5. On a Stochastic Integral Equation.

By Kiyosi Itô.
Mathematical Institute, Nagoya Imperial University.

(Comm. by S. Kakeya, m.I.A., Feb. 12, 1946.)
In his note "Stochastic Integral " ${ }^{1}$) the author has discussed an integral of the type $\int_{0}^{t} f(\tau, \omega) d_{\tau} g(\tau, \omega)$, where ω is a variable taking values in a probability field (Ω, P) and $g(t, \omega)$ is a normalized brownian motion on (Ω, P). This note is devoted to the investigation of a stochastic integral equation:

$$
\begin{equation*}
x(t, \omega)=c+\int_{0}^{t} a(\tau, x(\tau, \omega)) d \tau+\int_{0}^{t} b(\tau, x(\tau, \omega)) d_{\tau} g(\tau, \omega), \tag{1}
\end{equation*}
$$

which is closely related to the researches of Markoff process by many authors, especially by S. Bernstein, ${ }^{2)}$ A. Kolmogoroff, ${ }^{3)}$ and W. Feller.4)

Theorem. Let $a(t, x)$ and $b(t, x)$ be continuous in (t, x) and satisfy
(2) $|a(t, x)-a(t, y)| \leqq A|x-y|$, (3) $|b(t, x)-b(t, y)| \leqq B|x-y|$, where $0 \leqq t \leqq 1$ and $-\infty<x, y<\infty$. Then the integral cquation (1) has one and only one continuous (in t with P-measure 1) solution.

Proof. Firstly we shall find a solution by the method of successive approximation. We define $x_{k}(t, \omega)$ for $k=0,1,2, \ldots$ as follows,

$$
\begin{align*}
& x_{0}(t, \omega) \equiv c \tag{4}\\
& x_{k}(t, \omega)=c+\int_{0}^{t} a\left(\tau, x_{k-1}(\tau, \omega)\right) d \tau+\int_{0}^{\mathrm{t}} b\left(\tau, x_{k-1}(\tau, \omega)\right) d_{\tau} g(\tau, \omega) \tag{5}
\end{align*}
$$

the possibility of these definitions can be verified recursively if we make use of the properties of the stochastic integral shown in S.I..

By (5) we have, for $k=0,1,2, \ldots$.

$$
\begin{gather*}
x_{k+1}(t, \omega)-x_{k}(t, \omega)=\int_{0}^{t}\left(a\left(\tau, x_{k}(\tau, \omega)\right)-a\left(\tau, x_{k-1}(\tau, \omega)\right)\right) d \tau \tag{6}\\
+\int_{0}^{t}\left(b\left(\tau, x_{k}(\tau, \omega)\right)-b\left(\tau, x_{k-1}(\tau, \omega)\right)\right) d_{\tau} g(\tau, \omega) .
\end{gather*}
$$

Since $a(t, x)$ and $b(t, x)$ are continuous, $|a(t, c)|$ and $|b(t, c)|$ are bounded in $0 \leqq t \leqq 1$ by a finite upper bound, say M. Then we have

1) These proceedings Vol. XX. No. 8. p. 519. This paper will be cited as S.I. in the following.
2) S. Bernstein: Equations différrentielles stochastiques, Actuarités Scientifiques 738.
3) A. Kolmogoroff: Uber die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann. 104, p. 415.
4) W. Feller: Zur Theorie der stochastischen Prozesse. (Existenz und Eindeutigkeitssattze.), Math. Ann. 113, p. 113.

$$
\begin{align*}
E\left(x_{1}(t, \omega)-x_{0}(t, \omega)\right)^{2} & \left.\leqq\left(E\left(\int_{0}^{t} a(\tau, c) d \tau\right)^{2}\right)^{\frac{1}{2}}+\left(E\left(\int_{0}^{t} b(\tau, c) d \tau g(\tau, \omega)\right)^{2}\right)^{\frac{1}{2}}\right\}^{2} \tag{7}\\
& =\left\{\left|\int_{0}^{t} a(\tau, c) d \tau\right|+\left(\int_{\Omega} \int_{0}^{t} b(\tau, c)^{2} d \tau P(d \omega)\right)^{\frac{1}{2}}\right\}^{2} \\
& \leqq\left(M t+M t^{\frac{1}{2}}\right)^{2} \leqq 4 M^{2} t .
\end{align*}
$$

