0) = z0 with ‖z0‖ < ∞. It turns out

that there exists Ka ≥ 1 such that

‖ z(t)‖ ≤ Kae−ρat

(
‖ z0‖+

∫ t

0
eρaτ‖ Ã(τ)‖ ‖z(τ)‖ dτ

)
; ∀t ∈ R0+ (44)

so that ‖z(t)‖ ≤ Ka‖z0‖ e−
∫ t

0 (ρa−Ka‖Ã(τ)‖)dτ which follows from (44), the constraint (ρa/Ka) t >∫ t
0

∥∥∥Ã(τ)
∥∥∥dτ; ∀t ∈ R+ and Gronwall’s Lemma [33] so that ‖z(t)‖ ≤ Ka‖z0‖; ∀t ∈ R0+ and z(t) → 0

as t → ∞ . �

The condition (ρa/Ka) t >
∫ t

0

∥∥∥Ã(τ)
∥∥∥dτ of Lemma 1 may be weakened to (ρa/Ka) (t − t0) >

∫ t
t0

∥∥∥Ã(τ)
∥∥∥dτ for any t(> t0) ∈ R+ and some t0 ∈ R0+. Lemma 1 yields to the following result:

Theorem 8. Consider (14) and (15) with −U ∈ Mn×n
E a stability matrix and F(≻ 0) ∈ Rn×n such that

ρ
(

FU−1
)
< 1 and let F̃ : R0+ → Rn×n be uniformly bounded piecewise continuous and asymptotically

convergent to F̃e ∈ Rn×n. Then, there exists some norm-dependent real constant Ka ≥ 1 such that

F + F̃ − U : R0+ → Rn×n is stable provided that sup
t∈R0+

‖ F̃(t)‖ <
ρ(F−U)

Ka
.

If, furthermore, F̃(t)≻− F; ∀t ∈ R0+ then the differential system
.
y(t) =

(
F + F̃(t)− U

)
y(t) is positive

in the sense that it has a solution trajectory within the first open orthant of the state space for any initial condition

y(0) = y0≻ 0.

Proof. Since −U ∈ Mn×n
E , F(≻ 0) ∈ Rn×n and ρ

(
FU−1

)
< 1 then (F − U) ∈ Mn×n

E so that it has a

maximal real eigenvalue which is stable since (F − U) is stable since −U is stable and ρ
(

FU−1
)
< 1.

Thus, the minus stability abscissa of (F − U) is also its spectral radius, that is, ρa(F − U) = ρ(F − U)

and ‖e(F−U)t‖ ≤ Kae−ρt for any t ∈ R and some Ka ≥ 1. If sup
t∈R0+

‖ F̃(t)‖ <
ρ(F−U)

Ka
for such an existing

norm-dependent real constant Ka, then one has that the time-varying matrix
(

F + F̃(t)− U
)

is stable

from Lemma 1 and it converges asymptotically to the stability matrix
(

F + F̃e − U
)

. On the other hand,

the differential system
.
y(t) =

(
F + F̃(t)− U

)
y(t) has a unique solution for any given y(0) = y0 ∈ Rn

given by:

y(t) = e−Uty0 +
∫ t

0
e−U(t−τ)

(
F + F̃(τ)

)
y(τ)dτ (45)

Since −U ∈ Mn×n
E then e−Ut ≻ 0 for any t ∈ R0+ [12]. Now, note by direct inspection of

Equation (45) that
(
[y0≻0] ∧

[
F̃(t)≻ − F; ∀t ∈ R0+

])
⇒ (y(t)≻ 0 ; ∀t ∈ R0+) . �

Remark 7. A practical implementation of the vaccination control law Equations (31)–(33) is to choose the

design constants εi for i ∈ n being very close to zero and to make null all the proportional vaccination gains

K0
ij(t) at patch i for the crossed susceptible information from other patches j 6= i and any t ≥ ti in the event that

S(ti) < εi at some time instant ti. In this way, the maximum number of switches is n, the last eventual one

occurring in a finite time Tf . Then, the stability conditions of Theorem 8 are simplified to simpler conditions for

a time-invariant system on
[

Tf , +∞
)

by deleting the conditions sup
t∈R0+

‖ F̃(t)‖ <
ρ(F−U)

Ka
and F̃(t) → F̃e as

t → ∞ , since F̃(t) = F̃e; ∀t ≥ Tf and the finite time interval
[
0 , Tf

)
is irrelevant for stability analysis, and

modifying the condition ρ
(

FU−1
)
< 1 to ρ

(
(F + Fe)U−1

)
< 1.
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5. Simulation Examples

This section contains some numerical simulation examples related to the results presented in the

previous sections. The examples are concerned with the existence of equilibrium points along with the

effect of the vaccination control strategies proposed in Section 4 on the epidemic spreading. In this

case, it will be shown how the vaccination controllers are able to reduce the incidence of an infection

within a population.

Example 1. Consider the SIR patchy system defined by three patches or populations, n = 3, with parameters

given by:

d =
[
dX

i

]
=
[

1/3 1/3.1 1/3.2
]
years−1,β = [βi] =

[
3.24 3.08 3.16

]
× 10−2

Λ = 30d, γ = [γi] =
[

1.78 1.82 1.75
]

in units of week−1 except otherwise indicated. The symbol dX stands for any parameter dS, dI , dR. Notice that

it is very typical that different outbreaks of the same epidemic have different reproduction numbers [34,35]

since the spreading of the epidemic, and therefore its severity, depends on many factors such as the geographical

distribution of the individuals, the probability of an infected individual contact a healthy one, etc. The initial

conditions are given by:

S1(0) = 25; I1(0) = 10; R1(0) = 0

S2(0) = 30; I2(0) = 10; R2(0) = 0

S3(0) = 20; I3(0) = 5; R3(0) = 0

while the travel matrices are given by:

A =




0 0.2 0.3

0.16 0 0.3

0.35 0.14 0


, B =




0 0.22 0.4

0.15 0 0.05

0.15 0.15 0


, C =




0 0.17 0.25

0.3 0 0.12

0.3 0.2 0




The dynamics of the system without vaccination is depicted in Figures 1–3:
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Figure 1. Evolution of the susceptible within each patch without vaccination.
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Figure 2. Evolution of the infectious within each patch without vaccination.

 

10

0 0 321

1

2

3

89789
900

Figure 3. Evolution of the immune within each patch without vaccination.

