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ON A SUBCLASS OF THE FAMILY OF DARBOUX FUNCTIONS

BY

ZBIGNIEW GRANDE (Bydgoszcz)

Abstract. We investigate functions f : I → R (where I is an open interval) such that
for all u, v ∈ I with u < v and f(u) 6= f(v) and each c ∈ (min(f(u), f(v)), max(f(u), f(v)))
there is a point w ∈ (u, v) such that f(w) = c and f is approximately continuous at w.

Let µ be the Lebesgue measure on R. For a (Lebesgue) measurable set
A ⊂ R and a point x we define the upper (resp. lower) density Du(A, x)
(resp. Dl(A, x)) of A at x ([1, 6]) as

lim sup
h→0+

µ(A ∩ [x− h, x+ h])
2h

,

resp.

lim inf
h→0+

µ(A ∩ [x− h, x+ h])
2h

.

A point x is said to be a density point of a set B if there is a Lebesgue
measurable set A ⊂ B such that Dl(A, x) = 1 ([1, 6, 7]).

The family Td of all sets A ⊂ R for which the implication

x ∈ A ⇒ x is a density point of A

holds is a topology called the density topology ([1, 6]). All sets in Td are
Lebesgue measurable [1] and each measurable set E contains an Fσ-set F ∈Td
with µ(E \ F ) = 0 ([1]).

Moreover, let Te denote the Euclidean topology in R. The continuity
of functions from (R, Td) to (R, Te) is called the approximate continuity
([1, 6, 7]). An equivalent definition is the following: f is approximately con-
tinuous at a point x if there is a measurable set A such that x ∈ A,
Dl(A, x) = 1 and the restriction f |A is continuous at x ([1]).

The following property is analogous to the strong Świątkowski property
introduced in [3, 5].

Let I be an open interval. We will say that a function f : I → R has the
Dap-property (f ∈ Dap) if for all u, v ∈ I with u < v and f(u) 6= f(v) and
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for each c ∈ (min(f(u), f(v)),max(f(u), f(v))) there is a point w ∈ (u, v)
such that f(w) = c and f is approximately continuous at w.

The strong Świątkowski property has the same definition with approxi-
mate continuity replaced by continuity.

Obviously each function with the Dap-property has the Darboux prop-
erty.

Let %C be the metric of uniform convergence in the spaceD of all Darboux
functions from I to R (i.e. %C(f, g) = min(1, supt∈I |f(t)− g(t)|)).

It is well known that there are nonzero Darboux functions f : R → R
which vanish almost everywhere ([1, p. 6 (Th. 4.3) or p. 12 (Ex. 2.2) or p.
13 (Th. 2.4)]). Evidently each such function f belongs to the interior (with
respect to %C) of the set D \Dap.

Theorem 1. The set Dap is nowhere dense in the space (D, %C).

Proof. Let U be a nonempty open set in (D, %C). Assume that there is
a function g ∈ Dap ∩ U . There is an r > 0 such that each ψ ∈ D with
%C(g, ψ) < r belongs to U . If g is constant then for a Darboux function
f : I → [0, 1] vanishing almost everywhere and such that f(I) = [0, 1] the
sum h = g + rf/2 belongs to D \ Dap, and so does each function ψ ∈ D
with %C(ψ, h) < r/6. So we assume that g is not constant. Then g(I) is
a nondegenerate interval. Let J ⊂ int(g(I)) be an open interval of length
d(J) < r/2, and let (Eα)α<2ω be a transfinite sequence of all nonempty
Fσ-sets E ⊂ g−1(J) belonging to Td with diam(g(E)) < d(J)/2.

We can find disjoint sets Gα ⊂ Eα of cardinality continuum each. Indeed,
using a measure preserving Borel bijection Φ between [0, 1] and [0, 1]2 one can
assume that each Hα = Φ(Eα) ⊂ [0, 1]2 is Borel of positive planar measure.
Now using the Fubini theorem one can find, inductively on α, distinct reals
xα ∈ [0, 1] such that (Hα)xα has positive measure (in [0, 1]) and hence is of
cardinality continuum (being a Borel set). Let Gα = Φ−1((Hα)xα).

For α < 2ω let hα be a function from Gα to J with hα(Gα) = J . Put

h(x) =
{
hα(x) for x ∈ Gα, α < 2ω,
g(x) elsewhere on I.

It is obvious that |h(x) − g(x)| < r/2 for all x ∈ I. So for ψ ∈ D with
%C(ψ, h) < d(J)/6 we have %C(ψ, g) ≤ %C(ψ, h) + %C(h, g) < r/6 + r/2 < r
and ψ ∈ U .

