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The superfield theoretical aspect of the Riggs-Kibble mechanism is discussed by realiz

ing the supersymmetry of Becchi, Rouet and Stora (BRS) as translation and dilatation 

operations on the real elements of the Grassmann algebra. The Slavnov-Taylor identity 

becomes a statement on each connected Green's function separately in this formulation, and 

some of the pathological cases discussed in the literature can be avoided by imposing the 

manifest BRS covariance in terms of the superfields. This is applied to the discussion of 

non-linear (quadratic) gauge conditions. The manifestly BRS covariant treatment of non

linear gauge conditions requires a quartic self-coupling of Faddeev-Popov fields to ensure 

the multiplicative renormalization, although the physical S-matrix is independent of this 

ghost coupling. The proof of unitarity (i.e., the ghost cancellation) follows the same 

mechanism as the divergence cancellation in the ordinary superfield theory. The gauge 

independence is proved by a simple classification of operators according to their BRS trans

formation properties. We also briefly comment on the canonical treatment of superfields. 

§ 1. Introduction 

The renormalization of the Yang-Mills fieldsn and the Riggs-Kibble mecha

nism2> has been extensively discussed in the literature.s>.•> The Faddeev-Popov 

Lagrangian5> provides a starting point for these discussions of the renormalizability 

and unitarity. In connection with the Faddeev-Popov Lagrangian, Becchi, Rcuet 

and Stora (BRS) a> introduced a supersymmetry pseudo-algebra which gives rise 

to a very neat way to derive the Slavnov-Taylor identityn (i.e., the Ward-Takahashi 

identity associated with the BRS symmetry). It was also recognized that a detailed 

study of the BRS symmetry is sufficient to investigate the unitarity of the S-matrix 

elements. 8> Recently, Kugo and Ojima9> further clarified the contents of the BRS 

symmetry and the structure of the physical Hilbert space. They made the following 

important observations: (i) The auxiliary Lagrangian multiplier field makes the 

BRS symmetry manifest, and (ii) the ghost number of the Faddeev-Popov fields 

should be properly associated with the scale transformation of the ghost fields. 

Although the latter point is not crucial in the perturbative treatmeneo> of the 

Yang-Mills fields, the structure of the physical space is much simplified by this 

interpretation. It is also nicer to keep the Lagrangian manifestly Hermitian at all 

the stages of the calculation. 

In this paper, we discuss the superfield theoryll)~J•> associated with the BRS 

symmetry. Some of the initial attempts 15> toward this direction have been made, 
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2046 K. Fujikawa 

but our approach differs from the previous attempts in that we treat the superfield 

as an element of the theory as much as possible. 131 ' 141 Although the superfield 

notation in the present case is not quite useful for practical calculations due to the 

non-linear realization of the supersymmetry, it is useful as a means to keep track 

of the very subtle BRS symmetry. Consequently, some of the "pathological" cases 

found in the literature61 ' 161 can be avoided at the level of formalism. 

§ 2. Superfields for BRS symmetry 

We take the following pseudo-algebra as our starting point: 

{Q, Q} =0' 

[D,Q]=-iQ, 

[D, D] =0, (2·1) 

where Q is the Hermitian generator of the proper BRS symmetry, 61 and Dis the 

generator of the dilatation for the ghost fields. 91 Equation (2 ·1) can be converted 

into the ordinary algebra when multiplied by the real elements A1 and A2 of the 

Grassmann algebra (i.e., the anti-commuting c-numbers): 

CA1Q, A2Q] = 0 , 

[D, A1Q] = - iA1Q, 

[D, D] =0. (2· 2) 

Note that Q and the elements of the Grassmann algebra all anti-commute. We 

understand the algebra (2· 2) as associated with the following operations on the 

real elements e of the Grassmann algebra: 

(2· 3) 

where A is again a real element of the Grassmann algebra and p a real number. 

