ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXVIII, NO. 1, 2014 SECTIO A

59 - 66

E. A. OYEKAN and T. O. OPOOLA

On a subordination result for analytic functions defined by convolution

ABSTRACT. In this paper we discuss some subordination results for a subclass of functions analytic in the unit disk U.

1. Introduction. Let A be the class of functions f(z) analytic in the unit disk $U = \{z : |z| < 1\}$ and normalized by

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$

We denote by $K(\alpha)$ the class of convex functions of order α , i.e.,

$$K(\alpha) = \left\{ f \in A : \operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, \ z \in U \right\}.$$

Definition 1 (Hadamard product or convolution). Given two functions f(z) and g(z), where f(z) is defined in (1.1) and g(z) is given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n,$$

²⁰⁰⁰ Mathematics Subject Classification. 30C45, 30C80.

Key words and phrases. Subordination, analytic functions, Hadamard product (convolution).

the Hadamard product (or convolution) f * g of f(z) and g(z) is defined by

(1.2)
$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n = (g * f)(z).$$

Definition 2 (Subordination). Let f(z) and g(z) be analytic in the unit disk U. Then f(z) is said to be subordinate to g(z) in U and we write

$$f(z) \prec g(z), \quad z \in U,$$

if there exists a Schwarz function w(z), analytic in U with w(0) = 0, |w(z)| < 1 such that

(1.3)
$$f(z) = g(w(z)), \quad z \in U.$$

In particular, if the function g(z) is univalent in U, then f(z) is subordinate to g(z) if

(1.4)
$$f(0) = g(0), \quad f(U) \subseteq g(U).$$

Definition 3 (Subordinating factor sequence). A sequence $\{b_n\}_{n=1}^{\infty}$ of complex numbers is said to be a subordinating factor sequence if whenever f(z) of the form (1.1) is analytic, univalent and convex in U, the subordination is given by

$$\sum_{n=1}^{\infty} a_n b_n z^n \prec f(z), \quad z \in U, \ a_1 = 1.$$

We have the following theorem.

Theorem 1.1 (Wilf [5]). The sequence $\{b_k\}_{k=1}^{\infty}$ is a subordinating factor sequence if and only if

(1.5)
$$\operatorname{Re}\left\{1+2\sum_{k=1}^{\infty}b_{k}z^{k}\right\} > 0, \quad z \in U$$

Let

(1.6)
$$M(\alpha) = \left\{ f \in A : \operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) < \alpha, \ z \in U \right\}$$

and let

(1.7)
$$M^{\delta}(b,\delta) = \left\{ f \in A : \operatorname{Re}\left\{ 1 - \frac{2}{5} + \frac{2D^{\delta+2}f(z)}{bD^{\delta+1}f(z)} \right\} < \alpha, \ \alpha > 0, \ z \in U \right\}.$$

Here $D^{\delta}f(z)$ is the Ruschewey's derivative defined as

$$D^{\delta}f(z) = \frac{z}{(1-z)^{\delta+1}} * f(z)$$

= $\left(z + \sum_{n=2}^{\infty} \frac{\Gamma(n+\delta)}{(n-1)!\Gamma(1+\delta)}\right) * \left(z + \sum_{n=2}^{\infty} a_n z^n\right)$
= $z + \sum_{n=2}^{\infty} \frac{\Gamma(n+\delta)}{(n-1)!\Gamma(1+\delta)} a_n z^n, \quad \delta \ge -1.$

Theorem 1.2 ([3]). If $f(z) \in A$ satisfies

(1.8)
$$\sum_{n=2}^{\infty} \{ |b(1-k)(\delta+2) + 2(n-1)| + |b(1-2\alpha+k)(\delta+2) + 2(n-1)| \} \frac{\Gamma(n+\delta+1)}{(n-1)!\Gamma(3+\delta)} |a_n| \le 2|b(1-\alpha)|$$

where b is a non-zero complex number, $\delta \geq -1$, $0 \leq k \leq 1$ and $\alpha > 1$, then $f(z) \in M^{\delta}(b, \alpha)$.