From Figures 1–3 it can be observed that the above parameters correspond to the case when

the reproduction number is less than unity, R0 < 1. Thus, the solution trajectory of the system is

non-negative, remains globally bounded and the disease-free equilibrium point is asymptotically

stable, as claimed in Theorem 3 (iii). Moreover, Id f i = 0 and Rd f i = 0 for i = 1, 2, 3 while the values of

Sd f i are provided in Table 1. In this way, Table 1 displays and compares the value of the equilibrium

points obtained from the numerical simulation and theoretically from Equations (10) and (11).

Table 1. Simulated and calculated values for the vaccination-free, disease-free equilibrium point.

Theoretical Value Simulated Value

Sd f 1 29.383 29.377
Sd f 2 33.804 33.796
Sd f 3 26.731 26.725

Table 1 shows a good agreement between the theoretical values and the ones obtained by

simulation, confirming Theorem 1 results. The total population is given by NT = 89.897. Furthermore,

we add now a feedback vaccination term of the form (2) with V0 = 0.9Λ, K = A. The evolution of the

system with this control action is displayed in Figures 4–6.
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Figure 4. Evolution of the susceptible within each patch with vaccination.

 

Figure 5. Evolution of the infectious within each patch with vaccination.

 

Figure 6. Evolution of the immune within each patch with vaccination.

In this case, the infectious again vanish asymptotically while the disease-free equilibrium point

location is contained in Table 2.
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Table 2. Simulated and calculated values for disease-free equilibrium point with vaccination.

Disease-free Eqilibrium Point Theoretical Value Simulated Value

Sd f 1 1.186 1.186
Sd f 2 1.461 1.461
Sd f 3 1.027 1.027
Rd f 1 24.410 24.412
Rd f 2 29.526 29.528
Rd f 3 32.652 32.655

The total population obtained by numerical simulation is NT = 90.268. As it happened in the

previous case, the Table 2 confirms the results provided in Theorem 1 regarding the disease-free

equilibrium point location. Moreover, it is verified that the total population at equilibrium does not

depend on the particular value of vaccination.

Example 2. Now, the value of β is increased eight times the value of Example 1 to obtain:

β = [βi] = 8
[

3.24 3.08 3.16
]
× 10−2

so that the reproduction number is now larger than unity, R0 > 1. In this case, the disease-free equilibrium

point is unstable and an asymptotically stable endemic equilibrium point appears. The following Figures 7–9

display the evolution of the system in this case when no vaccination is applied.

 

1
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3

26890

2101630832438

10

10
Figure 7. Evolution of the susceptible in all patches when R0 > 1.
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Figure 8. Evolution of the infectious in all patches when R0 > 1.
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Figure 9. Evolution of the immune in all patches when R0 > 1.

It can be observed that the infectious do not vanish now. The endemic equilibrium point

is given by (Send1, Send2, Send3) = (7.61, 9.26, 8.36), (Iend1, Iend2, Iend3) = (4.03, 3.19, 2.70), and

(Rend1, Rend2, Rend3) = (16.40, 18.89, 19.67). A series of numerical experiments are conducted now

to analyze the effect of parameters and initial conditions in the location of the endemic point. Thus,

the initial values of the populations are now changed to:

S1(0) = 55; I1(0) = 15; R1(0) = 2

S2(0) = 40; I2(0) = 8; R2(0) = 1

S3(0) = 22; I3(0) = 5; R3(0) = 2

The evolution of the system with different initial conditions is shown in Figures 10–12.
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Figure 10. Evolution of the susceptible in all patches when R0 > 1 and different initial conditions.
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Figure 11. Evolution of the infectious in all patches when R0 > 1 and different initial conditions.
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Figure 12. Evolution of the immune in all patches when R0 > 1 and different initial conditions.

The endemic equilibrium point is given by the same values indicated before. Thus, the location of

the endemic equilibrium point is not altered by a change in the initial values. Afterwards, the value

of β3 is perturbed (while the others β1 and β2 remain unchanged) and the location of the endemic

equilibrium point for each case is provided in Table 3.
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Table 3. Location of the endemic equilibrium point for different values of β3.

β3 (Send1,Send2,Send3) (Iend1,Iend2,Iend3) (Rend1,Rend2,Rend3)

28.44 × 10−2 (7.51, 9.22, 7.57) (4.00, 3.10, 2.96) (16.53, 18.85, 20.40)
37.92 × 10−2 (7.29, 9.13, 5.86) (3.93, 2.91, 3.53) (16.79, 18.74, 21.95)
63.20 × 10−2 (7.00, 9.00, 3.61) (3.84, 2.67, 4.28) (17.15, 18.61, 23.99)
94.80 × 10−2 (6.84, 8.92, 2.44) (3.80, 2.55, 4.67) (17.34, 18.55, 25.06)

As it can be deduced from Table 3, the location of the endemic equilibrium point changes according

to the change in β3. To conclude this example, consider now the values of (β1, β2, β3) included in

Table 4 and the corresponding endemic points.

Table 4. Location of the endemic equilibrium point for β = 29.92 × 10−2.

(β1,β2,β3) (Send1,Send2,Send3) (Iend1,Iend2,Iend3) (Rend1,Rend2,Rend3)

(β, β, β) (7.56, 8.83, 8.16) (4.00, 3.27, 2.74) (16.46, 19.19, 19.91)
(10β, β, β) (0.83, 8.37, 7.31) (6.09, 2.98, 2.20) (20.95, 23.52, 20.87)
(β, 10β, β) (7.01, 0.92, 7.65) (3.61, 5.23, 2.51) (17.11, 24.86, 21.24)
(β, β, 10β) (6.61, 8.42, 0.90) (3.73, 2.48, 5.16) (17.62, 18.76, 26.50)

It can be observed in Table 4 how the location of the endemic point changes as the value 10β

moves from one position to another one within the vector [ β1, β2, β3]. Overall, it is concluded that

the endemic point does not change with variations of initial conditions, but it generally does with

parameter changes.