In general we can show the following inequalities by mathematical induction for $k=1,2,3, \ldots$,
(8) $\quad E\left(\int_{0}^{t}\left|a\left(\tau, x_{k}(\tau,(1))-a\left(\tau, x_{k-1}(\tau, \omega)\right) \mid d \tau\right)^{2} \leqq 4 A^{2}(A+B)^{2(k-1)} M^{2}\right| \begin{array}{l}t^{k-1} \\ k+1\end{array}\right.$,

$$
\begin{array}{r}
E\left(\int_{0}^{t}\left(b\left(\tau, x_{k}(\tau, \omega)\right)-b\left(\tau, x_{k-1}(\tau, \omega)\right) d_{\tau} g(\tau, \omega)\right)^{2}\right. \tag{9}\\
\leqq 4 B^{2}(A+B)^{2(k-1)} M^{2} \frac{t^{k-1}}{k-1}
\end{array}
$$

$$
\begin{equation*}
E\left(x_{k}(t, \omega)-x_{k-1}(t, \omega)\right)^{2} \leqq 4(A+B)^{2(k-1)} M^{2} \frac{t^{k}}{\mid k} \tag{10}
\end{equation*}
$$

By Bienaymés inequality we can deduce from (8)

$$
\begin{align*}
P\left\{\omega ; \int_{0}^{1} \mid a\left(\tau, x_{k}(\tau, \omega)\right)\right. & \left.-a\left(\tau, x_{k-1}(\tau, \omega)\right) \left\lvert\, d \tau>\frac{1}{2^{k+1}}\right.\right\} \tag{11}\\
& \leqq 4 A^{2}(A+B)^{2(k-1)} M^{2} \frac{2^{k+1}}{\mid k+1}
\end{align*}
$$

Since the series whose k-th term in the above right side is evidently convergent, we can conclude by Borel-Cantelli's theorem with P-measure 1 that

$$
\int_{0}^{1}\left|\dot{a}\left(\tau, x_{k}(\tau, \omega)\right)-a\left(\tau, x_{k-1}(\tau, \omega)\right)\right| d \tau \leqq \frac{1}{2^{k+1}}
$$

a fortiori
(12) $\sup _{0 \leqq t \leqq 1}\left|\int_{0}^{t}\left(a\left(\tau, x_{k}(\tau, \omega)\right)-\left(a \tau, x_{k-1}(\tau, \omega)\right)\right) d \tau\right| \leqq \frac{1}{2^{k+1}}$
but for finite exceptional values of k.
By a property of stochastic integral we obtain from (9)
(13) $P\left\{\omega ; \sup _{0 \leqq t \leqq 1} \int_{0}^{t}\left(b\left(\tau, x_{k}(\tau, \omega)\right)-b\left(\tau, x_{k-1}(\tau, \omega)\right)\right) \mu_{\tau} g(\tau, \omega) \left\lvert\,>\frac{1}{2^{k+1}}\right.\right\}$

$$
\leqq 4 B^{2}(A+B)^{2(k-1)} M^{2} \frac{2^{k+1}}{\sqrt{k+1}}
$$

and so we can see, by making use of Borel-Cantelli's theorem again, with \boldsymbol{P}-measure 1, that

$$
\begin{equation*}
\sup _{0 \leqq t}\left|\int_{0}^{t}\left(b\left(\tau, x_{k}(\tau, \omega)\right)-b\left(\tau, x_{k-1}(\tau, \omega)\right)\right) d_{\tau} g(\tau, \omega)\right| \leqq \frac{1}{2^{k+1}} \tag{14}
\end{equation*}
$$

but for finite exceptional values of k.
From (6), (12) and (14) we see, with P-measure 1 , that

$$
\sup _{0 \leqq t \leqq 1} \left\lvert\, x_{k}\left(t,(\omega)-x_{k-1}\left(t,(\omega) \left\lvert\, \leqq \begin{array}{c}
1 \tag{15}\\
2^{k+1}
\end{array}+\begin{array}{c}
1 \\
2^{k+1}
\end{array}=\frac{1}{2^{k}}\right.\right.\right.\right.
$$

but for finite exceptional values of k. Thus the sequence $x_{k}(t, \omega)$ is uniformly (in $0 \leqq t \leqq 1$) convergent with P-measure 1 . We shall denote the limit by
$x(t, \omega)$, which will be shown to be a solution of (1) in the following.
Integrating both sides of (10) from $t=0$ to $t=1$, we obtain

$$
\begin{equation*}
\int_{0}^{1} \int_{\Omega}\left(x_{k}(t, \omega)-x_{k-1}(t, \omega)\right)^{2} P(d \omega) d t \leqq 4(A+B)^{2(k-1)} M^{2} \frac{1}{\underline{k+1}} . \tag{16}
\end{equation*}
$$