We will prove that for each ψ ∈ D with %C(ψ, h) < d(J)/6 we have
ψ ∈ D \Dap. Indeed, if ψ ∈ Dap then there is a point u ∈ I at which ψ is
approximately continuous and ψ(u) ∈ J . Then there is a nonempty Fσ-set
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Eα ∈ Td such that diam(ψ(Eα)) < d(J)/6, which contradicts the inequality

diam(ψ(Eα)) ≥ diam(ψ(Gα))

≥ diam(h(Gα))− 2d(J)
6

= d(J)− 2d(J)
6

=
2d(J)

3
.

So ψ is not in Dap.
For the proof that h ∈ D fix x, y ∈ I such that x < y and h(x) 6= h(y) and

a z ∈ (min(h(x), h(y)),max(h(x), h(y))). The following cases are possible:

(1) z ∈ J and (x, y) ∩
⋃
α<2ω Eα = ∅;

(2) z ∈ J and (x, y) ∩
⋃
α<2ω Eα 6= ∅ ;

(3) z ∈ g(I) \ J = h(I) \ J.

In case (1), since g ∈ Dap, it follows that there is a point u ∈ (x, y) with
g(u) = z which is an approximate continuity point of g. Since g(u) = h(u)
= z, the proof is complete.

In case (2) there is an ordinal α < 2ω with Eα ⊂ (x, y). Since h(Gα) = J ,
there is a point w ∈ (x, y) ∩ Eα with h(w) = z.

In case (3) either z ∈ [max J,max(g(I))) or z ∈ (min g(I),min J ]. As-
sume that z ∈ [max J,max(g(I))) and max(h(x), h(y)) = h(y). Then h(z) =
g(z) and h(y) = g(y). If h(x) = g(x) then by the Dap-property of g there
is a point v ∈ (x, y) with h(v) = g(v) = z. If h(x) 6= g(x) then g(x) <
max J < z < h(y) = g(y) and as above there is a point t ∈ (x, y) with
h(t) = g(t) = z. In the other subcases of case (3) similar reasonings show
that h has the Darboux property. This finishes the proof.

Theorem 2. Let DB1 be the family of all Darboux Baire 1 functions
from I to R considered as the metric space (DB1, %C). The set DapB1 of all
Baire 1 functions with the Dap-property is nowhere dense in DB1.

Proof. Fix f ∈ DB1 and r ∈ (0, 1). There is an open interval J ⊂ I with
diam(f(J)) < r/16. Let g ∈ DB1 be such that g(J) = [0, 1] and the closure
A = cl(B) of B = {x ∈ I : g(x) > 0} is nowhere dense, of measure zero and
contained in C(f)∩ J (see [1, p. 13 (Th. 2.4)]). Moreover, let h = f + rg/2.
Evidently %C(h, f) = r/2 < r. Being the sum of two Baire 1 functions, h is
also Baire 1. Since I \A ⊂ C(g) and A ⊂ C(f), it follows that h ∈ DB1.

To complete the proof, we will show that if φ ∈ DB1 and %C(φ, h) < r/8,
then ψ 6∈ Dap. Indeed, there are u, v ∈ J with g(u) = 0 and g(v) = 1. We
have

φ(u) < h(u)+
r

8
= f(u)+

r

8
and φ(v) > h(v)− r

8
= f(v)+

r

2
− r

8
= f(v)+

3r
8
.

Since u, v ∈ J and diam(f(J)) < r/16, we obtain

φ(v) > f(v) +
3r
8
> f(u)− r

16
+

3r
8

= f(u) +
r

8
+

3r
16

> φ(u) +
3r
16
.
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Fix c ∈ (φ(v)− r/16, φ(v)) ⊂ (φ(u), φ(v)). Since for x ∈ J \A we have

φ(x) < h(x) +
r

8
= f(x) +

r

8
< f(v) +

r

16
+
r

8
= h(v)− r

2
+

3r
16

< φ(v) +
r

8
− 5r

16
< c+

r

16
− 3r

16
= c− r

8
,

and µ(A) = 0, there is no approximate continuity point w ∈ (u, v) of φ at
which φ(w) = c.

Lemma 1. If A ∈ Td is a nonempty Fσ-set contained in I then for each
positive integer n there is a bounded approximately continuous function f :
I → R such that f(A) ⊃ [−n, n].

Proof. By Zahorski’s Lemma 11 from [7] there is an approximately con-
tinuous function g : I → R such that g(A) = (0, 1] and g(I \ A) = {0}.
Let h(x) = g(x) − 1/2 and f(x) = 3nh(x) for x ∈ I. Then the function
f is bounded and approximately continuous and f(A) = (−3n/2, 3n/2] ⊃
[−n, n].