Example 3. Finally, consider the Hong Kong influenza epidemic in New York City in 1968–1969. This influenza

outbreak is modeled by an SIR epidemic model with the following parameters [36]:

β = 3.24 × 10−7, γ = 1.78

in units of week−1. The patchy environment is inspired on this real case and it is composed of three cities

(or patches), n = 3, with spreading parameters similar to the above ones and given by:

Λ = [Λi] =
[

5 4.5 5.5
]
× 103, β = [βi] =

[
3.24 3.18 3.08

]
× 10−7

dX =
[
dX

i

]
=
[

1/70 1/71 1/72
]
years−1, γ = [γi] =

[
1.78 1.82 1.75

]

in units of week−1 except otherwise indicated and the symbol dX stands for dS, dI , dR. The initial conditions for

the populations are given by the 1970 New York City census as:

S1(0) = 7, 960, 000; I1(0) = 15, 000; R1(0) = 0

while the initial conditions for the remaining patches are given, similarly, by:

S2(0) = 8, 600, 000; I2(0) = 20, 000; R2(0) = 0

S3(0) = 7, 200, 000; I3(0) = 19, 000; R3(0) = 0

The travel matrices are defined by:

A = 10−2 ×




0 1.2 0.3

1.1 0 1

1.2 1.4 0


, B = 10−2 ×




0 1.12 0.4

1.22 0 0.85

1 1.14 0


, C = 10−2 ×




0 0.78 0.56

1 0 0.95

1.2 0.94 0
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The aim of this example is to show the effect of the vaccination strategies introduced in Section 4.

The evolution of the system without vaccination is displayed in Figures 13–15.
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Figure 13. Evolution of the susceptible subpopulation within each patch.
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Figure 14. Evolution of the infectious subpopulation within each patch.
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Figure 15. Evolution of the immune subpopulation within each patch.

As it can be observed in Figure 14, the influenza outbreak reaches a peak during the spreading of

the infection. In order to reduce the severity of the outbreak, the two vaccination strategies proposed

in Section 4 are now applied and compared. To this end, consider the control matrices given by:

K = A + Diag
( [

10−2 , 0.6 × 10−2 , 0.9 × 10−2
] )

; Mi = 5 × 105; M0 = 0.9Λ; V0 = M0

It can be readily seen that the above selection satisfies the constraints imposed by (30). Moreover,

the thresholds to be used in Strategy 2 are given by ε1 = 4.3 × 106; ε2 = 5.1 × 106; ε3 = 4.7 × 106.

The Figures 16–21 display the evolution of various infectious subpopulations in agreement with the

implemented vaccination controls. The Figure 16, Figure 18, and Figure 20 show the evolution of

the infectious subpopulation at each patch without vaccination and when both vaccination strategies

introduced in Section 4 are employed. Furthermore, the Figure 16, Figure 18, and Figure 20 show the

vaccination commands generated by both strategies at each patch. It can be seen that the solution

trajectory of the infectious is non-negative and globally bounded as it is proved in Theorem 4. From

Figure 16, Figure 18, and Figure 20 it can also be concluded that the application of a judicious

vaccination campaign significantly reduces the peak caused by the outbreak. In addition, Figure 17,

Figure 19, and Figure 21 show that Strategies 1 and 2 generate very similar infectious subpopulation

profiles, where the plots for both cases are almost superimposed. However, the vaccination law profile

through time is different for Strategies 1 and 2, fact that can be observed in Figure 17, Figure 19, and

Figure 21. During the first weeks, both control laws are the same but when the susceptible reach the

corresponding prescribed threshold, the susceptible feedback term of Strategy 2’s vaccination law is

switched off and only a constant vaccination is applied. The shutting down of the feedback term causes

a noticeable decrease of the control command while the evolution of the infectious subpopulations is

similar. Consequently, the vaccination Strategy 2 is able to reduce the outbreak peak, saving vaccination

effort. Notice that, in this experiment, each patch disposes of full information of the remaining ones

since the values of the susceptible subpopulation at the others patches are used to calculate the amount

of vaccination according to Equations (31)–(33).
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Figure 16. Evolution of the infectious subpopulation within patch 1 under different

vaccination strategies.
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Figure 17. Vaccination law in patch 1 for Strategies 1 and 2.
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Figure 18. Evolution of the infectious subpopulation within patch 2 under different

vaccination strategies.
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Figure 19. Vaccination law in patch 2 for Strategies 1 and 2.



Symmetry 2019, 11, 430 30 of 42

 



















2
23

2
1312

2

109000
1010600
101010

0 2 4 6 8 10 12 14
0

500

1000

1500

2000

Time (weeks)

Va
cc

in
at

io
n 

in
 P

at
ch

 3

Vaccination strategy 1
Vaccination strategy 2

Figure 20. Evolution of the infectious subpopulation within patch 3 under different

vaccination strategies.

 



















2
23

2
1312

2

109000
1010600
101010

0 2 4 6 8 10 12 14
0

500

1000

1500

2000

Time (weeks)

Va
cc

in
at

io
n 

in
 P

at
ch

 3

Vaccination strategy 1
Vaccination strategy 2

Figure 21. Vaccination law in patch 3 for Strategies 1 and 2.

Now, we will change the matrix K so that it takes the following upper-triangular form:

K =




10−2 0.1A12 0.1A13

0 0.6 × 10−2 0.1A23

0 0 0.9 × 10−2
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In this case, the first patch has available information of the second and third patches, the second

patch has only information of the third patch which has only self-information. This structure implies

for the first patch, for instance, that the vaccination law considers an amount of 10% of individuals

coming into the patch from the second and third ones in order to calculate the total administered

vaccination. It is important to notice the difference with respect to the previous example, where all the

amount of travelling individuals (coming in and going out of the patch) is considered to calculate the

vaccination. The illness evolution is displayed in the various Figures 22–27. In particular, the evolution

of the infectious under these circumstances is depicted for each patch in Figure 22, Figure 24, and

Figure 26. On the other hand, the vaccination generated by each one of the strategies is displayed for

each patch in Figure 23, Figure 25, and Figure 27. The main conclusions drawn before regarding the

effect of applying an appropriate vaccination to individuals as well as those related to the comparison

of Strategies 1 and 2 hold here too. However, in this case the peak in the infectious in reduced less

by applying vaccination than in the previous example. The main reason for this issue is that with the

new control matrix, K, the number of administered vaccines is much lower now than in the previous

case. This fact can be observed by comparing the Figures 17 and 23, Figures 19 and 25, and Figures 21

and 27. This result shows the importance of vaccination campaigns in order to control an epidemic

outbreak in a patchy environment.

 

Figure 22. Evolution of the infectious subpopulation within patch 1 under different vaccination

strategies and upper-triangular matrix K.
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Figure 23. Vaccination law in patch 1 for Strategies 1 and 2 with upper-triangular matrix K.
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Figure 24. Evolution of the infectious subpopulation within patch 2 under different vaccination

strategies and upper-triangular matrix K.
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Figure 25. Vaccination law in patch 2 for Strategies 1 and 2 with upper-triangular matrix K.
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Figure 26. Evolution of the infectious subpopulation within patch 3 under different vaccination

strategies and upper-triangular matrix K.
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Figure 27. Vaccination law in patch 3 for Strategies 1 and 2 with upper-triangular matrix K.