The basic idea of the superfield121 is to realize the algebra (2·2) as operations 

on the fields defined in the fictitious five-dimensional space (x~, e), e.g., r;"' (x, e). 
Here the suffix a stands for a global symmetry (we take it to be a semi-simple 

group in the following). Following the discussion of the ordinary conformal sym

metry,m we define 

U(A) r;a (x, e) U(A) t=r;"' (x, e +A), 

U(p) r;"' (x, e) u (p) t =edPr;"' (x, ePe)' 

where the unitary operators are defined by 

U(A) =e"Q, 

U(p) =eipD. 

(2·4) 

(2·5) 

(2· 6) 
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On a Superfield Theoretical Treatment of the Riggs-Kibble iVfechanism 2047 

Note that U(J..)l=eQ"=e-J.Q=U(}..)- 1 as Q and A. anti-commute. We call din (2·5) 
the BRS dimension characteristic of the superfielcl. The general form of the super
field can be written as 

rt (x, 0) =rt (x) +OC" (x), (2·7) 

where rt(x) and C"(x) are the ordinary fields, as a power series expansion of rt(x, 0) 
terminates at the linear term in 0 (note that 02 =0). Equation (2·4) then indicates 

U(A)r;"(x) U(}..)t=r;"(x) +A.C"(x), 

U(J..) C" (x) U(J..)t = C" (x), (2·8) 

namely, the second component of a superfielcl 1s invariant under the proper BRS 
symmetry. Equation (2·5) gives 

U(p) r;" (x) U(p) t = edp'lla (x), 

U(p) C" (x) U(p) t = e<dH)pca (x). (2·9) 

In our approach we define the transformation laws by the right-hand sides of these 
equations, but these relations also become important when one attempts to express 
the generators Q and Din terms of the quantized component fields in the canonical 
approach. 9' 

It turns out that the superfields with d = oclcl follow the Fermi statistics and 
with d =even the Bose statistics (the second component of a superfield obeys the 
opposite statistics clue to the presence of 0). In our application, the superfields 
with d = ± 1 and 0 are important. 

For the Hermitian field with d = 1 belonging to an adjoint representation 
of some semi-simple group, we can construct a non-linear realization defined bl' 

rt (x, 0) =rt (x) + iO (g/2)Pbc,.t/ (x) r;c (x) 

= r;" (x) + iO (g /2)jabcr/ (x, (}) r;c (x, 0), (2-10) 

where f"bc is the real, anti-symmetric structure constant for the semi-simple group, 
and g a fundamental dimensionless coupling constant. It is confirmed that (2 ·10) 
can be arranged to satisfy the basic requirements (2 · 8) and (2 · 9). We also need 
a Hermitian field *l with d = -1 

(2·11) 

Note that the second component of a superfield with d = -1 is scalar under the 
full BRS symmetry (2 · 8) and (2 · 9). This provides a means to construct an 
invariant action later. 

The composition law of two superfielcls is simply given by a local product 
of two superfields, and it gives rise to transformation laws for a new superfield. 
For example, 

*' Note that 'lJ"(x) (2·10) and ~"(x) (2·11) correspond to c"(x) and c"(x) 111 the customary 
notation, respectively. 
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204S K. Fujikawa 

~ (.T, (}) 3Pr;a (x, (}) 

= ;(.x) fJ,(fja (.x) + (}[ B (.x) 3;,"1/a (.x) - iqj'bc (~ (.x) 3;,"f/b (::c)) r;' (.x) J' (2 ·12) 

where ~(.x,O)~~(:r)+(}B(.x) is a superfield vvith d=-1 and without any group 

index, and T/ (x, (}) is defined in (2 ·10). If one sets B (.x) = const = 1 (a sort of 

spontaneous breakdown of BRS symmetry) and if one replaces i~ (.x) 3,,r;a (.x) by 

"(x), one obtains a superfielcl with d=O 

(2·13) 

\Ve also construct two kinds of scalar superfields with d=O from ~"(x, 0) in 

· 11) <mel 7/ (.r, 0) in (2 ·10) 

.;a O)r;" (.r, 0) =~"(.x)r;"(:r) -iO(qj2)j"bc.;ar;''r;'+(}B"r;", 

For the grm1p SU(2) where we have the relation 

(2·15) 

·] 4) gwes nse to interesting transformation laws of "composite" superfields. 

