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One of the most illuminating examples in the classification theory of
Riemann surfaces is the surface T constructed by Tδki [5] which has
the following properties:

a) T is an infinite regular covering surface (T, U, π) with the unit
disk U: \z\ < 1 as its base surface and π the projection of T onto U;

β) There exists a radial slit disk V — U — \Jvσv with σv the radial
slits in U accumulating only to the circumference of U such that T —
π~ι(\Jvo^ — Σ?=i Vn (disjoint union) where Vn (n = 1, 2, •) are copies
of V;

7) There exists a bounded harmonic function h on U for any given
bounded harmonic function h on T such that h = hoπ.

Including the one constructed by Tδki any Riemann surface T pos-
sessing the above three properties will be referred to as a Tδki surface.
A subsurface S of a Tδki surface T will be referred to as an admissible
subsurface if it has the form

S= T- π~\K)

where if is a compact subset of U such that Kf}(\J»σJ) = 0 and U — K
is a subregion of U whose relative boundary d(U — K) relative to U
consists of regular points with respect to the Dirichlet problem. The
main purpose of this paper is to prove the following

THEOREM. On any admissible subsurface of a Tδki surface there
exists a unique (up to multiplicative constants) HD~-minimal function
but no HB- and HD-minίmal functions.

Here we denote by HX(R) the subclass of the class H(R) of harmonic
functions on a Riemann surface R with a property X. As for X we
consider B meaning the boundedness, D the finiteness of the Dirichlet
integral, and BD both B and D. Moreover a function u is said to have
the property D~ if u ^ 0 and there exists a decreasing sequence {u1}
(ΐ = 1, 2, •••) in the class HD(R) such that {u1} converges to u. The
property BD~ has the obvious meaning, i.e. B and D~. An HX-minimal
function u (X = B, D, D~, BD and BD~) on R is a strictly positive func-
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tion u in the class HX{R) with hyperbolic R such that any nonnegative
function v in HX{R) dominated by u is a constant multiple of u. It is
known that u is an iϊY-minimal function if and only if u is an HBY-
minimal function for Y = D and D~ (cf. e.g. Sario-Nakai [4]).

In nos. 1-3 we will discuss the localization of the property 7) for a
class of surfaces which contains Tδki surfaces as its subclass. The proof
of the above main theorem will then be given in nos. 4-10 divided into
a series of lemmas. We will then append in nos. 11 and 12 examples
of Riemann surfaces with all possible combinations of existence or non-
existence of ifX-minimal functions for X = B, D and D~.

1. In the definition of Tδki surfaces T, the condition β) is rather
technical, although we need to assume it for the proof of the above
theorem, and the essence of Tδki surfaces seems to lie only in conditions
a) and 7). For this reason we consider Riemann surfaces R with only
two properties a) and 7), and such surfaces will be referred to as sur-
faces of Tδki class. We denote by OHX the class of open Riemann
surfaces R such that the class HX(R) consists of only constans. Observe
that the condition 7) can be reformulated as

(1) HB(R) - HB(U)oπ

for surfaces R of Tδki class where (R, U, π) satisfies a). Suppose u e
HBD{R). Then u = £°τr with ueHB(U), and the Dirichlet integral

r

DR{u) = \ du Λ *du =
JR

which is finite only if u is a constant. This shows with the Virtanen
identity OHD = OHBD (cf. e.g. [4]) that

PROPOSITION. Any Riemann surface of Tδki class belongs to OHD —

OHB.