Therefore $x_{k}(t, \omega)$ is convergent in the norm of $L_{2}([0,1] \times \Omega)$ and so the limit $x(t, \omega)$ belongs to $L_{2}([0,1] \times \Omega)$. Since $x(t, \omega)$ belongs to $G^{5)}$ by the definition and it is continuous (in t) as the uniform (in t) limit with P-measure $1, x(t, \omega)$ belongs to $\left.\mathbf{S}^{*} .6\right)$ Consequently we have
(17) $x(t, \omega) \varepsilon \overline{\mathbf{S}} .{ }^{7}$

Therefore we can apply Theorem 2.2 in S.I. to $x(t, \omega)$.
Now we have

$$
\begin{align*}
& E\left(\int_{0}^{t} a(\tau, x(\tau, \omega)) d \tau-\int_{0}^{t} a\left(\tau, x_{k}(\tau, \omega)\right)\right)^{2} \leqq t \int_{0}^{t} \int_{\Omega} A^{2}(x,(\tau, \omega) \tag{18}\\
& \left.\quad-x_{k}(\tau, \omega)\right)^{2} P(d \omega) d \tau \leqq A^{2} \int_{0}^{1} \int_{\Omega}^{2}\left(x(\tau, \omega)-x_{k}(\tau, \omega)\right)^{2} P(d \omega) d \tau \\
& E\left(\int_{0}^{t} b(\tau, x(\tau, \omega)) d_{\tau} g(\tau, \omega)-\int_{0}^{t} b\left(\tau, x_{k}(\tau, \omega)\right) d_{\tau} g(\tau, \omega)\right)^{2} \tag{19}\\
& \quad \leqq t \int_{0}^{t} \int_{\Omega} B^{2}\left(x(\tau, \omega)-x_{k}(\tau, \omega)\right)^{2} P(d \omega) d \tau \\
& \quad \leqq B^{2} \int_{0}^{1} \int_{\Omega}\left(x(\tau, \omega)-x_{k}(\tau, \omega)\right)^{2} P(d \omega) d \tau
\end{align*}
$$

Taking the $L_{2}([0,1] \times \Omega)$-limits of both sides of (5) for $k \rightarrow \infty$, we obtain
(20) $\quad x(t, \omega)=c+\int_{0}^{t} a(\tau, x(\tau, \omega)) d \tau+\int_{0}^{t} b(\tau, x(\tau, \omega)) d_{\tau} g(\tau, \omega)$
with P-measure 1 for any assigned t. But the above both sides are continuous in t with P-measure 1. Therefore (20) holds for any t with P-measure 1. Thus we have obtained a solution $x(t, \omega)$ of (1) which is continuous in t with P-measure 1 .

Next we shall the uniqueness of the solution of (1). Let $y(t, \omega)$ and $z(t,(1)$ be a continuous (in t with P-measure 1) solution of (1):
(21) $y(t, \omega)=c+\int_{0}^{t} a(\tau, y(\tau, \omega)) d \tau+\int_{0}^{t} b(\tau, y(\tau, \omega)) d_{\tau} g(\tau, \omega)$,
(22) $z(t, \omega)=c+\int_{0}^{t} a(\tau, z(\tau, \omega)) d \tau+\int_{0}^{t} b(\tau, z(\tau, \omega)) d_{\imath} g(\tau, \omega)$.