If one chooses a special kind of superfielcl ~a , (}) with B" (x) =0 (this is legiti

m:lle ils the second component of ,"'" (:r, 0) with d = -1 is BRS scalar), and if one 

iclelltifi,cs i.;"(.r)",/'(.r) and zf"br~u(x)'r/(.r) with s'{r) and c/J"(x) respectiYely, one obtains 

'/' (:r. 0) ccc '/' (:r) - iO (q/2) rj/' (x )'r;" (.r), 

(:r, (}) =(>" (x) +ifJ[- (q/2)f"'"v)''(x)'r;'(x) + (q/2)~~(x)"1/' (.r)]. 

(2 ·16) 

(2. 17) 

These superfidds (2 -1~)), (2 ·1G) and (2 ·17) give rise to the BRS transformation 

laws for the \ector and o;calar sector of the 'vVeinberg-Salam model \Yithout photons 

and F ermions." VV e adopt this simplest Higgs-Kibble model as our example in 

the following discussion. It is important to notice that the coupling constant q in 

· 10) controls all the transformation laws of other superfielcls. 

Bdor<:> we proceed further we ilx the notc1tion. The cleriYative 36 is defined as 

the left-cleri1·ati\·e. For example, 

iJ 0 ~" (x, 0) = Ba (:r). (2 ·18) 

The integration1s1 is defined as identical to the left-clcri\·atiYe. ancl it satisfies the 

property expected for the integration, e.g., 

J dee (.r. 0) = J dO~" (.x, (}+A) = B" (.x). (2 ·19) 

The (proper) BRS im·<uiant component of an arbitrary superfielcl 1s projected 

out by the operation 

(2. 20) 

for the superfielcl of the form (2·7). This property is utilized later when we 
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On a Superfield Theoretical Treatment of the Riggs-Kibble filfechanism 2049 

construct the BRS invariant states. The a-function is defined by 

(2. 21) 

which satisfies the relation 

(2. 22) 

§ 3. Slavnov-Taylor identities 

3.1. The model 

The invariant Lagrangian which consists of A/ (x, ()), (pa (x, (}) and cjJ (x, (}) 111 
(2 ·13) ~ (2 ·17) can be written as usual 

.J: inv (x, (}) =- HD 1,Ava (x, (}) -ovA/ (x, (})- gj"bc A~<b (x, ())Ave (x, (}) ]" 

+ IV 1,S(x, (}) [2 -}.([S(x, (}) [2 -v2/2) 2 , (3·1) 
where 

S(x (})= ~- [ ¢(x,e)+i¢'(x,e) J 
' y'2 - ¢2 (x, (}) + i¢ 1 (x, (}) 

(3 ·2) 

and 

(3. 3) 

As is well-known, .J:;nv is in fact independent of 0 variables due to the local gauge 
111vanance. vVe can therefore regard .J:inv as an identically BRS invariant super
field with d = 0. The scalar sector of (3 ·1) is actually invariant under the larger 
SU (2) X SU (2) symmetry, and after the spontaneous symmetry breaking 

(0 (x)) =v=f=O (3·4) 

the residual diagonal SU (2) sunnves. This residual symmetry simplifies the dis
cussion of the renormalizability and unitarity, but we note that it is not essential 
in some of the points we want to make in the following. 