2. Consider a nonempty open subset F of an open Riemann surface
R such that each point of dF is regular with respect to the Dirichlet
problem for F. We denote by HB(F; dF) the relative class consisting
of ueHB(F) n C(R) with u\(R - F) = 0. The inextremization λ = XF

is a linear operator: HB(R)—+HB(F; dF) given by

λw = sup 8

first for u ^ 0 in HB{R), where s runs over all subharmonic functions
on R vanishing on R — F and dominated by u, and then for general u
in HB(R) by linearity. The extremization μ = μF is a linear operator:
HB(F;dF)~*HB(R) given by
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μu = inf s

first for u ^ 0 in HB(F; dF), where s runs over all superharmonic func-
tions dominating u, and then for general u in HB(F; dF) by linearity.
For the details and properties of X and μ we refer to e.g. Noshiro [3].
The composition Xoμ is always an identity but μoX is not

HB(R) J— HB(F; dF) HB(R) -^-> HB(F; dF)

HB(F; dF) HB(R)
FIGURE 1 FIGURE 2

necessarily so. This comes from the fact that X is always surjective
but μ is not always surjective. This is the place where the following
notion comes in: A subset E c R is said to be B-negligible if there exists
an F such that R — FZDE and μF is surjective (cf. Nakai [2]). Thus
R — F is B-negligible if and only if μF is surjective. Any compact subset
EdR is a trivial example of .B-negligible sets. We can then state:

If R — F is B-negligible, then both Xoμ and μoX are identity
operators.

3. Let R be of Tδki class and F be a nonempty open subset of U
such that each point of dF, the relative boundary of F with respect to
U, is regular with respect to the Dirichlet problem. Then F°° = π~\F)
is an open subset of R such that each point of dF°° is regular with re-
spect to the Dirichlet problem. We are interested in the localization
of (1), i.e. when is the relation

(2 ) HB(F°°; dF00) = HB(F; dF)oπ

valid? We maintain

THEOREM. If U — F is B-negligible, and if in particular U — F
is compact, then the relation (2) is valid.

Since the right hand side of (2) is contained in the left hand side
of (2), we only have to show the reversed inclusion. Let u e HB(F°°; dF°°)
with u ^ 0 and v = μF~u. Then by (1) there exists a veHB(U) with
v = v oπ ^ 0. Since μF is surjective, there exists a ί e HB(F; dF) such
that v = μFu. Let h — u — ύoπ. Observe that v — u^O, v — ίέ 2̂  0,
and v = voπ. Therefore

Ih\ ^ (v — u) + (v — ύ)oπ .

By the definition of μ, v — u is a potential on R, i.e. the greatest har-
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monic minorant of v — u is zero. Let & be a harmonic minorant of
(v — u)oπ on R. In view of (1) there exists a keHB(U) with k = fc°7Γ,
and a fortiori v — u ^ k on £7. Since ί - £ is a potential on U, k and
then A: is nonpositive. Therefore the greatest harmonic minorant of
(v — ύ)oπ is zero, i.e. (v — u)oπ is a potential. Observe that a sum of
potentials is again a potential. Thus the subharmonic function \h\ is
dominated by a potential on R and a fortiori, \h\ — 0, i.e. u = ί£o7r.
Since nonnegative members in HB(F°°; dF°°) generates HB(F™\ 3F°°), we
can deduce the desired inclusion.

4. We proceed to the proof of the main theorem stated in the in-
troduction. Let S be an admissible subsurface of a Tδki surface T so
that S = T — π~\K) with K as stated in the introduction. We denote
by Kn = π-\K) Π Vn and Sn = Vn - Kn (n = 1, 2, . .) . Let w be the
harmonic measure of Γ: \ z \ = 1 with respect to U— K, i.e. w eH(U— K) Π
C(UU Γ) with w | Γ = 1 and w\K = 0. Then {w = p} (^ e (0, 1)) consists
of a finite number of piecewise analytic Jordan curves in U — K separating
Γ from K. We set KP = {w ^ p} U K and ϋΓ0 = K. Observe that there
exists an rj e (0, 1) such that Kp has the same property as K for every
p 6 [0, η\. We also denote by (KP)n = π-ι(KP) f]Vn (n = 1, 2, •)• Since
K is compact in Ϊ7 and thus K = U — (U — K) is B-negligible, Theorem
3*) implies that

( 3 ) HB(S; dS) = HB(U- K; d(U - K))<>π

where, as before, d(U — K) is the relative boundary of U—K with
respect to U. This relation will be used repeatedly.

