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Abstract

A third order quantum perturbation of the stress tensor, and a re-
laxation approximation to represent averaged collisions, are employed
as perturbations of the isentropic model for a collisionless plasma.
The model is self-consistent in the sense that the electric field, which
forms a forcing term in the momentum equation, is determined by
the coupled Poisson equation. As formulated, the model is a reduced
version of the quantum hydrodynamic model for semiconductors. Ex-
istence is demonstrated for the model, which is shown to be equivalent
to a non-standard integro-differential equation. An unusual boundary
condition, with the important physical interpretation of specifying the
quantum potential at the (current) inflow boundary, is identified as
essential for the theory.
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1 Introduction

The quantum hydrodynamic (QHD) model is a moment model, derived from

the Wigner equation. It may be viewed as a quantum corrected version of

the classical hydrodynamic equations, with the stress tensor and the energy

density corrected by O(h̄2) perturbations. Some applications, such as the res-

onant tunnel diode, also involve quantum well potentials. Ancona, Iafrate,

and Tiersten ([2], [1]) derived the expression for the stress tensor, and Grubin

and Kreskovsky formulated a one dimensional version of the model [11]. A

derivation of the general model is carried out by Gardner in [8]. It is of con-

siderable physical and practical importance. An example of this is furnished

by the regions of negative differential resistance detected in the voltage cur-

rent curve associated with the model; closely tied to this is an hysteresis

effect, which has been confirmed by Chen, Cockburn, Gardner, and Jerome

in [3]. Earlier, Kluksdahl, Kriman, Ferry, and Ringhofer [13] had discovered

this effect in the Wigner equation. The QHD model is computationally more

tractable than the Wigner formulation, however.

No complete existence theory is available for the classical or quantum hy-

drodynamic model for semiconductors, either in steady-state or in long time

evolution. The model must be self-consistent in the sense that the electric

field, which forms a forcing term in the momentum equation, is determined
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by the coupled Poisson equation. The classical isentropic model (or, better,

the relaxation perturbation of this model) has been studied self-consistently

by Gamba [6] in steady-state and by Zhang [15] in evolution. Their meth-

ods are completely different. Gamba employs artificial viscosity, while Zhang

proves the convergence of Godunov’s method. Although these reduced clas-

sical models are somewhat idealized in that heat conduction is not taken into

consideration (see [9] and [5] for the simulation of the full classical model),

they are still capable of predicting velocity overshoot. In this paper, we con-

sider the quantum equivalent of such a reduced model, in that we analyze

self-consistently the perturbation of the classical isentropic model by the re-

laxation and quantum stress tensor perturbations in the steady-state case.

We do not consider quantum well applications discussed in [3]. The model

which we study is of physical importance; in fact, a simplification of our

model been characterized as a pure state, single carrier transport model in

[11].

Our approach is completely novel to this application area, in that we

reduce the system to an integro-differential equation, with a set of boundary

conditions, including a nonstandard second order boundary condition, which

is equivalent to specifying the quantum potential at the (current) inflow

boundary. We are able to obtain ‘a priori’ estimates and an existence result

via the Leray-Schauder fixed point theorem. As noted by Irene Gamba [7],
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the technique we use to obtain our pointwise ‘a priori’ estimates is analogous

to division by the dependent variable, and integration along the streamlines of

the Bernoulli function. There is some hope, therefore, of eventually extending

these results to two spatial dimensions.

The quantum perturbation introduces a third order density perturbation

in the momentum equation. Our estimates clearly show that an h̄→ 0 strong

limit is not possible. This is reminiscent, for systems, of the oscillatory disper-

sion phenomenon noticed by Lax and Levermore in [14]. Their fundamental

model was the evolution equation, for which a weak limit was demonstrated

and studied. It is not clear whether a weak limit can be demonstrated for

this steady-state model; as noted earlier, the limiting equations do have a

weak solution [6].