After the spontaneous breaking (3 · 4), it is convenient to redefine the fields 
111 terms of the components which have no vacuum values: 

cjJ(x, (}) =t,U(x) -i(}(g/2)¢a(x)1t(x), (::3·5) 

rpa(x, (}) =r/Ja(x) +i6[(g/2) (v+cfJ(x));t(x)- (g/2)jabcrpb(x)r;c(x)J (3·6) 

and the Lagrangian (3 ·1) becomes 

r _ 1 [::;, A a ::;, A a jabcA bA c]2 d.-. inv - - - U # v - U v # - g p, v 

4 

+ ~ {(al'¢a) 2 + (81'¢) 2 + (gvj2) 2(A/) 2+ (gv)¢aa~'A/ 

- g AI' a (¢fr¢a- ¢afr¢) + g fabCaf'¢a Al'b¢/ 

+g(gvj2) (A/)2¢+ (1/4)q2(A/)2[¢2+ (¢a)2]} 
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2050 K. Fujikawa 

(3·7) 

Here we note the crucial difference between the ordinary local or global gauge sym

metry and the present (operator) BRS symmetry. The BRS transformation pro

perty among the shifted fields (3 · 5) and (3 · 6) are preserved as long as 

<rt (x)) = 0. On the other hand, <iff (x) )=FO (i.e., the degeneracy of the vacua) 

results under the ordinary (global) gauge transformation once 1; (x) is shifted. 

3.2. The gauge fixing Lagrangian 

We next add the most general gauge fixing terms constructed from ~a (x, 8) 

(2·11) and rt(x,8) (2·10) in addition to A/(x,8) and S(x,8), which transform 

covariantly under the BRS transformation with d = -1 and have the canonical 

dimensions less than or equal to 4. 

_fu=a~a (x, 8)()# A/ (x, 8) + {3~a (x, 8) ¢f (x, 8) + (r/2) ~a (x, 8) Ou~a (x, 8) 

+ O~a (x, 8) rPa (x, 8) 1; (X, 8) + i (Ej2)_Fbc~a (x, 8) ~b (X, 8) 1/ (x, 8). (3 · 8) 

Here we assign the canonical dimensions 2 to ~a (x, 8), 1 to A/ (x, 8), ¢a (x, 8) 

and 1; (x, 8), and 0 to rt (x, 8). The canonical dimension of rt (x, 8) is suggested 

by (2 ·10) and (2 ·13) to be 0. The transition between ~ and r; then fixes the 

canonical dimension of ~ to be 2 (note that ~a (x) and r;a (x) correspond to the 

ghost fields ca and ca in the customary notation,3J.aJ,gJ respectively). 

The BRS invariant action is obtained from _fg as 

which can be written in terms of component fields as 

Sg= S dx{aBa8"A.aa+{3Ba¢a+ (r/2)BaBa 

+ oBa¢a1; + iE_Fbc Ba~or;c} 

(3 ·9) 

+is dx{aa"~a(a,ar;a-g.FbcA/r;c) -{3~a[ (g/2) (v+1;)r;a- (g/2)_Fbc¢or;c] 

- o~a1; [ (g/2) (v + 1;) r;a- (g/2)jabc¢br;c] + o~a¢a[ (g/2) ¢br;b] 

This 1s Hermitian if one remembers that ~ and r; anti-commute. 

3.3. The quantization 

We add the source terms to the Lagrangian 

_f8 = -A/(x, ()) .?'" (x, 8) +¢a (x, 8)Ja (x, ()) +1; (x, 8) J(x, 8) 

+~a (x, ()) Jt (x, 8) + Jna (x, 8) 'fja (x, 8), 

(3 ·10) 

(3·11) 

where we may formally assign the BRS dimensions d = -1 to Ja" (x, 8), Ja (x, ()) 
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On a Superfield Theoretical Treatment of the Riggs-Kibble ]Jfechanism 2051 

and J(x, ()), d = 0 to J/'" (x, ()) and d =- 2 to J~a (x, 8), respectively. The entire 

action is then given by 

(3 ·12) 

where Linv is formally regarded to be the second component of some supedield 

with d = --1; note that o (- ()) =8. 