Theorem 3. Every function f : I → R is the sum of two functions
from Dap.

Proof. Let (In) be an enumeration of all open intervals with rational end-
points contained in I. For each n we find two disjoint Cantor sets An,1, An,2 ⊂
In \

⋃
k<n, i≤2Ak,i of positive measure, and for n ≥ 1 and i ≤ 2 we find

nonempty Fσ-setsBn,i ⊂ An,i belonging to Td. By Lemma 1 we select approx-
imately continuous bounded functions gn,i : I → R such that gn,i(Bn,i) ⊃
[−n, n]. Put

g(x) =


gn,1(x) for x ∈ Bn,1, n ≥ 1,
f(x)− gn,2(x) for x ∈ Bn,2, n ≥ 1,
f(x) elsewhere on I,

and

h(x) =


gn,2(x) for x ∈ Bn,2, n ≥ 1,
f(x)− gn,1(x) for x ∈ Bn,1, n ≥ 1,
0 elsewhere on I.

Evidently f = g + h.
If u < v, g(u) 6= g(v) and c ∈ (min(g(u), g(v)),max(g(u), g(v))) then

there is k ≥ 1 with k > |c| and Ak,1 ⊂ (u, v). From the construction of g
it follows that there exists a point w ∈ Bk,1 such that f(w) = gk,1(w) = c.
Evidently g is approximately continuous at w. So g ∈ Dap. Similarly we can
prove that h ∈ Dap.

Remark 1. Observe that in Theorem 3, if f is of Baire class α ≥ 2 (resp.
Lebesgue measurable, with the Baire property) then so are the functions g, h
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constructed in the proof. It is known ([4]) that each Baire 1 function is the
sum of two strong Świątkowski Baire 1 functions.

Theorem 4. Every function f : I → R is the limit of a pointwise con-
vergent sequence of functions from Dap.

Proof. Let (In) be an enumeration of all open intervals with rational
endpoints contained in I. For each n we find a Cantor set An ⊂ In \

⋃
k<nAk

of positive measure and a nonempty Fσ-set Bn ⊂ An belonging to Td. By
Lemma 1 we choose an approximately continuous function gn : I → R such
that gn(Bn) ⊃ [−n, n]. For k ≥ 1 put

fk(x) =
{
gn(x) for x ∈ Bn, n ≥ k,
f(x) elsewhere on I.

Evidently f = limk→∞ fn. Fix k ≥ 1. If u < v and if fk(u) 6= fk(v), and if
c ∈ (min(fk(u), fk(v)),max(fk(u), fk(v))), then there is n ≥ k with n > |c|
and An ⊂ (u, v). From the construction of fk it follows that there exists a
point w ∈ An such that gn(w) = fk(w) = c. Evidently fk is approximately
continuous at w. So fk ∈ Dap.

Remark 2. Observe that in Theorem 4, if f is of Baire class α ≥ 2 (resp.
Lebesgue measurable, with the Baire property) then so are the functions fn
constructed in the proof.

The set Cap(f) of all approximate continuity points of an arbitrary func-
tion f : I → R is a Gδ-set with respect to the density topology Td, so it is
measurable. Moreover, there are functions in Dap which are not measurable.

Theorem 5. There is a function f : I → R having the Dap-property
which is not measurable (resp. does not have the Baire property).

Proof. Let f : I → R be nonmeasurable (resp. without the Baire prop-
erty). By Theorem 3 there are g, h ∈ Dap with f = g + h. Evidently g or h
is not measurable (resp. does not have the Baire property).

Theorem 6. There is a sequence of functions fn : R → R belonging
to Dap which uniformly converges to a function f which does not have the
Darboux property.

Proof. Let (In) be an enumeration of all open intervals with rational
endpoints. For each n ≥ 1 we find a Cantor set An ⊂ In\

⋃
k<nAk of positive

measure and a nonempty Fσ-set Bn ⊂ An belonging to Td. By the Zahorski
theorem ([1, 5]) there are approximately continuous functions gn : R→ [0, 1],
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n ≥ 1, such that gn(Bn) = (0, 1] and gn(R \Bn) = {0}. For n ≥ 1 let

fn(x) =


gk(x) for x ∈ Bk, k > n,

gk(x) if k ≤ n and gk(x) 6= 1/2,
1/2− 1/4k if k ≤ n and gk(x) = 1/2,
0 elsewhere on R,

and

f(x) =


gk(x) if x ∈ Bk and gk(x) 6= 1/2, k ≥ 1,
1/2− 1/4k if x ∈ Bk and gk(x) = 1/2, k ≥ 1,
0 elsewhere on R.

