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5. On a Stochastic Integral Equation.

By Kiyosi
Mathematical Institute, Nagoya Imperial University.

(Comm. by S. KAKEYA, M.I.A., Feb. 12, 1946.)

In his note "Stochastic Integral ,,x) the author has discussed an integral

of the type )’(r, <o)d g(r, w), where o is a variable taking values in a pro-

bability field (9, P) and g(t, o) is a normalized brownian motion on (9, P).
This note is devoted to the investigation of a stochastic integral equation:

which is closely related to the researches of Markoff process by many

authors, especially by S. Bernstein,2) A. Kolmogoroff,3) and W. Feller.4)

Theorem. Let a (t, x) and b (t, x) be continuous in (t, x) and satisfy
(2) la(t,x)-a(t,y)lAIx-yl, (3)]b(t,x)--b(t,y)lBlx--yl, where

0 t 1 and < x, y < . Then the integral equation (1) has one and
only one continuous (in with P-measure 1) solution.

Proof. Firstly we shall find a solution by the method of successive
approximation. We define xk(t, oo) for k 0, 1, 2 as ollows,

(4) xo (t, o) =_ ,

the pssibility of these definitions can be verified reeurively if we make use

of the properties of the stochastic integral shown in S.I..
By (5) we have, for k 0, 1, 2,

(6)

I-fot(b (v, (v, w)) b (r, (v, w))) d. g

Since a (t, x)’and b (t, x) are continuous, a (t, c) and b (t, c)] are bounded
in 0 t 1 by a finite upper bound, say M. Then we have

1) These proceedings Vol. XX. No. 8. p. 519. This paper will be cited as S.I. in the
following.

2) S. Bernstein: Equations diffrrentielles stochastiques, Actuarits Scientifiques

738.
3) A. Kolmogoroff: Uber die analytischen Methoden in der Wahrscheinlichkeitsre-

chnung, Math. Ann. 104, p. 415.
4) W. Feller: Zur Theorie der stochastischen Prozesse. (Existenz und Eindeutig-

keitssitze.), Math. Ann. 113, p. 113.
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<=(Mr +Mt4M=t.
In general we can show the folMwing inequalifi by mathematical induction

for k=1,2,3

(8) f’[a(,x(%,o))-- a(,xk_(r,,o))ldr)24A(A + B)"-l’M ’-1
lk+l’

4B (A+B(- M[ I’

By Bienaym’s inequality we can duce from (8)

(11) P{o; a(r,x(r,(o))--a(r,x-(r,o))dr>}
2+4 A (A + B<-) Mk

Since the series whose k-th term in the above right side is evidently con-
vergent, we can conclude by Borel-Cantelli’s theorem with P-measure I that

2 1

a lortiori
(12) u a (r, x

0tml

but or finite exceptional values of
By a property o stochastic inteal we obtain from (9)

0tl
2+

4 B (A+B)2(k- 1)M k + 1

and so we can see, by making use of BorebCantelfi’s theorem agn, with

P-measure 1, that

(14) sp,
0tt

but for finite exceptional values of k.

From (6), (12) and (14) we see, with P-measure 1, that

sup x (t, o) x-(15)
0tt

but for finite exceptional values of k. Thus the sequence x (t, ,) is uniformly

(in 0 1) convergent with P-measure 1. We shall denote the mit by
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x (t, o), which will be shown to be a solution of (1) in the following.
Integrating both sides of (10) from 0 to 1, we obtain

1(16) II xk(t,w)-- Xk-l(t,w)) P(dw)dt-4(A + B)2(-1} M2

d oJ C" 1"
Therefore xk (t, w) is convergent in the norm of L20, 1] X #) and so the

fimit x (t, w) belongs to L2 ([0,1] x #). Since x (t, o) belongs to G5) by the

definition and it is continuous (in t) as the uform (in t) limit with P-m-
sure 1, x (t, w) belongs to S*.6) Consequently we have

(17) x(t,w)S.7)
Therefore we can apply Theorem 2.2 in S.I. to x (t, w).

Now we have

a(18) E( @,x(r,w))dr-- a(r,.x(r,w)))2ZA2(x’(r’w)

x(r,w))2P(dw)drA (x(r,w)--x(r,w))P(dw)&

Taking the L ([0,1] x 9)-limits of both sides of (5)for , we obtain

g@, eo)

with P-measure 1 for any amign t. But the above both sides are con-

tinuous in with P-measure 1. Therefore (20) holds for any t with P-mea-
sure 1. Thus we have obtained a solution x (t, w) of (1) which is continuous

in with P-measure 1.

Next we shah the uquens of the solution o’ (1). Let y (t, o) and

z (t, to) be a continuous (in with P-measure 1) solution o (1)"

Ata Y A’b(r’y(r’w))dg(r’ w,(21) y (t, o,) c + (r, (r, co)) dr +

+Z fib(r, (r, w)) d, g(r, w).(22) z (t, w) c (r, z (r, w))dr + z

In e case that a(t,x)l and [b(t,x)[ are bound by an upper bound

G, we have

(23) E(y(t,o,)--a(,,w)((E(J:tGdr))++(E(tG2dr)2))
But we have

y’E (t, (t, ,o)y dr(24) E(t,w)--z(t,,o)(A+B ,o)--z

5) cf. s.I. 2.
6) cf. s.I. 2.
7) cf. s.I. Foot Note 4).



No. 2.] On a Stochastic Integral Equation. 35

Therefore we have

(25) Z(y (t, ,) --z (, ))< 4 (A + B) k___"
Thus we obtain, as k tends to , E(y (t, eo) z (t, co))2 0, and so y (t, o)

z (t. so) with P-measure 1 for any t. By the continuity (in t) of y (t, o) and
z (t, co), y (t, to) z(t, o) holds for any t with P-measure 1

In the general case we obtain, by the assumption,

(26) [a(t,y)[<[a(t,c)[ +[a(t,y)--a(t,c)[<M + A[y--c[,
(27) [b(t,)[<[b(t,c)[ +l b(t,y)--b(t,c)[_M/B[y--c[.

Put
(28) [2 (o ; sup< Y (t, ,o)-- c < K}/k (,o ; sul z (t. to) c " K}

0tl 0tl

.c2 increases with K and tends to a set /2* of P-measure 1 on account of
the continuity of y (t, to) and z (t,

Now we have on 9
(29) a (t,y (t, w)) [, b (t,y (t, o)) [, a (t, z (t, o)) l, b (t, z (t, o))

,( M + (A + B) K.
Denote the fight side by G and define a(t,x) and ba(t,x)as follows.

(30) aG (t, x) G, when a (t, x)

_
G,

aG(t,x) a(t,x), when a(t,x)l < G,
ae (t, x) G, when a (t, x)

_
G,

ba(t,x) G, when b(t,x)_G,
ba (t, x) o (t, x), when b (t, x) < G,
be (t, x) --G, when b (t, x) < --G.

By (29) we have on

(31) av (t,y (t, to)) a (t,y (t, to)), ac; (t, z (t, o)) a (t, z (t, ,o)),
b (t,y (, ,o)) b (,y (t, ,o)), b (t, z (, ,o)) b (t, z (t, o)).

and so on 9k both y (t, to) and z (t, to) satisfy a stochastic integral equation"

whicn has a unique continuous (in with P-measure 1) solution
by’ the argument in the above special case. Thus we have
x(, (o) for any and for any K and so , (, o)= (, to) for any on *.

Q.E.D.
Added in proof" The author has published a detailed investigation

the same subject in a more general case. Cf. On stochastic processes (II)--
A stochastic differential equation--forth-coming to the Japanese Journal of
Mathematics.