In the case that $|a(t, x)|$ and $|b(t, x)|$ are bounded by an upper bound G, we have
(23) $E(y(t, \omega)-z(t, \omega))^{2} \leqq\left(\left(E\left(\int_{0}^{t} G d \tau\right)^{2}\right)^{\frac{1}{2}}+\left(E\left(\int_{0}^{t} G^{2} d \tau\right)^{2}\right)^{\frac{1}{2}}\right)^{2}$

But we have
(24) $E(y(t, \omega)-z(t, \omega))^{2} \leqq(A+B)^{2} \int_{0}^{t} E(y(t, \omega)-z(t, \omega))^{2} d \tau$
5) Cf. S.I. 2.
6) Cf. S.I. 2.
7) Cf. S.I. Foot Note 4).

Therefore we have

$$
\begin{equation*}
E(y(t, \omega)-z(t, \omega))^{2} \leqq 4 G^{2}(A+B)^{2 k} \frac{t^{k}}{\underline{\mid k}} . \tag{25}
\end{equation*}
$$

Thus we obtain, as k tends to $\infty, E(y(t, \omega)-z(t, \omega))^{2}=0$, and so $y(t, \omega)$ $=z(t . \omega)$ with P-measure 1 for any t. By the continuity (in $t)$ of $y(t, \omega)$ and $z(t, \omega), y(t, \omega)=\boldsymbol{z}(t, \omega)$ holds for any t with P-measure 1

In the general case we obtain, by the assumption,
(26) $|a(t, y)| \leqq|a(t, c)|+|a(t, y)-a(t, c)| \leqq M+A|y-c|$,
(27) $|b(t, y)| \leqq|b(t, c)|+|b(t, y)-b(t, c)| \leqq M+B|y-c|$.

Put
(28) $\Omega_{k}=\left\{\omega ; \sup _{0 \leqq t \leqq 1}|y(t, \omega)-c|<K\right\} \wedge\left\{\omega ;_{0 \leqq t s_{0}}|z(t, \omega)-c|<K\right\}$
Ω_{k} increases with K and tends to a set $\Omega_{\&} *$ of P-measure 1 on account of the continuity of $y(t, \omega)$ and $z(t, \omega)$.

Now we have on Ω_{k}

$$
\begin{align*}
& |a(t, y(t, \omega))|, \quad|b(t, y(t, \omega))|, \quad|a(t, z(t, \omega))|, \quad|b(t, z(t, \omega))| \tag{29}\\
& \quad<M+(A+B) K .
\end{align*}
$$

Denote the right side by G and define $a_{G}(t, x)$ and $b_{G}(t, x)$ as follows.
(30)

$$
\begin{array}{ll}
a_{G}(t, x)=G, & \text { when } a(t, x) \geqq G, \\
a_{G}(t, x)=a(t, x), & \text { when }|a(t, x)|<G, \\
a_{G}(t, x)=-G, & \text { when } a(t, x) \leqq-G, \\
b_{G}(t, x)=G, & \text { when } b(t, x) \geqq G, \\
b_{G}(t, x)=o(t, x), & \text { when }|b(t, x)|<G, \\
b_{G}(t, x)=-G, & \text { when } b(t, x) \leqq-G .
\end{array}
$$

By (29) we have on Ω_{k}

$$
\begin{array}{ll}
a_{G}(t, y(t, \omega))=a(t, y(t, \omega)), & a_{G}(t, z(t, \omega))=a(t, z(t, \omega)), \tag{31}\\
b_{G}(t, y(t, \omega))=b(t, y(t, \omega)), & b_{G}(t, z(t, \omega))=b(t, z(t, \omega)) .
\end{array}
$$

and so on Ω_{k} both $y(t, \omega)$ and $z(t, \omega)$ satisfy a stochastic integral equation:

$$
\begin{equation*}
x(t, \omega)=c+\int_{0}^{t} a_{G}(\tau, x(\tau, \omega)) d \tau+\int_{0}^{t} b_{G}(\tau, x(\tau, \omega)) d_{\tau} g(\tau, \omega), \tag{32}
\end{equation*}
$$

whicn has a unique continuous (in t with P-measure 1) solution by the argument in the above special case. Thus we have $y(t, \omega)=z(t, \omega)$ $=x_{k}(t, i)$ for any t and for any K and so $y(t, \omega)=\boldsymbol{z}(t, \omega)$ for any t on $\Omega *$. Q.E.D.

Added in proof: The author has published a detailed investigation of the same subject in a more general case. Cf. On stochastic processes (II)A stochastic differential equation-forth-coming to the Japanese Journal of Mathematics.