6. Conclusions

This paper has considered a SIR epidemic model in a patchy environment, each patch being

assumed to have its own health or medical centre. It has been assumed that there are potential travellers

coming into and leaving each patch which are interchanged with the remaining patches. It has been

assumed that the vaccination controls are exerted at each community health centre while either the

total information or a partial information of the total subpopulations, including the interchanging ones,

is shared by all the set of health centres of the whole environment under study. In this way, vaccination

control laws involving constant terms and feedback information on the susceptible subpopulations

have been proposed and discussed to be administrated at each health centre. In the cases that not all

the information of the subpopulations distributions at other patches is known by the health centre

of each particular patch, the feedback vaccination rule is considered to have a decentralized nature.

Since there the control laws involved crossed gains to take into account or not (if such gains are

zeroed) the couplings between patches, the vaccination action can be of either a centralized or of a

(totally or partially) decentralized nature. The paper has also investigated the existence, allocation

(depending on the vaccination control gains) and uniqueness of the disease-free equilibrium point as

well as the existence of at least an attainable and stable endemic equilibrium point. A formal analytic

characterization of the potential whole set of endemic equilibrium points has also being given based

on algebraic mathematical tools for the solvability of algebraic systems of equations.
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Appendix A

Proof of Theorem 3. Note that U is nonsingular since it has non-positive off-diagonal entries with the

sum of all the entries per column being positive. Thus, (−U) ∈ Mn×n
E is non-singular matrix with

U−1 ≻ 0 so that (−U) is a stability matrix. Property (i) has been proved. On the other hand, note

that the Jacobian matrix of the linearized system solution trajectory of the infectious subpopulations

around the disease-free equilibrium point is (F − U) where (−U) is a Metzler stability matrix from

Property (i). Therefore, such a linearized system is globally exponentially stable if F = 0, that is if

βi = 0 (fully absence of illness) ; ∀i ∈ n. Since the constraints βi = 0; ∀i ∈ n remove the quadratic

terms from the model dynamics, it follows also that the stability is asymptotically global for the whole

model. Property (ii) has been proved. Now, note that F − U =
(

In − FU−1
)
(−U) since (−U) is a

Metzler stability matrix, then non-singular, from Property (i). If F = 0, F − U = −U is a stability

matrix and it continuous to be a stability matrix from the continuity of its eigenvalues as functions of

its entries for any F≻0 such that R0 = ρ
(

FU−1
)
< 1. Therefore, the disease-free equilibrium point is

locally asymptotically stable if R0 < 1. It has a critically stable eigenvalue for R0 = 1 and it is unstable

if R0 > 1. Property (iii) has been proved. On the other hand, decompose U = Ud + Uod, where Ud is

the diagonal part of U and Uod is its off-diagonal part. Since Ud and U are non-singular, one gets:

U = Ud + Uod = Ud

(
In + U−1

d Uod

)
(A1)

Note also that the matrix DSS is non-singular from Theorem 1 and it can be decomposed as the

sum of its diagonal DSSd, which is also non-singular, and non-diagonal DSSod, parts to yield:

DSS = DSSd + DSSod = DSSd

(
In + D−1

SSdDSSod

)
(A2)

so that

U−1 =
(

In + U−1
d Uod

)−1
U−1

d ; D−1
SS =

(
In + D−1

SSdDSSod

)−1
D−1

SSd (A3)

Assume that ‖Uod‖2 < 1/‖U−1
d ‖

2
and ‖DSSod‖2 < 1/‖D−1

SSd‖2
. Then, one gets from Banach´s

Perturbation Lemma [13]:

‖U−1‖2 ≤
‖U−1

d ‖
2

1 − ‖U−1
d ‖

2
‖Uod‖2

; ‖D−1
SS ‖2

≤
‖D−1

SSd‖2

1 − ‖D−1
SSd‖2

‖DSSod‖2

(A4)

Then, by using Equations (3), (4)–(8) and Equation (11), since F is diagonal and U−TU−1 is

symmetric, the reproduction number satisfies that:

R0 = ρ
(

FU−1
)
≤ ‖ FU−1‖2 ≤ ‖ F‖2‖U−1‖2 = ρ(F)

√
λmax(U−TU−1) = ρ(F)ρ1/2

(
U−TU−1

)
(A5)

which leads to Equation (16). One gets also from Equation (16) and Equation (A4) that:

R0 = ρ
(

FU−1
)
≤ β max

1≤i≤n
(βir)

‖D−1
SSd‖2

1 − ‖D−1
SSd‖2

‖DSSod‖2

‖Λ − V0‖2‖
(

U−1U−T
)2

‖1/4
2 (A6)

which leads to Equation (17). Property (iv) has been proved. Finally, note from Equation (17) that R02

is minimized if Kij = aij; ∀i, j ∈ n\{1}, implying that DSSod = 0 for any given model parameters and

constant vaccination vector V0. On the other hand, it follows from Equation (17) that R02 = 0, then

R0 = 0, if Λi = Vi0; ∀i ∈ n is the influx of population into the i-th patch. Property (v) is proved. �
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Appendix B

Proof of Theorem 5. One firstly sums up the two first equations of Equation (1), so as to primarily

delete the influence of the disease transmission rates towards a linearization study. Secondly,

one expands the obtained result jointly with the third equation in a single compacted algebraic

system while taking into account Equation (2). Then, one gets that Equations (22)–(23), subject to

Equations (20), (21) and (24), hold. From Theorem 1 (i), the limit total population N∗ is unique for the

disease-free equilibrium point and any endemic attainable existing equilibrium point and this amount

is allocated as first element in the linear system Equation (27). Then, one has to solve the auxiliary

linear system Ax = b in x = x(y) with A and b defined in (26) which gives the endemic equilibrium

points. It is known that there is (at least) one attainable endemic equilibrium point from Theorem 4

(ii) since R0 ≥ 1. Therefore, the above algebraic system has, at least, an attainable endemic solution

and, from the Rouché–Froebenius theorem from Linear Algebra, Equation (25) holds. The whole

set of endemic equilibrium solutions, including the attainable and unattainable ones, has to satisfy

Equation (27). But note that the above algebraic system has only a partial information on the epidemic

model Equations (1)–(2) since it does not include the information on the influence of the disease

coefficient rates because of summing up action on the two first equations of Equation (1) leading to

cancel the nonlinear common term. Therefore, the constraints Equation (28) are got by incorporating

to Equation (27) the second equation of Equation (1) including the nonlinear term excluded from

Equations (22) and (23). So, the particular vector y of the general solution Equation (27) is constrained

to fulfill Equation (28). Property (i) has been proved.