We will discuss the boundary behavior of a u > 0 in HBD(S). Let
un = u\Sn. Since Sn = Vn — Kn may be identified with V — K, {un} can
also be considered as a sequence of functions on V — K. We fix a point
a in V — K and set

cΛ = cn(w, a) = wΛ(α) .

We maintain the following

LEMMA. 7%e sequence {un — cn(u, a)} (n ^ 1) converges to zero uni-
formly on each compact subset of V — K. In particular lim^oo (cn(u, a) —
cn(u, b)) = 0 for every pair of points a and b in V — K.

The key observation to our proof is:

Σ Dv_κ{un - O = Σ Dv_κ{un) = Σ DSn(u) = Ds(u) < - ,

* } We mean by Theorem 3 the theorem in no. 3. Similar conventions are used for
lemmas and propositions.
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where cn = cn(u, a). Thus in particular

lim Dv_κ(un - O = 0 .

From un(a) — cn = 0 (n = 1, 2, •)> the desired conclusion follows.

5. The following, although only a direct consequence of the preced-
ing lemma, will play the central role in proving the main theorem;

LEMMA. Suppose that u > 0 in HBD(S) dominates an ίίoπ with h
in HB{U- K;d(U- K)) on S. Then

lim inf cn(u, a) ^ sup h .
π->oo U-K

Since V — K is dense in U — K, there exists a point beV—K for
any given positive number ε such that h(b) ̂  s u p ^ ^ h — ε. Observe
that un^ h on V — K and in particular un{b) ^ h(b). From cn(u, a) ^
h(b) + (cn(u, a) — cn{u, b)) and Lemma 4, it follows that

lim inf cn(u, a) ^ h(b) ̂  sup h — ε .

On letting ε—>0, we arrive at the desired conclusion.

6. Recall that w is the harmonic measure of Γ: \ z \ = 1 with respect
to U — K. Let w = ώ°7Γ which is in HB(S; dS).

LEMMA. The function w belongs to HD~(S) Π HB(S; dS).

It is convenient to use the theory of Royden compactification (cf.
e.g. Chapter III in [4]). By Proposition 1, TeOHD — OHB and therefore
the Royden harmonic boundary of T consists of a single point p, say.
Since {p} and U ?=1 K3 are disjoint compact sets in the Royden com-
pactification Γ* of T, there exists 2iWneHBD(T- U?= 1 iQ Π C(JΓ*) such
that wn(p) = 1 and w» | (U y=i Kά) = 0 for each w = 1, 2, . Since {wn}
(n ^ 1) is decreasing on T, we can easily see that w~ = lim^̂ oo wn belongs
to HD~(S) Π HB(S; dS). Since

lim inf (wn(z) — ̂ (2;)) ^ 0

for every ^ * e (dS) U {̂ }, the maximum principle yields wn^ w (n ^ 1)
and a fortiori w~ ^ w. On the other hand, (3) implies that w~ = Ŵ OTΓ

with a w~ eHB(U - K; d(U - K)). Here in view of 0 ^ w~ ^ 1, we
also have 0 <; w~ ^ 1, and thus w~ ^ iί), i.e. w~ = w~°π ^ WOTΓ = w.
Therefore w = t<;~, i.e.

(4) w = lim wΛ .
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7. We insert here a well-known general result on HX-minimal func-
tions (cf. e.g. [4]):

Let F be a subsurface of a Riemann surface R and a a regular
point in dF with respect to the Dirichlet problem. Then any HX-
mίnimal function on F has a vanishing boundary value at a for X =
B, D, and D~.

Applying this to our present S as F, we obtain the following

LEMMA. Every HX-minimal function belongs to HB(S; dS). In
particular there exist no HB- and HD-minimal functions on S.

The first part is clear since every point in dS is regular. Let ue
HD(S) Π HB(S; dS). Then u = u<>π with ueHB(U- K;d(U- K)). Thus
un = u on V — K and

Ds(u) = Σ Dv_κ{un) = Dv_κ{u) oo .