The quantization is performed by the path integral method 

W[J] = s[dA/ (x) d(pa (x) d~ (x) d~a (x) drt (x) dBa (x) J eis. (3 ·13) 

It can be confirmed that the functional measure here is invariant under the full 

BRS transformation defined by the right-hand sides of (2 · 8) and (2 · 9). The 

connected Green's functions are generated by Z[J] = (- i) ln W[J]. 

3.4. Slavnov-Taylor identities 

The generating functional (3 ·13) is identical to the ordinary prescription., 

including the source terms for all the composite fields associated with the BRS 

transformation. It is, therefore, straightforward to derive the ordinary SlavnoY

Taylor (ST) identities.n In the following discussion, however, the integral form 

of the Ward-Takahashi identity13l is more convenient. 

Consider, for instance, 

Since the action and the measure are invariant under the BRS transformation, this 

Green's function satisfies 

<(~a (x, 01) q} (y, 02)) +) =< W (x, (}1 +J.)q}(y, (}2+Jc)) +) 

= e-p< (~a (x, eP(}1) q} (y, eP(}2)) +), (3 ·15) 

if there is no spontaneous breaking of the BRS symmetry. The {}-dependence of 

the Green's function is completely specified by these relations. The first relation 

of (3 ·15), which is a consequence of the proper BRS invariance, indicates that the 

Green's function is a function of (} 1 - (}2 (i.e., translation in variance). The second 

relation indicates that the Green's function is a first power in (} (dilatation invari

ance). Consequently we have 

(3·16) 

This gives four relations in terms of component fields 

((~a (x)q}(y)) +) =< (Ba (x) (g/2) [ (v +~(y) )r/(y)-.f'aq/ (y)r/ (y) ]) +) = 0, 

( (Ba (x) q} (y)) +)=<(~a (x) (g/2) [ (v+ ~ (y) )r/ (y)-.f'a¢' (y) r/ (y) ]) +) 

=f(x-y)oab. (3·17) 

These are the ordinary ST identities for Green's functions. 6l In fact, the ordinary 
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2052 K. Fujikawa 

ST identities are identical to the "differential" form 

(3 ·18) 

The integral form of the ST identity is useful in two respects; firstly, it enforces 

the BRS symmetry unambiguously, and secondly it allows us to understand the 

unitarity and gauge independence in an intuitive manner. This second point \vill be 

discussed later. As for the first point, we note that the BRS invariance indicates, for 

example, 

=0, (3·19) 

aS the translation invariant second power ll1 (} lS glVen by ((}1- (},) ((}1- (}2 J =0. 

This means 

((~a (x) ~b (y)) +) = ( (B 0 (x) ~b (y)) = ( (Ba (x) Bb (y)) +) = 0 . (3. 20) 

This last relation shovvs that 

(Ba (x) Ba (x) )=f=O (3. 21) 

gn,es nse to an explicit or spontaneous breaking of the BRS symmetry, although 

Ba (.-x:) itself is a BRS scalar (we can similarly show (B" (x)) = 0 without using 

the global symmetry). 

This rather subtle aspect of the BRS symmetry is closely related to the 

seYeral "pathological" cases discussed in the literature. 6l. 1el As an example, we 

discuss the extra mass term discussed in Ref. 16) 

which corresponds to the spontaneous breaking of the BRS symmetry. This term 

is not included in the present formalism vvhcre only the identically BRS im"ariant 

term .£inv and the manifestly BRS covariant terms .£g (3 · 8) are allowed. Equa

tion (3 · 22) becomes BRS invariant up to a divergence only if one imposes the 

equation of motion on the B-field 

(3. 23) 

with /3 = o = 0 and f = - gr /2 in .£ g (3 · 9). This equation is not manifestly BRS 

cm,ariant, and it is not used in the present formalism. We instead implement 

the corresponding relation among the manifestly BRS covariant Green's functions by 

aa~< (A" a (x, (}) ... ) +)+rae( (~a (.x:, (}) ... ) +) 