On the other hand, if B is irreducible, one deduces from Theorem 2 (i) that at any attainable

endemic equilibrium point, the limit endemic infectious subpopulations at any patches are nonzero

since if they are zero then there is no endemic infection. So, Property (ii) follows from the proof of

Property (i) with y being restricted to belong to the set Ya. In the same way, Property (iii) follows with

y restricted to belong to Yb since B is irreducible, A − K is irreducible and positive and Vi0 = Λi; ∀i ∈ n

so that the endemic equilibrium infectious population is positive at any patch and the susceptible ones

at all patches are either all of them zero and or all of them nonzero from the first part of Theorem 2 (ii).

Finally, Property (iv) follows under similar arguments from the second part of Theorem 2 (ii) involving

the joint irreducibility of the positive matrices B, A − K and C. �

Proof of Corollary 1. If R0 ≥ 1 then y ∈ R3n always exists such that x = A†b +
(

I3n − A† A
)
y ≻ 0 is an

endemic attainable equilibrium point from Theorem 4 (ii). Then, x = A†b +
(

I3n − A† A
)
y, where y =

y+ y′ for any y′ ∈ Ker
(

I3n − A† A
)
. Since the whole endemic infectious subpopulation being the sum of

all the infection subpopulations in all the patches is non-zero, it holds that E
(
y + A†(b − Ay)

)
≻ 0, that

is, the endemic infectious subpopulation in at least one patch has to be positive. If Bis irreducible, then

the infectious subpopulations at the endemic steady-state are nonzero in all patches since, otherwise,

the infections total endemic equilibrium subpopulation would be identically zero (Theorem 2.1 (i)).

For uniqueness, of such an equilibrium point, the constraints Equation (28) should also hold (Theorem

5 (i)). The necessity of the constraints 1 to 3 for the uniqueness of any existing stable attainable

endemic equilibrium point have been proved and it is also known that such a point always exists since

R0 ≥ 1 (Theorem 4 (ii) and (iii)). Now, group the constraints Equation (28), as components of a vector

β = (β1 , β2 , · · · , βn)
T , resulting the following vector equation:

β = γ1γ2(y)γ3(y) = γ1γ2(y)γ3(y) (A7)

for any y = y + y′ with y′ ∈ Ker
(

I3n − A† A
)
, where
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γ1 =




γT
11

γT
12
...

γT
1n




; γ3(y) =




1/γ31(y)

1/γ32(y)
...

1/γ3n(y)




(A8)

γ2(y) = Diag[γ21(y) , γ22(y), ... , γ2n(y)] (A9)

γT
1i =


dI

i + γi +
n

∑
j( 6=i)=1

bji


eT

n+i −
n

∑
j( 6=i)=1

bije
T
n+j; i ∈ n (A10)

γ2i(y) = eT
i A†b +

(
1 − eT

i A† A
)

y; i ∈ n (A11)

γ3i(y) = eT
i

[
A†b +

(
I3n − A† A

)
y
][

A†b +
(

I3n − A† A
)

y
]T

en+i; i ∈ n (A12)

If the endemic equilibrium solution x is unique for y = y + y′ then y′ ∈ Ker
(

I3n − A† A
)

and

the given constant vector β of coefficient transmission rates satisfies Equation (28) for any y′ ∈

Ker
(

I3n − A† A
)
. If the constraint 3 is fulfilled for some y′ /∈ Ker

(
I3n − A† A

)
then x is not unique and

Equation (28) is violated for y = y + y′. Therefore, the endemic equilibrium solution is unique under

the constraints 1 to 3 if and only if ∆β =
(
∇yTβ

)
∆y 6= 0 for the gradient matrix:

∇yT β =




∂β1
∂y1

∂β1
∂y2

· · · ∂β1
∂y3n

∂β2
∂y1

∂β2
∂y2

. . .
∂β2
∂y3n

· · · . . . . . . . . .
∂βn

∂y1

∂βn

∂y2
· · · ∂βn

∂y3n




(A13)

for any ∆y /∈ Ker
(

I3n − A† A
)
. In other words, and from the equivalence of a logic proposition with its

contra-positive one, if and only if, Ker
(
∇yT β

)
⊆ Ker

(
I3n − A† A

)
. Note that

γ2(y)γ3(y) =




γ21(y)/γ31(y)

γ22(y)/γ32(y)
...

γ2n(y)/γ3n(y)




(A14)

Thus, in order to operate with the needed gradients in a closed form, define also the vector
^
γ2(y)

associated with the matrix γ2(y) and the matrix
^
γ3(y) associated with the vector γ3(y) as follows:

^
γ2(y) =




γ21(y)

γ(y)22
...

γ2n(y)




; γ̂3(y) = Diag[1/γ31(y) , 1/γ32(y), ... , 1/γ3n(y)] (A15)

Since the transposition and Moore–Penrose inversion can be permuted for any matrix,

Equation (A12) can be expressed equivalently as follows:

γ3i(y) =
[
bT A†T

+ yT
(

I3n − AT A†T
) ]

eie
T
n+i

[
A†b +

(
I3n − A† A

)
y
]
; i ∈ n (A16)
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Note from Equations (A8)–(A12) via Equation (A14) subject to Equation (A15) and

Equation (A16) that

∇yTγ1 = 0; ∇yT
^
γ2(y) = Diag

(
1 −

(
A† A

)
11

, 1 −
(

A† A
)

22
, · · · , 1 −

(
A† A

)
3n×3n

)
,

∇yT γ3i(y) = 2
[
bT A†T

eie
T
n+i

(
I3n − A† A

)
− yT

(
I3n − AT A†T

)
eie

T
n+i A

† A
]
,

∇yTγ3(y) = 2




bT A†T
e1eT

n+1

(
I3n − A† A

)
− yT

(
I3n − AT A†T

)
e1eT

n+1 A† A

bT A†T
e2eT

n+2

(
I3n − A† A

)
− yT

(
I3n − AT A†T

)
e2eT

n+2 A† A

...

bT A†T
eneT

2n

(
I3n − A† A

)
− yT

(
I3n − AT A†T

)
eneT

2n A† A




(A17)

and direct gradient calculations yield:

(
∇yTβ

)
∆y =

(
∇yT [γ1γ2(y)γ3(y)]