2 Formulation and Summary of Result

We shall present the equations for the simplified QHD model as developed

in [11] and [8]:

ρt + (ρv)x = 0, (1)

(mρv)t + (mρv2 + p(ρ) +Q(ρ))x = −ρφx −
mρv

τ
, (2)

φxx = e(ND −NA − ρ), (3)
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where ρ is the electron density, v the velocity, and φ the electrostatic po-

tential. The pressure function, p = p(ρ), has the property that ρ2p′(ρ) is

strictly monotonically increasing from [0,∞) onto [0,∞). A commonly–used

hypothesis is [4]:

p(ρ) = kργ , γ > 1, k > 0. (4)

Quantum mechanics is represented by the quantum potential [1]:

Q(ρ) = − h̄2

12m
ρ(log(ρ))xx, (5)

where h̄ is the normalized (by 2π) Planck’s constant and m the effective

electron mass. The classical collision term is modeled by the momentum

relaxation time approximation, τ = τ(ρ, ρv) in (2). Assume that τ satisfies

τ(ρ, ρv) ≥ τ0 > 0. (6)

The device domain is the x–interval, I ≡ (0, 1). The given functions ND and

NA are called the density of donors and the density of acceptors, respectively.

They satisfy

ND, NA ∈ L∞(I), ND −NA 6≡ 0. (7)

The constant e > 0 in (3) is the electronic charge unit.

In this paper we investigate the steady-state case ρt = (ρv)t = 0. Then,

after the introduction of the current density j = ρv, the system (1)-(3)
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reduces to

j(x) = const., (8)(
mj2

ρ
+ p(ρ) +Q(ρ)

)
x

= −ρφx −
mj

τ
, (9)

φxx = e(ND −NA − ρ). (10)

Assume that j is a specified positive constant. Since (9) is a third order

ordinary differential equation, and (10) is Poisson’s equation, three boundary

conditions for (9) and two boundary conditions for (10) are prescribed as

follows:

ρ(0) = ρ0, ρ(1) = ρ1, ρ0ρxx(0)− 1
2
ρ2
x(0) = ρ2, (11)

φ(0) = φ0, φ(1) = φ1, (12)

where ρ0, ρ1, and ρ2 are positive constants; φ0 and φ1 are the applied bias

potentials.

The main result of this paper is as follows.

Theorem 1 Assume that

φ1 ≥ φ0 +
e

2
‖ND−NA‖L∞, ρ2 ≥

12m
h̄2

(
mj2

2
+

kγ

γ − 1
ργ+1

0

)
, ‖∂τ

∂ρ
‖L∞ ≤M.

Then, for each j > 0, there exists a classical solution (ρ, φ) of (9)-(12),

satifying the properties that ρ ∈ C3
B(I) and 1

N
≤ √ρ ≤ N for a positive

constant N .

6



In order to prove the above theorem, we first use a Green’s function to

solve Poisson’s equation (10), and then we reduce the system (9)-(10) to an

integro-differential equation. We shall see that the existence of a smooth

solution of the original system is equivalent to that of a smooth solution of

the integro-differential equation.

The solution of (10) with boundary data (12) is given uniquely by

φ = e
∫ 1

0
G(x, ξ)(ND −NA − ρ)dξ + x(φ1 − φ0) + φ0, (13)

where G(x, ξ) is the Green’s function for this problem, and is defined by

G(x, ξ) =
{
x(ξ − 1), x < ξ,
ξ(x− 1), x > ξ.

(14)

We now transform the equation (9) to a second order ordinary differential

equation by integration. Dividing (9) by ρ, we have

−1
ρ

(Q(ρ))x =
(
mj2

2ρ2 +
kγ

γ − 1
ργ−1 + φ

)
x

+
mj

ρτ
. (15)

Since

−1
ρ

(Q(ρ))x =
h̄2

12m

(
(log(ρ))x(log(ρ))xx + (log(ρ))xxx

)

=
h̄2

12m

(1
2

(log(ρ))2
x + (log(ρ))xx

)
x

=
h̄2

12m

( 1
√
ρ

(
ρxx√
ρ
− ρ2

x

2
√
ρ3

)
)
x

=
h̄2

6m

( 1
√
ρ

(
√
ρ)xx

)
x
.
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Then, (15) becomes

h̄2

6m

( 1
√
ρ

(
√
ρ)xx

)
x

=
(
mj2

2ρ2 +
kγ

γ − 1
ργ−1 + φ

)
x

+
mj

ρτ
. (16)