Since |fn− f | ≤ 1/4n for n ≥ 1, the sequence (fn) uniformly converges to f .
Fix n ≥ 1. For each k > n and each y ∈ (0, 1) there are points xk ∈ Bk
such that fn is approximately continuous at xk and fn(xk) = y. So every fn,
n ≥ 1, has the Dap-property. Since f(R) = [0, 1]\{1/2}, the function f does
not have the Darboux property.

Remark 3. Theorem 6 may also be obtained from Maliszewski’s theo-
rem [3], stating that every quasicontinuous functions from Bruckner–Ceder–
Weiss’ class U is the uniform limit of some sequence of strong Świątkowski
functions. However, observe that the functions f and fn constructed in the
proof of Theorem 6 are not quasicontinuous.

It is well known that a uniform limit of DB1 functions is DB1 ([1]).

Theorem 7. There is a sequence of Baire 1 functions fn : R → R
belonging to Dap which uniformly converges to a function f without the Dap-
property.

Proof. Choose In = [an, bn], n ≥ 1, such that 0 < an+1 < bn+1 <
an < bn < 1 for n ≥ 1 and Du(

⋃
n In, 0) > 0. For each n ≥ 1 find Jn =

[cn, dn] ⊂ (bn+1, an) and a continuous function gn : [bn+1, an] → [cn, 1] such
that gn(an) = gn(bn+1) = 1 and gn(x) = x for x ∈ Jn. Let en be the centre
of Jn, n ≥ 1. For n ≥ 1 let

fn(x) =



1 for x ∈ [b1,∞),
1 for x ∈ [an, bn], n ≥ 1,
x for x ∈ (−∞, 0],
0 for x = ek, k > n,

gk(x) for x ∈ [bk+1, ak], k ≤ n,
gk(x) for x ∈ [bk+1, ck] ∪ [dk, ak], k > n,

linear on the intervals [ck, ek] and [ek, dk], k > n,
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and

f(x) =


1 for x ∈ [b1,∞),
1 for x ∈ [ak, bk], k ≥ 1,
x for x ∈ (−∞, 0],
gk(x) for x ∈ [bk+1, ak], k ≥ 1.

Evidently f and fn, n ≥ 1, are continuous at all x 6= 0 (so they are Baire 1)
and have the Darboux property. Moreover, they are not approximately con-
tinuous at x = 0. Since in each open interval J containing 0 there is a point
x 6= 0 at which fn is continuous and fn(x) = 0, we see that fn ∈ Dap.
As f−1(0) = {0}, it follows that f does not have the Dap-property. Since
|fn − f | ≤ an for n ≥ 1 and limn→∞ an = 0, the sequence (fn) uniformly
converges to f .

The Darboux property may be defined locally ([2]).
A function f : I → R has the Darboux property at the point x ∈ I

(f ∈ D(x)) if for each real r > 0 and for all

c1 ∈ (min(f(x), lim inf
t→x+

f(t)),max(f(x), lim sup
t→x+

f(t)))

and
c2 ∈ (min(f(x), lim inf

t→x−
f(t)),max(f(x), lim sup

t→x−
f(t)))

there are points u ∈ (x, x+ r)∩ I and v ∈ (x− r, x)∩ I such that f(u) = c1
and f(v) = c2.

Observe that a function f : I → R has the Darboux property if and only
if f ∈ D(x) for each x ∈ I ([2]).

Similarly we can introduce the following local Dap-property.
We will say that a function f : I → R has the Dap-property at the point

x ∈ I (f ∈ Dap(x)) if for each real r > 0 and for all

c1 ∈ (min(f(x), lim inf
t→x+

f(t)),max(f(x), lim sup
t→x+

f(t)))

and
c2 ∈ (min(f(x), lim inf

t→x−
f(t)),max(f(x), lim sup

t→x−
f(t)))

there are points u ∈ (x, x + r) ∩ I and v ∈ (x − r, x) ∩ I at which f is
approximately continuous and such that f(u) = c1 and f(v) = c2.

It is evident that if f : I → R has the Dap-property then f ∈ Dap(x) for
each x ∈ I. Moreover, the function f from Theorem 7 is in Dap(x) for each
x ∈ I, but not in Dap.