+ idabc( W (.x:, (}) ljc (x, (}) ... ) +) = 0. (3. 24) 

Note that the second component of (3·24) implies the equation of motion for ~(x) 

without the mass term (3 · 22). The manifest BRS covariance thus automatically 
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On a Superfield Theoretical Treatment o.f the Higgs-Kibble Jlvfechanism 2053 

Fig. 1. Quadratically divergent mass terms which could give nse 

to the spontaneous breaking of the BRS symmetry. 

excludes the unwanted term (3 · 22). 

The next question is then whether a suitable regularization can ensure the 

absence of (3 · 22). We indicate that the dimensional regularization, 19) for example, 

can do this. In the one-loop level we have the formally quadratically divergent 

mass terms of the order of Egja shown in Fig. 1. If one uses the relation 

f = - gr /2, these quadratic divergences correspond to the second term in (3 · 22). 
In the well-regulated theory, these mass terms exactly cancel for {3 = 0 after a shift 

in the integration variable. For f3i=O a logarithmically divergent mass term sur

vives, and it is absorbed by the renormalization of the {3-term in (3 ·10). 

This example shows that the manifest BRS covariance imposes an extra con

straint on the theory other than the BRS invariance defined in Refs. 6) and 16), 
and that the manifest BRS covariance is preserved in perturbation theory. 

§ 4. Unitarity and gauge independence 

The renormalization of the Lagrangian (3 ·12) has been discussed by vanous 
authors4>.e>. 2oJ and we do not repeat it here. We just note that if the gauge coupling 

is renormalized at the three-point vector vertex by g 0 ~ (Z1/ (ZA) 312) g, the super

fields including the vacume value are rescaled as 

A/(x, ()) = v'ZA{A/(x) +i(JZ.[o,?J"- (Z1/ZA)g_f<bcA,b?Jc]}, 

'iJ"(x,(J) =Z.[?J"(x) +i(JZ.(Z1/ZA) (g/2)j'bcrl?Jc], 

<jJ(x,8) =v'z,;[<jJ(x) +v0 -i(JZ.(Z1/ZA) (g/2)¢"?7"], 

¢" (x, 8) = v' z¢ {¢" (x) + i8Z. (Zd ZA) (g/2) [ (</J +vo) ?7"-.rbc¢b?Jc]}, 

~"(x,8) =~"(x) +(JB"(x) 

(4·1) 

and the parameters in ..[g are rescaled: aZa/v'ZA, {3Zp/VZ¢, rZr> oZ6/Z¢ and 

EZ,/ z., respectively.*> The parameters in the last term in (3 ·1) are also rescaled 

as J...~J...Zj(Zq,Y and v~v'Zq,v/, and the difference ov2=Vo2 - (v/Y with Vo in 
(4·1) multiplies the so-called tadpole counter terms.3l· 10l As we include all the 

possible terms with canonical dimensions not greater than 4, the renormalizability of 

*l It should be noted that (4·1) corresponds to the most general rescaling of component 
fields, which is consistent with the BRS symmetry. Although it is possible to transfer a part of 
the scaling factor Z, to that of ~(x), we chose (4·1) so that all the superfields are made finite. 
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2054 K. Fujikawa 

the model is more explicit than in the ordinary formulation, providing that one suffi

ciently regulates the theory so that all the ST identities are satisfied. The auxiliary 

field B (x) also simplifies the discussion of non-linear gauge conditions. The necessity 

of the E-term to ensure the multiplicative renormalization will be commented on later. 