Integrating (16) from 0 to x and using the boundary data (11), we have

h̄2

6m

( 1
√
ρ

(
√
ρ)xx

)
=
mj2

2ρ2 +
kγ

γ − 1
ργ−1 +mj

∫ x

0

dy

ρτ
+ φ

+
h̄2

12m
ρ2

ρ2
0
− mj2

2ρ2
0
− kγ

γ − 1
ργ−1

0 − φ0. (17)

Let w =
√
ρ. By substituting (13) for φ in (17), the system of equations

(8)–(10) reduces to an integro-differential equation with Dirichlet conditions:

h̄2

6m
wxx =

mj2

2w3 +
kγ

γ − 1
w2γ−1 +mjw

∫ x

0

dy

w2τ

+w
(
e
∫ 1

0
G(x, ξ)(ND −NA − w2)dξ + x(φ1 − φ0) + b

)
, (18)

w(0) = w0, w(1) = w1, (19)

where

b =
h̄2

12m
ρ2

ρ2
0
− mj2

2ρ2
0
− kγ

γ − 1
ργ−1

0 , w0 =
√
ρ0, w1 =

√
ρ1.

If w is a smooth solution of (18)-(19), then

2w3
0wxx(0) = ρ2.

That is, the third boundary condition of (11) holds for w. Hence, the ex-

istence of a smooth solution of (8)-(12) is equivalent to that of a smooth

solution of (18)-(19), provided ρ does not vanish on I.

8



3 A Priori Estimates and Proof of Theorem

In this section we study the problem (18)-(19), since it is equivalent to (8)-

(12), for the existence of smooth solutions. First, we show, in the following

lemma, that any solution w of (18)-(19) is nonnegative.

Lemma 1 Assume that the boundary data and given function satisfy the

following:

φ1 ≥ φ0 +
e

2
‖ND −NA‖L∞, ρ2 ≥

12m
h̄2

(
mj2

2
+

kγ

γ − 1
ργ+1

0

)
. (20)

Then, any solution w of (18)-(19) is nonnegative.

Proof Let

η(x) = max{−w(x), 0}.

Then, η ∈ H1
0 (I). Also, ηx = −wx on the set A(0) = {x ∈ I : −w(x) ≥ 0},

whereas ηx = 0 elsewhere.

Multiplying (18) by η(x) and integrating over (0, 1), we have

h̄2

6m

∫ 1

0
η2
x dx =

∫ 1

0
wη
(
e
∫ 1

0
G(x, ξ)(ND −NA)dξ + x(φ1 − φ0) + b

)
dx

+
∫ 1

0
wη
(
mj2

2w4 +
kγw2(γ−1)

γ − 1
+
∫ x

0

mj

w2τ
dy
)
dx

−e
∫ 1

0
wη
(∫ 1

0
Gw2dξ

)
dx. (21)
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From the first condition in (20), we have

e
∫ 1

0
G(ND −NA)dξ + x(φ1 − φ0)

≥ −e‖ND −NA‖L∞
∫ 1

0
|G(x, ξ)|dξ + x(φ1 − φ0)

= x
(
φ1 − φ0 −

e(1− x)
2

‖ND −NA‖L∞
)

≥ x
(
φ1 − φ0 −

e

2
‖ND −NA‖L∞

)
≥ 0.

Note that

−G(x, ξ) > 0, (x, ξ) ∈ I × I.

Thus, ∫ 1

0
−G(x, ξ)w2dξ ≥ 0.

Moreover, by the second condition in (20), b ≥ 0. Therefore, (21) implies that

η = 0; i.e., w ≥ 0. Q.E.D.

Lemma 2 Let f(z), `0 ≤ z < ∞, be nonnegative and nonincreasing such

that

f(`2) ≤ C

(`2 − `1)α
[f(`1)]β, `0 ≤ `1 < `2,

where C, α, and β are positive constants with β > 1. Then

f(`0 + d) = 0,

where

dα = C2
αβ
β−1 [f(`0)]β−1.
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For the proof, see [12, Lemma B.1, p. 63]. An ‘a priori’ upper bound is

obtained in the following lemma.