It is natural to consider the class $M^{\delta^*}(b, \alpha) \subset M^{\delta}(b, \alpha)$ such that

(1.9)

$$M^{\delta^{*}}(b,\alpha) = \left\{ f \in A : \sum_{n=2}^{\infty} \{ |b(1-k)(\delta+2) + 2(n-1)| + |b(1-2\alpha+k)(\delta+2) + 2(n-1)| \} \frac{\Gamma(n+\delta+1)}{(n-1)!\Gamma(3+\delta)} |a_{n}| + |b(1-\alpha)| \right\}$$

$$\leq |b(1-\alpha)| \left\}.$$

Our main result in this paper is the following theorem.

Theorem 1.3. Let $f \in M^{\delta^*}(b, \alpha)$, then

(1.10)
$$\frac{B}{C}(f*g)(z) \prec g(z)$$

where

$$B = |b(1-k)(\delta+2) + 2| + |b(1-2\alpha+k)(\delta+2) + 2|$$

$$C = 2[2|b(1-\alpha)| + |b(1-k)(\delta+2) + 2| + |b(1-2\alpha+k)(\delta+2) + 2|],$$

 $\delta \geq -1, \ 0 \leq k \leq 1, \ b \ is \ a \ non-zero \ complex \ number \ and \ g(z) \in K(\alpha), \ z \in U.$ Moreover,

(1.11)
$$\operatorname{Re}(f(z)) > -\frac{C}{2B}$$

 $The\ constant\ factor$

$$\frac{B}{C} = \frac{|b(1-k)(\delta+2)+2|+|b(1-2\alpha+k)(\delta+2)+2|}{2[2|b(1-\alpha)|+|b(1-k)(\delta+2)+2|+|b(1-2\alpha+k)(\delta+2)+2|]}$$

cannot be replaced by a larger one.

2. Proof of the main result. Let $f(z) \in M^{\delta^*}(b, \alpha)$ and suppose that

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in K(\alpha).$$

Then by definition,

(2.1)
$$\frac{B}{C}(f*g)(z) = \frac{B}{C}\left(z + \sum_{n=2}^{\infty} a_n b_n z^n\right).$$

Hence, by Definition 3, to show the subordination (1.10) it is enough to prove that

(2.2)
$$\left\{\frac{B}{C}a_n\right\}_{n=1}^{\infty}$$

is a subordinating factor sequence with $a_1 = 1$. Therefore, by Theorem 1.1 it is sufficient to show that

(2.3)
$$\operatorname{Re}\left\{1+2\sum_{n=1}^{\infty}\frac{B}{C}a_{n}z^{n}\right\} > 0, \quad z \in U.$$

Now,

(2.4)
$$\operatorname{Re}\left\{1+2\sum_{n=1}^{\infty}\frac{B}{C}a_{n}z^{n}\right\} = \operatorname{Re}\left\{1+2\frac{B}{C}a_{1}z+\frac{2}{C}\sum_{n=2}^{\infty}Ba_{n}z^{n}\right\}$$
$$\geq 1-2\frac{B}{C}r-\frac{2}{C}\sum_{n=2}^{\infty}B|a_{n}|r^{n}.$$

Since $\frac{\Gamma(n+\delta+1)}{(n-1)!\Gamma(3+\delta)}$ is a monotone non-decreasing function of $n=2,3,\ldots$, we have

$$\begin{aligned} &\operatorname{Re}\left\{1+2\sum_{n=1}^{\infty}\frac{B}{C}a_{n}z^{n}\right\} > 1-2\frac{B}{C}r\\ &-\frac{2}{C}\sum_{n=2}^{\infty}\{[|b(1-k)(\delta+2)+2(n-1)]|+|b(1-2\alpha+k)(\delta+2)+2(n-1)|\}\\ &\times\frac{\Gamma(n+\delta+1)}{(n-1)!\Gamma(3+\delta)}|a_{n}|r, \quad 0 < r < 1.\end{aligned}$$
By (1.8)

$$\sum_{n=2}^{\infty} \{ |b(1-k)(\delta+2) + 2(n-1)| + |b(1-2\alpha+k)(\delta+2) + 2(n-1)| \} \\ \times \frac{\Gamma(n+\delta+1)}{(n-1)!\Gamma(3+\delta)} |a_n| \le 2|b(1-\alpha)|.$$