)
∆y = γ1.∇yT [γ2(y)γ3(y)]∆y

= γ1

(
γ2(y).∇yTγ3(y) +∇yT

[
^
γ2(y)

]
^
γ3(y)

)
∆y

(A18)

Then, the endemic equilibrium point is unique if and only if

Ker

(
γ1

(
γ2(y).∇yTγ3(y) +∇yT

[
^
γ2(y)

]
^
γ3(y)

))
⊆ Ker

(
I3n+1 − A† A

)
(A19)

provided that the constraints 1–3 hold. �

Proof of Theorem 6. For the endemic equilibrium point to exist and be attainable, there exists a

non-negative real number ν such that S∗
end = νI∗end. If n = 1 the travel matrices in Equation (1) are

zeroed and one has at the endemic equilibrium point that:

Λ − βν I∗
2

end − dSνI∗end − V = 0 (A20)

βν I∗
2

end −
(

dI + γ
)

I∗end = 0 (A21)

γ I∗end − dRR∗
end + V = 0 (A22)

One gets from Equation (A21) for I∗end 6= 0, since ν =
S∗

end
I∗end

that I∗end = dI+γ
βν =

(dI+γ)I∗end
βS∗

end
leading

to S∗
end = dI+γ

β . Replacing this value in Equation (A20) leads to I∗end =
β(Λ−V)−dS(dI+γ)

β(dI+γ)
. Note that

S∗
end > 0 and also that if I∗end ≥ 0, then v > 0 and I∗end ≥ 0 (respectively, I∗end > 0) if β ≥ βc

(respectively, β > βc). It is direct to see that the disease-free equilibrium point is S∗
d f =

Λ−V
dS , I∗d f = 0

and R∗
d f = V

dR , and that β ≥ βc is fully equivalent to R0 =
S∗

d f

S∗
end

≥ 1 implying the attainability

of the endemic equilibrium point. Note from Equation (A22) that R∗
end =

V+γI∗end

dR which leads to

R∗
end =

β(dI+γ)V+γ[β(Λ−V)−dS(dI+γ) ]
βdR(dI+γ)

.

After replacing the calculated endemic infectious amount. Note also that:

(1) If R0 = 1 then the endemic equilibrium point is confluent with the disease-free one which is

locally asymptotically stable.

(2) If R0 < 1 then the endemic equilibrium point is not attainable since it has negative component.

(3) If R0 < 1 then the disease- free equilibrium point is locally asymptotically stable since the

state-solution trajectory of the Jacobian matrix at such a point is a stability matrix. It is also

globally asymptotically stable since: (a) it is the unique attainable equilibrium point which is,
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furthermore, locally asymptotically stable; (b) the total population is bounded; and (c) all the

subpopulations are non-negative for all time implying that all of them are bounded for all time

as result; (d) if it would be potentially surrounded by some limit cycle, such a cycle should be

unstable since the critical point is asymptotically stable.

On the other hand, if V(t) = V0 + KS(t) then S∗
d f =

Λ−V∗
d f

dS =
Λ−V0−KS∗

d f

dS leading to S∗
d f =

Λ−V0

dS+K
,

and R∗
d f =

V∗
d f

dR =
V0+KS∗

d f

dR =
V0+K(Λ−V0)/(dS+K)

dR leading to R∗
d f = KΛ+dSV0

dR(dS+K)
. If V0 = K = 0 then

S∗
d f = Λ

dS and R∗
d f = 0 The result has been fully proved after calculating the total equilibrium

population by summing up the susceptible and immune equilibrium subpopulations. �

Appendix C

Proof of Theorem 7. Note that there exists U−1
un ≻ 0, what is obvious since (−Uun) is a Metzler

stability matrix. If ρ
(

U−1
un Ũ

)
< 1then there exists

(
Uun + Ũ

)−1
=
(

Uun

(
I3n + U−1

un Ũ
) )

−1 =
(

I3n + U−1
un Ũ

)−1
U−1

un . Thus,

R0c = ρ
(

FcU−1
c

)
= ρ

[(
Fun + F̃

)(
Uun

(
I3n + U−1

un Ũ
) )−1

]
= ρ

[(
Fun + F̃

)
M U−1

un

]
(A23)

where M =
(

I3n + U−1
un Ũ

)−1
= U−1

c Uun. Since M
(

I3n + U−1
un Ũ

)
=
(

I3n + U−1
un Ũ

)
M = I3n then

M = I3n − U−1
un ŨM = I3n − U−1

un Ũ
(

I3n + U−1
un Ũ

)−1
= I3n − U−1

un ŨUun (A24)

Thus, the following matrix equalities hold from:

FcU−1
c = Fun MU−1

un + F̃MU−1
un =

(
Fun + F̃

)
U−1

un

(
I3n − ŨU−1

c

)
(A25)

Now, one has

(
I3n + U−1

un Ũ
)−1

=
(

U−1
un Uun + U−1

un Ũ
)−1

=
(

Uun + Ũ
)−1

Uun = U−1
c Uun (A26)

−
(

Fun + F̃
)

U−1
un Ũ

(
I3n + U−1

un Ũ
)−1

= −
(

Fun + F̃
)

U−1
un ŨU−1

c Uun (A27)

and one has from Equation (A27) that:

R0c ≤ R0un if

0 ≺ Fun U−1
un

(
I3n − ŨU−1

c

)
+ F̃U−1

un

(
I3n − ŨU−1

c

)
≺ Fun U−1

un (A28)

Note that Equation (A28) is equivalent to:

− Fun U−1
un ≺ −Fun U−1

un ŨU−1
c + F̃U−1

un

(
I3n − ŨU−1

c

)
≺ 0 (A29)

then to

− Fun U−1
un

(
I3n − ŨU−1

c

)
≺ F̃U−1

un

(
I3n − ŨU−1

c

)
≺ Fun U−1

un ŨU−1
c (A30)

The constraints Equation (A30) can be written in equality form as follows:

− Fun U−1
un

(
I3n − ŨU−1

c

)
+ M1 = F̃U−1

un

(
I3n − Ũ

)
= Fun U−1

un ŨU−1
c − | M2| (A31)
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for some given real 3n matrices M1 ≻ 0 and M2 ≻ 0. Since
(