Lemma 3 Assume that (6), (7), and (20) hold. Then, there exists a positive

constant D, depending only on the boundary data, such that

w(x) ≤ D a.e. in [0, 1]. (22)

Proof For ` ≥ `0 = max{w0, w1}, define

η(x) = max{w(x)− `, 0}.

Then, η(x) ≥ 0 and η ∈ H1
0 (I). Note that ηx = wx on the set A(`) = {x ∈

I; w(x) ≥ `}, whereas ηx = 0 elsewhere.

Multiplying both sides of (18) by η(x) and integrating over (0, 1), we have

h̄2

6m

∫ 1

0
η2
xdx+

kγ

γ − 1

∫ 1

0
w2γ−1ηdx

+
∫ 1

0

(
mj2

2w3 + w
∫ x

0

mj

w2τ
dy − ew

∫ 1

0
G(x, ξ)w2dξ

)
ηdx

≤
∫ 1

0

(
e
∫ 1

0
|G(ND −NA)|dξ + x(φ1 − φ0) + b

)
wηdx

≤ C1

∫ 1

0
wηdx

≤ C1

( ∫ 1

0
w2γ−1ηdx

) 1
2γ−1

(∫ 1

0
ηdx

)2γ−2
2γ−1

≤ kγ

2(γ − 1)

∫ 1

0
w2γ−1ηdx+ C2

∫ 1

0
ηdx,
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where

C1 =
e

8
‖ND −NA‖L∞ + φ1 − φ0 + b,

C2 =
2(γ − 1)
2γ − 1

( 2(γ − 1)
kγ(2γ − 1)

) 1
2γ−1

C
2γ−1

2(γ−1)
1 .

Then, by the Hölder and Poincaré inequalities,

∫ 1

0
η2
xdx ≤

6mC2

h̄2

∫ 1

0
ηdx

=
6mC2

h̄2

∫
A(`)

ηdx

≤ 6mC2

h̄2 [measA(`)]
1
2

( ∫ 1

0
η2dx

) 1
2

≤ 1
2

∫ 1

0
η2
xdx+

18m2C2
2

h̄4 [measA(`)].

Thus, for C3 = 36m2C2
2 ,

‖η‖2
H1

0 (I) ≤
C3

h̄4 [measA(`)].

From this inequality and Sobolev’s inequality, we have, for a fixed constant

Cn and C4 = CnC3,

(∫
A(`)

(w − `)ndx
) 2
n

=
( ∫ 1

0
ηndx

) 2
n

≤ Cn‖η‖2
H1

0 (I) ≤
C4

h̄4 [meas A(`)]

for every positive integer n ≥ 1.

If `0 ≤ `1 < `2, then A(`2) ⊂ A(`1) so that

(`2 − `1)2[measA(`2)]
2
n ≤

( ∫
A(`2)

(w − `1)ndx
) 2
n
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≤
( ∫

A(`1)
(w − `1)ndx

) 2
n

.

Consequently,

(`2 − `1)2[measA(`2)]
2
n ≤ C4

h̄4 [measA(`1)].

That is,

measA(`2) ≤
( √

C4

(`2 − `1)h̄2

)n
[meas A(`1)]

n
2 .

We take n > 2 and apply Lemma 2 to derive that

measA(D) = 0,

where

D =
√
C42

n
n−2

h̄2 + `0.

This implies that w ≤ D a.e. in [0, 1]. Q.E.D.

We have already demonstrated that solutions w are necessarily nonnega-

tive. A positive ‘a priori’ lower bound is proven next.

Lemma 4 Assume that the conditions of Lemma 3 hold. Then, there exists

a constant δ > 0 such that

w(x) ≥ δ > 0, x ∈ [0, 1], (23)

where δ is independent of w.
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Proof Assume that there were not a positive constant δ such that w(x) ≥

δ > 0 for x ∈ [0, 1]. Then, there exist a sequence of solutions {wn} of

(18)-(19) and a sequence {xn} ⊂ (0, 1) such that wn(xn)→ 0 as n→∞.