Hence,

$$\operatorname{Re}\left\{1+2\sum_{n=1}^{\infty}\frac{B}{C}a_{n}z^{n}\right\} = \operatorname{Re}\left\{1+2\frac{B}{C}a_{1}z+\frac{2}{C}\sum_{n=2}^{\infty}Ba_{n}z^{n}\right\}$$
$$>1-2\frac{B}{C}r-\frac{4|b(1-\alpha)|}{C}r$$
$$=1-\frac{2B+4|b(\alpha-1)|}{C}r$$
$$=1-r>0$$

(|z| = r < 1). Therefore, we obtain

$$\operatorname{Re}\left\{1+2\sum_{n=1}^{\infty}\frac{B}{C}a_nz^n\right\}>0$$

which is (2.3) that was to be established.

We now show that

$$\operatorname{Re}(f(z)) > -\frac{C}{2B}.$$

Taking

$$g(z) = \frac{z}{1-z} \in K(\alpha),$$

(1.10) becomes

$$\frac{B}{C}f(z) \prec \frac{z}{1-z}.$$

Therefore,

(2.5)
$$\operatorname{Re}\left(\frac{B}{C}f(z)\right) > \operatorname{Re}\left(\frac{z}{1-z}\right)$$

Since

(2.6)
$$\operatorname{Re}\left(\frac{z}{1-z}\right) > -\frac{1}{2}, \quad |z| < r,$$

this implies that

(2.7)
$$\frac{B}{C}\operatorname{Re}(f(z)) > -\frac{1}{2}.$$

Hence, we have

$$\operatorname{Re}(f(z)) > -\frac{C}{2B}$$

which is (1.11).

To show the sharpness of the constant factor

$$\frac{B}{C} = \frac{|b(1-k)(\delta+2)+2|+|b(1-2\alpha+k)(\delta+2)+2|}{2[2|b(1-\alpha)|+|b(1-k)(\delta+2)+2|+|b(1-2\alpha+k)(\delta+2)+2|]},$$

we consider the function:

(2.8)
$$f_1(z) = z - \frac{2|b(1-\alpha)|}{B}z^2 = \frac{Bz - 2|b(1-\alpha)z^2}{B}$$

 $(z \in U; \delta \ge -1; 0 \le k \le 1; b \in \mathbb{C} \setminus \{0\})$. Applying (1.10) with $g(z) = \frac{z}{1-z}$ and $f(z) = f_1(z)$ we have

(2.9)
$$\frac{Bz - 2b(\alpha - 1)z^2}{C} \prec \frac{z}{1 - z}.$$

Using the fact that

$$(2.10) |\operatorname{Re} z| \le |z|,$$

we now show that

(2.11)
$$\min\left\{\operatorname{Re}\frac{Bz - 2b(\alpha - 1)z^2}{C} : z \in U\right\} = -\frac{1}{2}.$$

Now,

(2.12)
$$\left| \operatorname{Re} \frac{Bz - 2|b(1 - \alpha)|z^2}{C} \right| \leq \left| \frac{Bz - 2|b(1 - \alpha)|z^2}{C} \right|$$
$$= \frac{|Bz - 2|b(1 - \alpha)|z^2|}{|C|}$$
$$\leq \frac{B|z| + 2|b(1 - \alpha)||z^2|}{C}$$
$$= \frac{B + 2|b(1 - \alpha)|}{C} = \frac{1}{2}$$

(|z| = 1). This implies that

(2.13)
$$\left|\operatorname{Re}\frac{Bz-2|b(1-\alpha)|z^2}{C}\right| \le \frac{1}{2},$$

i.e.,

$$-\frac{1}{2} \le \operatorname{Re} \frac{Bz - 2|b(1 - \alpha)|z^2}{C} \le \frac{1}{2}.$$

Hence,

$$\min\left\{\operatorname{Re}\left(\frac{B}{C}f_1(z)\right): z \in U\right\} = -\frac{1}{2},$$

which completes the proof of Theorem 1.3.