I3n + U−1
un Ũ

)−1
= U−1

c Uun, note that

Ũ U−1
c Uun = Ũ

[
U−1

un

(
Uun + Ũ

)]−1
= Ũ

(
I3n + U−1

un Ũ
)−1

(A32)

so that, if ρ
(

U−1
un Ũ

)
< 1, one has that

(
I3n + U−1

un Ũ
)−1

exists and

I3n − ŨU−1
c Uun = I3n − Ũ

(
Uun + Ũ

)−1
Uun = I3n − Ũ

(
I3n + U−1

un Ũ
)−1

(A33)

is also nonsingular if ρ
(

ŨU−1
c

)
= ρ

[
Ũ
(

I3n + U−1
un Ũ

)−1
]
< 1. From Banach Perturbation Lemma [13],

‖Ũ
(

Uun + Ũ
)−1

Uun‖
2
= ‖Ũ

(
I3n + U−1

un Ũ
)−1

‖
2
≤ ‖Ũ‖2

1

1 − ‖Ũ‖2‖U−1
un ‖2

< 1 (A34)

that is, if ‖Ũ‖2 < 1/2 ‖U−1
un ‖2 which ensures both the previous condition ρ

(
U−1

un Ũ
)
< 1 guaranteeing

that
(

I3n + U−1
un Ũ

)−1
exists and that

(
I3n − ŨU−1

c Uun

)−1
=

(
I3n − Ũ

(
I3n + U−1

un Ũ
)−1

U−1
un

)−1

exist.

Thus, since , Equation (A31) is equivalent to

−Fun U−1
un + M1

(
I3n − Ũ

(
I3n + U−1

un Ũ
)−1

U−1
un

)−1

= F̃U−1
un

= Fun U−1
un ŨU−1

c

(
I3n − Ũ

(
I3n + U−1

un Ũ
)−1

U−1
un

)−1

− | M2|

(
I3n − Ũ

(
I3n + U−1

un Ũ
)−1

U−1
un

)−1 (A35)

Recovering again the matrix inequality form for Equation (A35) and Ũ U−1
c = Ũ

(
I3n + U−1

un Ũ
)

,

since M1 and M2 are arbitrary, yields that the condition 4 is equivalent to Equation (A35), which is

also equivalent to Equation (A28), since U−1
un ≻ 0 if ‖Ũ‖2 < 1/2 ‖U−1

un ‖2. Property (i) has been proved.

Now, assume thatF̃ = −
∣∣∣F̃
∣∣∣ ≺ 0. Then, Equation (A35) holds, and then Equation (A28) also holds, if,

for the given pair (Fun , Uun), the pair
( ∣∣∣ F̃

∣∣∣ = −F , Ũ
)

fulfils the matrix constraints:

− Fun U−1
un Ũ

(
I3n + U−1

un Ũ
)(

I3n − Ũ
(

I3n + U−1
un Ũ

)−1
U−1

un

)−1

Uun ≺
∣∣∣F̃
∣∣∣ ≺ Fun (A36)

Since FunU−1
un ≻ 0 and |F|U−1

un ≻ 0 then the matrix inequalities Equation (A36) imply that Property

(ii) holds since R0c ≤ R0un and, furthermore, R0c < R0un if either FunU−1
un or

∣∣∣F̃
∣∣∣U−1

un is irreducible.

In the last case, one (but not both) of the symbols ′′ ≺′′ might be replaced with ′′≺′′. This result is a

direct application of Corollary 1.2 in [12] since if A and B are real matrices of the same order with

A≻B( 6= A) ≻ 0, equivalently, A ≻ B ≻ 0 then the maximal eigenvalue of A is larger than that of B if

A is irreducible but they can be identical if A is reducible. �

References

1. Li, M.Y.; Shuai, Z. Global stability of an epidemic model in a patchy environment. Can. Appl. Math. Q. 2009,

17, 175–187.

2. Wang, W.; Zhao, X.Q. An epidemic model in a patchy environment. Math. Biosci. 2004, 190, 97–112.

[CrossRef] [PubMed]

3. Muroya, Y.; Enatsu, Y.; Kuniya, Y. Global stability of extended multi-group SIR epidemic models with

patches through migration and cross patch infection. Acta Math. Sci. 2013, 33, 341–3612. [CrossRef]

http://dx.doi.org/10.1016/j.mbs.2002.11.001
http://www.ncbi.nlm.nih.gov/pubmed/15172805
http://dx.doi.org/10.1016/S0252-9602(13)60003-X


Symmetry 2019, 11, 430 41 of 42

4. Iggidr, A.; Sallet, G.; Tsanou, B. Global stability analysis of a metapopulation SIS epidemic model.

Math. Popul. Stud. 2012, 19, 115–129. [CrossRef]

5. Jin, Y.; Wang, W. The effect of population dispersal on the spread of a disease. J. Math. Anal. Appl. 2005, 308,

343–364. [CrossRef]

6. Sattenspiel, L.; Dietz, K. A structured epidemic model incorporating geographic mobility among regions.

Math. Biosci. 1995, 128, 71–91.

7. Takaguchi, T.; Lambiotte, R. Sufficient conditions of endemic threshold on metapopulation networks. arXiv

2015, arXiv:1410.5116v2. [CrossRef]

8. Chalub, F.A.C.C.; Costa, T.J.; Patricio, P. Migrations, vaccinations and epidemic control. arXiv 2017,

arXiv:1712.07918v1.

9. Khaleghian, P. Decentralization and public services: The case of immunization. Soc. Sci. Med. 2004, 59,

163–183. [CrossRef]

10. Singh, M.G. Decentralised Control; North-Holland Systems and Control Series; North Holland Publishing

Company: New York, NY, USA, 1981; Volume 1.

11. Berman, A.; Plemmons, R.J. Nonnegative Matrices in the Mathematical Sciences; Academic Press: New York, NY,

USA, 1979.

12. Kaczorek, T. Positive 1D and 2D Systems; Communications and Control Engineering Series; Springer: London,

UK, 2002.