This shows that Ds(u) = 0 and hence u is constant and actually u = 0
on S, i.e. there exist no iϊD-minimal functions on S. Next suppose that
there exists an jEΓB-minimal function u on S. Then since ueHB(S; dS),
u = u°π with a ueHB(U — K; d(U — K)). It is easy to see that u is
also iJJS-minimal on U — K. Hence u has zero boundary values on the
whole boundary of U — K, considered as a subregion of the complex
plane, and thus u = 0 on U — K, i.e. u = 0 on S, a contradiction.

8. We are in the stage to prove

LEMMA. The function w is HΌ~-minimal on S.

Suppose that 0 < u ^ w on S with ueHD~(S). Let α: = sup s u
which is in (0, 1] since 0 < w < 1 on S. We shall show that u = αw on
S. That weHB(S dS) implies that ueHB(S dS), and a fortiori % =
βo z; with ueHB(U — K; d(U — K)). In view of sup^u = a, we clearly
have ύ ^ a $ on F — K. Therefore u ^ aw on S. We thus have to
show that u ^ aw on 5.

Let {u1} (i = 1, 2, •) be a decreasing sequence in HD(S) converging
to u on iS. Replacing uι by tc* Λ # (the greatest harmonic minorant of
u1 and ct), if necessary, we may assume that a }> u* }^ u = ϋ°π on <S.
We fix an arbitrary p e (0, η] and a e 3KP (cf. no. 4). Clearly cn(u\ a) ^
a. With Lemma 5 we deduce

a = sup ίί ^ lim inf cn(u\ a) ^ lim sup cn(u\ a) ^ a ,

i.e. we have
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lim cn(u\ a) = a .
n—»oo

This with Lemma 4 yields

lim sup I u* — a | = 0 .

Hence for every fixed positive number ε there exists an m such that
u* + ε > α on 9(ΛΓ,)n for every n > m. Let f = ^ on S - U ?=i (If,),
and β« be in H((KP)n - d(KP)n) Π C((KP)n), with S' - ^ on d(KP)n, on
(ϋΓ^ for n = 1, , m. Then %* is a piecewise smooth continuous func-
tion on Γ - \Jn>mKn = S U (U?=i JBΓJ and has the finite Dirichlet integral
over there. Next we consider a function v*eC(Γ) defined as follows:

(min (w* + ε, a) on Γ - U (^) f t

£ J ίl>W
V ~ \oc on U (£,), .

Then v* is again a piecewise smooth continuous function on T and has
the finite Dirichlet integral over T. Thus vi belongs to the Royden
algebra of T and a fortiori v*eC(T*).

Observe that the closure of U »=i (KP)n in Γ* contains the single
Royden harmonic boundary point p of T. If this were not the case,
then the closure of π~\K) = \JZ=ιKn would also be disjoint from p and
there would exist an seHD(S)f)C(T*) such that s(p) = 1 and φΓXBΓ)) =
0. Then seHB(S dS) and as in no. 7, JD^s) could not be finite unless
8 = 0 on S, a contradiction. Since U Γ=i (iζ°)* is compact in Γ, we deduce
that the closure of U n>m (KP)n in Γ* contains p. In view of vi = α on
U^mC^)., we see that v* = a on the closure of Uw>m(ίΓio)Λ in T* and
in particular v€(p) = cc. Here

lim inf {(v*(z) + p) — aw(z)} ^ 0
z-*z*

for every ^ * e {d(π~ι(KP))) U {p}, and the maximum principle yields

(u* + ε) + p ^ αw

on Γ - π-^iζo). Here ε can be as small as we wish and therefore

u* + P ^ αw

on Γ - π~\KP). On letting |0 —• 0, we finally conclude that u* ^ aw on
T — π~~ι(K) = S for every i = 1, 2, . Again on letting i —+ oo, we
obtain the desired inequality u ^ aw.