We claim that the sequence {wn(xn)} goes to zero exponentially. By

the condition (20) in Lemma 1, solutions wn of (18) satisfy the following

inequality

λ1(wn)wn ≤ (wn)xx, (24)

where

λ1(wn) =
3m2j2

h̄2(wn)4
.

Consider the following linear equation:{
wxx = λ1(w̄)w,
w(0) = w0, w(1) = w1,

where w̄ is a constant satisfying 0 < w̄ ≤ D. The solution of the above

equation is

w(x) =
(1− e−2(1−x)

√
λ1(w̄))w0

ex
√
λ1(w̄) − e−(2−x)

√
λ1(w̄)

+
(1− e−2x

√
λ1(w̄))w1

e(1−x)
√
λ1(w̄) − e−(1+x)

√
λ1(w̄)

, (25)

which satisfies the inequality,

w(x) ≤ w0

ex
√
λ1(w̄) − e−(2−x)

√
λ1(w̄)

+
w1

e(1−x)
√
λ1(w̄) − e−(1+x)

√
λ1(w̄)

.

Let w̄ = wn(xn) in (25). Then the solutions represented by (25) decay to

zero exponentially as n→∞. By (24) and the maximum principle, {wn(xn)}

decays also to zero exponentially.
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Using the Green’s function defined by (14), we have an implicit expression

for the solution wn of (18)-(19):

h̄2

6m
wn(x) =

mj2

2

∫ 1

0

G(x, ξ)
(wn(ξ))3dξ +

∫ 1

0
Gwn(ξ)

(∫ ξ

0

mj

w2
nτ
dy
)
dξ

+e
∫ 1

0
Gwn(ξ)

(∫ 1

0
G(ξ, ξ1)(ND −NA − w2

n)dξ1 + ξ(φ1 − φ0) + b
)
dξ

+
∫ 1

0
G
kγw2γ−1

n

γ − 1
dξ + x(w1 − w0) + w0.

By Lemma 3 and the fact that G(x, ξ) < 0 for (x, ξ) ∈ I × I, we have

wn(xn) ≤ 3m2j2

h̄2

∫ 1

0

G(xn, ξ)
(wn(ξ))3dξ + C(D). (26)

Since G(xn, ξ) is a piecewise linear function defined by (14), and { 1
wn(xn)}

goes to∞ exponentially, the improper integral of (26) diverges to −∞. Thus,

by (26), there exists a positive integer N such that wn(xn) < 0 when n ≥ N .

This is impossible because of Lemma 1. Q.E.D.

The final estimate is an L2 bound for the fourth derivative of w.

Lemma 5 Assume that the conditions of Lemma 3 hold and the relaxation

time τ satisfies

‖ ∂τ
∂w
‖L∞ ≤M.

Then, there exists a constant C = C(δ,D) such that

∫ 1

0
w2
xxxxdx ≤

C

h̄4 ,
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where C is independent of w.

Proof Taking the square of both sides of (18), and integrating over (0, 1),

we have
h̄4

36m2

∫ 1

0
w2
xxdx =

∫ 1

0
g2(w)dx,

where g(w) is the right hand side of (18); i.e.,

g(w) =
mj2

2w3 +
kγ

γ − 1
w2γ−1 + w

∫ x

0

mj

w2τ
dy

+w
(
e
∫ 1

0
G(x, ξ)(ND −NA − w2)dξ + x(φ1 − φ0) + b

)
. (27)

It follows from Lemma 3 and Lemma 4 that

∫ 1

0
w2
xxdx ≤

C1

h̄4 , (28)

where C1 = C1(δ,D) is independent of w.