3. Some applications. Taking $\delta = 1$ and b = 1 in Theorem 1.3, we obtain the following:

Corollary 1. If the function f(z) defined by (1.1) is in $M^{\delta^*}(b, \alpha)$, then

(3.1)
$$\frac{|5 - 3\alpha|}{2|6 - 4\alpha|} (f * g)(z) \prec g(z)$$

 $(z \in U; \alpha > 1, g \in K(\alpha))$. In particular,

(3.2)
$$\operatorname{Re}(f(z)) > -\frac{|6-4\alpha|}{|5-3\alpha|}.$$

The constant factor

$$\frac{|5-3\alpha|}{2|6-4\alpha|}$$

cannot be replaced by any larger one.

Remark 1. By taking $\alpha = \frac{71}{45} > 1$ in Corollary 1, we obtain the result of Aouf et al. [1]

Taking b = 1, $\delta = 0$ in Theorem 1.3, we obtain the following:

Corollary 2. If the function f(z) defined by (1.1) is in $M^{\delta^*}(b, \alpha)$, then

(3.3)
$$\frac{|2-\alpha|}{|5-3\alpha|}(f*g)(z) \prec g(z)$$

 $(z \in U; \alpha > 1, g \in K(\alpha))$. In particular,

(3.4)
$$\operatorname{Re}(f(z)) > -\frac{|5 - 3\alpha|}{2|2 - \alpha|}, \quad z \in U.$$

 $The \ constant \ factor$

$$\frac{|2-\alpha|}{|5-3\alpha|}$$

cannot be replaced by any larger one.

Remark 2. By taking $\alpha = \frac{11}{6}$ and $\alpha = \frac{20}{11}$ in Corollary 2, we obtain the results of Selvaraj and Karthikeyan [4].

Taking b = 1, $\delta = -1$ and k = 0 in Theorem 1.3, we obtain the following:

Corollary 3. If the function f(z) defined by (1.1) is in $M^{\delta^*}(b, \alpha)$, then

(3.5)
$$\frac{|3-\alpha|}{|8-4\alpha|}(f*g)(z) \prec g(z)$$

 $(z \in U; \alpha > 1, g \in K(\alpha))$. In particular,

(3.6)
$$\operatorname{Re}(f(z)) > -\frac{|4-2\alpha|}{|3-\alpha|}, \quad z \in U.$$

The constant factor

$$\frac{|3-\alpha|}{|8-4\alpha|}$$

cannot be replaced by any larger one.

Remark 3. If we take $\alpha = \frac{7+3m}{3+m}$ in Corollary 3, (m > 0) and in particular m = 1 (i.e., $\alpha = \frac{5}{2} > 1$), we obtain the result of Attiya et al. [2].

References

- Aouf, M. K., Shamandy, A., Mostafa, A. O., El-Emam, F., Subordination results associated with β-uniformly convex and starlike functions, Proc. Pakistan Acad. Sci. 46, no. 2 (2009), 97–101.
- [2] Attiya, A. A., Cho, N. E., Kutbi, M. A., Subordination properties for certain analytic functions, Int. J. Math. Math. Sci. 2008, Article ID 63825 (2008).
- [3] Latha, S., Shivarudrappa, L., A note on coefficient estimates for a class of analytic functions, Advances in Inequalities for Series (2008), 143–149.
- [4] Selvaraj, C., Karthikeyan, K. R., Certain subordination results for a class of analytic functions defined by the generalized integral operator, Int. J. Comput. Math. Sci. 2, no. 4 (2008), 166–169.
- [5] Wilf, H. S., Subordinating factor sequences for some convex maps of unit circle, Proc. Amer. Math. Soc. 12 (1961), 689–693.

E. A. Oyekan	T. O. Opoola
Department of Mathematics and Statistics	Department of Mathematics
Bowen University	University of Ilorin
Iwo, Osun State	Ilorin
Nigeria	Nigeria
e-mail: shalomfa@yahoo.com	e-mail: opoolato@unilorin.edu.ng

Received August 8, 2011