9. We come to the final step for the proof of our main theorem;

LEMMA. Any HD~-minimal function u on S is a constant multiple
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of w. In particular {u e HD~(S) Π C(S (J dS); u \ dS — 0} is generated by w.

Without loss of generality we can assume that 0 < u < 1 on S. We
see by Lemma 7 that ueHB(S dS) and hence u = u°π with a ue
HB(U- K;d(U- K)). Then 0 < u < 1 on U- K and a fortiori 0 <
u ^ w on U — K. Therefore 0 < u ^ w on S and the ilD "-minimality
of w yields the existence of a constant c with u = cw. The second as-
sertion is clear if we observe that w generates {ueHBD~(S) n C(S U dS);
u I dS = 0} which in turn generates the class in question in the sense of
vector lattice (cf. e.g. [4]).

10. The main theorem in the introduction now follows from Lemmas
7-9. We denote by UHX the class of hyperbolic Riemann surfaces R on
which there exists an iϊX-minimal function (X — B, D, and D~). It is
known that both of UHX (X = B, D) are contained in UHD~ (cf. e.g. [4]).
Moreover

( 5 ) UHD~

The strictness of these two inclusions can be seen by any admissible sub-
surface S of any Tδki surface T. Kwon [1] has constructed a surface
Rκ showing the strictness of the second inclusion of (5). It is also seen
that there exist unique (up to multiplicative constant) HB- and HD~-
minimal functions but no HD-minimal functions on Rκ. In this connec-
tion we are interested in finding surfaces with one or zero iϊX-minimal
function (X = B, D, and ΰ~).

11. We denote by x (x = 6, d, and d~) the numbers of ίίX-minimal
functions (X = B, D, and D~) and by Rhdd~ a Riemann surface on which
there exist x iϊX-minimal functions (x — δ, d, and d~; X — B, D, and D~).
We consider the basic case of x = 0,1. We obtain the following table:

~~ - - ^ ^ ^ Surfaces

Numbers ^ — - ^

b

d

d~

Existence
or

Nonexistence

-βooo

0

0

0

E

i^OOl

0

0

1

E

-Roio

0

1

0

N

•Ron

0

1

1

E

-Rioo

1

0

0

N

-RlOl

1

0

1

E

-Rno

1

1

0

N

-Rill

1

1

1

E

FIGURE 3

Here E (N, resp.) means that an (any. resp.) Rbdd~ in the column con-
taining E (N, resp.) exists (does not exist, resp.).
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The relation (5) means that, for x = 0, 1 (x = b, d, and d~),

( 6 ) b^d~ , d^d~ .

Therefore nonexistence of any i?010, Rm, and J?110 can trivially be seen.
Any hyperbolic plane region is an example of RQ00. Every admissible
subsurface of any Tδki surface is an example of j?001. Any Tδki surface
itself is an example of i?011 (cf. no. 7). The Kwon example Rκ mentioned
above qualifies to be an Rm. Finally, any surface R in OHB — OG (cf.
e.g. [4]) is an example of Rni.

12. Based on the above observation we deduce the following

THEOREM. For any triple (6, d, eZ~) of nonnegatίve integers with
max (ί>, d) <; d~, there exists a Riemann surface on which there exist b
(d, d~, resp.) HB-(HD-, HD~-, resp.) minimal functions.

Let Rlmn and RVm>n> be as described in no. 11, and let β and βr a
slit in Rlmn and Rι>m>n>, respectively. Connect Rlmn — β and RVm,%, — β9

crosswise along β and β'. Then it can be seen easily that the resulting
surface is of type Rι+ι>,m+m>,n+n> (cf. e.g. [4]). In this sense, we can
define the operation

) ',m+m',n+n'

On the other hand, on setting ex = (0, 0, 1), e2 — (0, 1, 1), e3 = (1, 0, 1),
and e4 = (1, 1, 1), it is elementary to see that there exist nonnegative
integers nt (1 ^ i ^ 4) such that

( 8 ) (6, d, d~) = Σ nte< .
ϊ = l

From (7) and (8) the desired conclusion follows.
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