13. Ortega, J.M. Numerical Analysis; Academic Press: New York, NY, USA, 1972.

14. de la Sen, M.; Agarwal, R.P.; Nistal, R.; Alonso-Quesada, S.; Ibeas, A. A switched multicontroller for an

SEIADR epidemic model with monitored equilibrium points and supervised transients and vaccination

costs. Adv. Differ. Equ. 2018, 2018, 390. [CrossRef]

15. Nistal, R.; de la Sen, M.; Alonso-Quesada, S.; Ibeas, A. On a new discrete SEIADR model with mixed controls:

Study of its properties. Mathematics 2019, 7, 18. [CrossRef]

16. Alonso-Quesada, S.; de la Sen, M.; Nistal, R. On vaccination strategies for a SISV epidemic model

guaranteeing the nonexistence of endemic solutions. Discr. Dyn. Nat. Soc. 2018, 2018, 9484121. [CrossRef]

17. Xia, W.; Kundu, S.; Maitra, S. Dynamics of a delayed SEIQ epidemic model. Adv. Differ. Equ. 2018, 2018, 36.

[CrossRef]

18. Barambones, O.; Garrido, A.J.; Garrido, I. Robust speed estimation and control of an induction motor drive

based on artificial neural networks. Int. J. Adapt. Control Signal Process. 2008, 22, 440–464. [CrossRef]

19. Bakule, L.; de la Sen, M. Decentralized stabilization of networked complex composite systems with nonlinear

perturbations. In Proceedings of the 2009 International Conference on Control and Automation, Christchurch,

New Zealand, 9–11 December 2009; Volumes 1–3, pp. 2272–2277.

20. Ibeas, A.; de la Sen, M. Robustly stable adaptive control of a tandem of master-slave robotic manipulators

with force reflection by using a multiestimation scheme. IEEE Trans. Cybern. Part B-Cybern. 2006, 36,

1162–1179. [CrossRef]

21. Kiouach, D.; Sabbar, Y. Stability and threshold of a stochastic SIRS epidemic model with vertical transmission

and transfer from infectious to susceptible individuals. Discr. Dyn. Nat. Soc. 2018, 2018. [CrossRef]

22. Lee, C.; Garbett, A.; Wilkinson, D.J. A network epidemic model for online commissioning data. Stat. Comput.

2018, 28, 891–904. [CrossRef]

23. Sabbar, Y.; Kiouach, D. Long-time behavior of stochastic SIQD epidemic model with intervention strategies.

In Proceedings of the International Conference on Fixed Point Theory and Applications ICFPTA´18,

Mohammedia, Morocco, 8 May 2018; pp. 133–136.

24. Shamsi, N.G.; Torabi, S.A.; Shakouri, H.G. An option contract for vaccine procurement using the SIR

epidemic model. Eur. J. Oper. Res. 2018, 267, 1122–1140. [CrossRef]

25. Jia, N.; Ding, L.; Liu, Y.J.; Hu, P. Global stability and optimal control of epidemic spreading on multiplex

networks with nonlinear mutual interaction. Phys. A Stat. Mech. Its Appl. 2018, 502, 93–105. [CrossRef]

26. Kiouach, D.; Boulaasair, L. Stationary distribution and dynamic behaviour of a stochastic SIVR epidemic

model with imperfect vaccine. J. Appl. Math. 2018, 2018. [CrossRef]

27. Das, A.; Pal, M. A mathematical study of an imprecise SIR epidemic model treatment control. J. Appl.

Math. Comput. 2018, 56, 477–500. [CrossRef]

http://dx.doi.org/10.1080/08898480.2012.693844
http://dx.doi.org/10.1016/j.jmaa.2005.01.034
http://dx.doi.org/10.1016/j.jtbi.2015.05.024
http://dx.doi.org/10.1016/j.socscimed.2003.10.013
http://dx.doi.org/10.1186/s13662-018-1839-9
http://dx.doi.org/10.3390/math7010018
http://dx.doi.org/10.1155/2018/9484121
http://dx.doi.org/10.1186/s13662-018-1791-8
http://dx.doi.org/10.1002/acs.984
http://dx.doi.org/10.1109/TSMCB.2006.874693
http://dx.doi.org/10.1155/2018/7570296
http://dx.doi.org/10.1007/s11222-017-9770-6
http://dx.doi.org/10.1016/j.ejor.2017.12.013
http://dx.doi.org/10.1016/j.physa.2018.02.056
http://dx.doi.org/10.1155/2018/1291402
http://dx.doi.org/10.1007/s12190-017-1083-6


Symmetry 2019, 11, 430 42 of 42

28. Alonso-Quesada, S.; de la Sen, M.; Nistal, R. A state feedback vaccination strategy applied to a SISV model

for avoiding endemic equilibrium points. roceedings of the 2018 15th International Conference on Control,

Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 466–473.

29. Brockmann, D.; Helbing, D. The hidden geometry of a complex, network-driven contagion phenomena.

Science 2013, 342, 1337–1342. [CrossRef] [PubMed]

30. Pei, S.; Kandula, S.; Yang, W.; Shaman, J. Forecasting the spatial transmission of influenza in United States.

Proc. Natl. Acad. Sci. USA 2018, 115, 2753–2757. [CrossRef]

31. Okongo, M.O. The local and global stability of the disease free equilibrium in a co infection model of

HIV/AIDS, tubercolosis and malaria. IOSR J. Math. 2015, 11, 33–43.

32. Barnett, S. Matrices in Control Theory with Applications to Linear Programming; Van Nostrand Reinhold

Company: London, UK, 1971.

33. Bellman, R. The stability of solutions of linear differential equations. Duke Math. J. 1943, 10, 643–647.

[CrossRef]

34. van den Driessche, P. Reproduction numbers of infectious disease models. Infect. Dis. Model. 2017, 2, 288–303.

[CrossRef] [PubMed]

35. Biggerstaff, M.; Cauchemez, S.; Reed, C.; Gambhir, M.; Finelli, L. Estimates of the reproduction number for

seasonal, pandemic, and zoonotic influenza: A systematic review of the literature. BMC Infect. Dis. 2014,

14, 480. [CrossRef] [PubMed]

36. Magal, P.; Webb, G. The parameter identification problem for SIR epidemic models: Identifying unreported

cases. J. Math. Biol. 2018, 77, 1629–1648. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1126/science.1245200
http://www.ncbi.nlm.nih.gov/pubmed/24337289
http://dx.doi.org/10.1073/pnas.1708856115
http://dx.doi.org/10.1215/S0012-7094-43-01059-2
http://dx.doi.org/10.1016/j.idm.2017.06.002
http://www.ncbi.nlm.nih.gov/pubmed/29928743
http://dx.doi.org/10.1186/1471-2334-14-480
http://www.ncbi.nlm.nih.gov/pubmed/25186370
http://dx.doi.org/10.1007/s00285-017-1203-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	SIR Epidemic Model in a Patchy Environment Under Constant and Proportional Vaccination Controls 
	Basic Reproduction Number: Attainability of the Endemic Equilibrium versus Instability of the Disease-Free One 
	Use of Available Patch-Crossed Information in Decentralized Vaccination Control Designs 
	Simulation Examples 
	Conclusions 
	
	
	
	References