Taking the second derivative of both sides of (18) and multilying by wxxxx,

we have
h̄2

6m

∫ 1

0
w2
xxxxdx = I1 + I2 + I3 + I4,

where

I1 =
∫ 1

0

(
− 3mj

2w4 +
kγ(2γ − 1)
γ − 1

w2(γ−1) + x(φ1 − φ0) + b
)
wxxwxxxxdx

+
∫ 1

0

(∫ x

0

mj

w2τ
dy + e

∫ 1

0
G(ND −NA − w2)dξ

)
wxxwxxxxdx,

I2 =
∫ 1

0

(6mj2

w5 + 2kγ(2γ − 1)w2γ−3
)
w2
xwxxxxdx,
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I3 = 2
∫ 1

0

(
φ1 − φ0 −

mjτ
′

τ2 + e
∫ 1

0
Gx(ND −NA − w2)dξ

)
wxwxxxxdx,

I4 = e
∫ 1

0
(ND −NA − w2)wwxxxxdx.

It follows from (22),(23), (6), and (28) that

|I1|+ |I3|+ |I4| ≤
h̄2

24m

∫ 1

0
w2
xxxxdx+ C2(δ,D)

∫ 1

0
(w2

xx + w2
x + w2)dx

≤ h̄2

24m

∫ 1

0
w2
xxxxdx+

C3(δ,D)
h̄4 .

Recall the interpolation inequality,

w2
x ≤ ν

∫ 1

0
w2
xxdx+ Cν

∫ 1

0
w2dx.

As a consequence of this inequality and (28), we have

|I2| ≤
h̄2

24m

∫ 1

0
w2
xxxxdx+

C4(δ,D)
h̄2 .

Thus, ∫ 1

0
w2
xxxxdx ≤

C(δ,D)
h̄4 ,

where C is independent ofw. Q.E.D.

Some comments are now in order. From Lemma 5, we conclude w ∈ H4(I)

lies in a set with ‘a priori’ bound. Thus, by the Sobolev embedding theorem,

w ∈ C3
B(I) also lies in a set with ‘a priori’ bound. Moreover, by Lemma 3

and Lemma 4, there exists a constant N , depending only on the boundary

data, such that
1
N
≤ w(x) ≤ N, x ∈ [0, 1]. (29)
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The following Lemma is a special case of the Leray-Schauder fixed point

theorem. For the proof, see [10, Theorem 10.3, p. 222].

Lemma 6 Let T be a compact mapping of a Banach space B into itself.

Suppose there exists a constant M such that

‖u‖B ≤M

for all (u, σ) ∈ B × [0, 1] satisfying u = T (u, σ). Then T (u, 1) has a fixed

point.

We are now prepared to give the final arguments.

Lemma 7 Assume that the conditions of Theorem 1 hold. Then, there exists

a solution of (18)-(19).

Proof To apply Lemma 6, we construct an operator Tα : C0,1[0, 1] →

C0,1[0, 1] for a fixed constant α > 0 by solving the linear equation,

{
wxx = 6m2

h̄2 gα(u),
w(0) = w0, w(1) = w1,

(30)

where

gα(u) =
{
g(u), u > α,
g(α), u ≤ α,

for u ∈ C0,1[0, 1] and g(u) is defined by (27).
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The linear equation (30) is uniformly elliptic. For every function u ∈

C0,1[0, 1], there exists a unique solution w = Tα(u) satisfying

‖w‖C1,1 ≤M(α,N1), ‖u‖C0,1 ≤ N1.

That is, Tα maps bounded sets of C0,1[0, 1] into bounded sets of C1,1[0, 1]. By

the Ascoli-Arzela theorem, Tα is compact in C0,1[0, 1]; continuity is routine.

If w satisfies {
wxx = σ 6m2

h̄2 gα(w),
w(0) = w0, w(1) = w1,

for 0 ≤ σ ≤ 1, i.e., w is a solution of w = σTα(w), then it follows from

the previous lemmas that 0 ≤ w ≤ N and ‖w‖C0,1 ≤ N1. By Lemma 6, we

conclude the existence of a fixed point of Tα; i.e., there exists a w such that

{
wxx = 6m2

h̄2 gα(w),
w(0) = w0, w(1) = w1.

By (29), w satisfies

1
N
≤ w(x) ≤ N, x ∈ [0, 1].

In particular, we take α < 1
N

in (30) such that gα(w) = g(w) for 1
N
≤ w ≤ N .

Therefore, such a w solves (18)-(19). Q.E.D.

As a consequence of Lemma 7, Theorem 1 has been proved.
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