Recall that a Baire 1 function f : I → R has the Darboux property if and
only if for each real α each of the sets {x : f(x) < α} and {x : f(x) > α} is
bilaterally dense in itself (see [1]).
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Let Zap denote the family of all functions f : R → R such that for each
real α the following implications are true:

(i) if f(x) < α then for each r > 0 there are points u ∈ (x − r, x)
and v ∈ (x, x + r) at which f is approximately continuous and
max(f(u), f(v)) < α,

(ii) if f(x) > α then for each r > 0 there are points u ∈ (x − r, x)
and v ∈ (x, x + r) at which f is approximately continuous and
min(f(u), f(v)) > α.

Remark 4. There is a function f ∈ Zap \D.

Proof. Let (In) be an enumeration of all open intervals with rational
endpoints. For each n ≥ 1 find two disjoint Cantor sets An,1, An,2 ⊂ In\

⋃
k<n

of positive measure, and choose nonempty sets Bn,1 ⊂ An,1 and Bn,2 ⊂ An,2
belonging to Td. Let

f(x) =


1 for x ∈ Bn,1, n ≥ 1,
−1 for x ∈ Bn,2, n ≥ 1,
0 elsewhere on R.

Then f ∈ Zap \D.

By a standard proof we obtain the following remark.

Remark 5. If f : R→ R belongs to Dap then f ∈ Zap.
Remark 6. If a sequence of measurable functions fn : R→ R belonging

to Zap uniformly converges to a function f then f ∈ Zap.
Proof. Fix reals r > 0 and α. Let x ∈ R with f(x) < α. Since (fn)

uniformly converges to f , there is k such that |fn(t)−f(t)| < (α− f(x))/3 =
s > 0 for n ≥ k and t ∈ R. So fk(x) < f(x)+s and from the Zap-property of
fk it follows that there is t ∈ (x − r, x) which is an approximate continuity
point of fk such that fk(t) < f(x) + s. There is a set E ∈ Td containing t
and such that E ⊂ (x − r, x) and fk(E) ⊂ (−∞, fk(t) + s). Being the
limit of a sequence of measurable functions, f is measurable and there is an
approximate continuity point u of f belonging to E. Observe that f(u) <
fk(u) + s < fk(t) + s+ s < f(x) + 2s+ s < α. In other cases the proofs are
similar.

Remark 7. ZapB1 \DapB1 6= ∅.
Proof. It suffices to observe that the function f constructed in the proof

of Theorem 7 belongs to Zap.

In Remark 6 the assumption of measurability of fn, n ≥ 1, is essential.

Example. Let (In) be a one-to-one enumeration of all open intervals
with rational endpoints. For each n ≥ 1, we find disjoint nowhere dense
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nonempty sets An,1, . . . , An,n ∈ Td contained in In \
⋃
k<n

⋃
i≤k Ak,i. For

each pair (n, k), k ≤ n ≥ 1, we find a decomposition An,k = Bn,k∪Cn,k such
that the sets Bn,k and Cn,k are nonmeasurable and µ∗(Bn,k) = µ∗(Cn,k) =
µ(An,k) (µ∗ denotes the outer Lebesgue measure). For n ≥ 1 let

fn(x) =



1 for x ∈ A2k, k ≥ n,
−1 for x ∈ A2k−1, k ≥ n,
1− 1/(2k) for x ∈ B2k, k < n,

1 for x ∈ A2k \B2k, k < n,

−1 + 1/(2k) for x ∈ B2k−1, k < n,

−1 for x ∈ A2k−1 \B2k−1, k < n,

0 elsewhere on R.

Moreover, put

f(x) =



1− 1/(2n) for x ∈ B2n, n ≥ 1,
1 for x ∈ A2n \B2n, n ≥ 1,
−1 + 1/(2n) for x ∈ B2n−1, n ≥ 1,
−1 for x ∈ A2n−1 \B2n−1, n ≥ 1,
0 elsewhere on R.

Evidently the sequence (fn) uniformly converges to f . Each fn is approxi-
mately continuous at all points of the sets Ak for k ≥ 2n−1. Since each open
interval contains infinitely many of the sets Ak, the function fn is in Zap.
On the other hand, if x ∈ Ak for some k ≥ 1 then f is not approximately
continuous at x. So all approximate continuity points of f belong to f−1(0)
and consequently f is not in Zap.

Similarly to the proof of Theorem 2 we can show that the set ZapB1 of
all Baire 1 functions with the Zap-property is nowhere dense in DB1.

Since every derivative belongs to DB1 and has the Denjoy–Clarkson
property (i.e. for any open intervals J and K we have f−1(J) ∩ K = ∅
or µ(f−1(J) ∩K) > 0), each derivative has the Zap-property.

Problem. Is there a derivative f : I → R which is not in Dap?

Acknowledgments. I thank the referee for his idea of the proof of The-
orem 1 without the Continuum Hypothesis.
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