4.1. ProjJagators 

As has been discussed in the previous section, the BRS covariance completely 

determines the 0-dependence of all the Green's functions. In particulatr 

< (q\a (x, 0,) ¢} (y, 02 )) +) =oabg (x-y), 

< c;;a (x, 0,) A~b (y, 0,)) _,)=oabfJjL (x-y)o(0,-0,). (4·2) 

It is, therefore sufficient to consider the sector formed by Ba (x), A/ (x) and (pa (x). 

We can then recover the full propagators by means of the ST identities. The 

physical <jJ (x) sector disconnected from others should be added later. 

As usual we have the renormalized two-point proper vertices 

Ap 

A, ( (g'P-k'kPjk')AW) +k'kPjk'B(k') 

¢ - i!?P D (k2) 

B -ikPC(P) 

and the propagators as an mverse of ( 4 · 3) 

¢ 

ik'DW) 

k'FW) 

EW) 

B 

ik'CW)) 

EW) 

GW) 

B 

(4· 3) 

A ( (g - k k /P) /A (k2
) + k k jk' B (k') - ik"Y /-C 

" "" " , " , (k'-X)' 

¢ j_k,_Y /C XY /E + 1/F 
W-X)' W-X)' k'-X 

B ik,/C ~!f[E 

~!~If) 
~X_IE 

k'-X ' 

0 

where the factor oab is suppressed, and 

B W) = -X/JJ_+ k'YEI_£XC') 
k'-X W-X) 2 ' 

X(k') =E(k')D(k') / (C(l<')F(P)), 

Y(k') =EW)/F(k') -X(k')G(F)/E(F). 

The ST identity < (BB) +) = 0 (3 · 20) imposes the constraint 

D (k")' = B (k') F (k'). 

Equation ( 4 · 3) indicates 

B(O) =1/A(O) 

(4·4) 

(4·5) 

(4· 6) 

(4·7) 

(4·8) 

(4·9) 
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On a Superfield Theoretical Treatment of the Riggs-Kibble Mechanism 2055 

as F (0) =finite. Consequently, the pole at k" = 0 completely decouples from the 

propagators (4·4) for the general gauge condition (3·8). We note that the /1-term 

in (3 · 8) explicitly breaks the global gauge symmetry of the original Lagrangian, 

and the Goldstone theorem does not hold. 

The salient feature of the non-linear gauge condition is that C (1?2), E (k2) 

and G (k2) become k2-dependent. We renormalize everything at k2 = ;l for a suitable 

/1, 

A (!12) = -/12 + (gv /2) 2' jj (!12) = (gv /2) 2 , F(/12) = 1, (4·10) 

which normalize the vector meson and Goldstone boson wave functions and define 

the vacuum value (gv/2). From (4·8), we have 

We further normalize as 

Then 

D (;/) = gv/2. 

C(/12
) =a, 

E(;/) =S, 

G(;l) =r. 

X(;_l) = (Sja) (gv/2), 

Y(;l) =S- Cr/a) (gv/2). 

(4·11) 

( 4 ·12) 

(4·13) 

To simplify the discussion of the gauge independence later, the mass of if; is chosen 

at the physical value m1, which in turn defines the coupling constant },. Other 

coupling constants g, o and f are normalized at the symmetric point with k/ = !12. 

We next examine the pole structure of propagators: The physical vector 

meson mass is found from 

A(M2 ) =0, 

8 ' 
1/Zs=--A(s)l 

GS ]s~M' 

Similarly we define the ghost pole position m 2 by 

m 2=X(m2) 

and expand h2 -X(k2) around h2 =m2 

(4·14) 

(4·15) 

(4·16) 

At the tree level m 2 = (/1/a) (gv/2). We also expand C(k2) and E(k2) as 

C (k2
) =a1 + a 2 (k"- m 2) + 0 (k2 - m 2)", 

E (k2) ~s~ + 82 (k2 - m 2) + 0 (k"- m 2) 2 • 

We then obtain the pole structure of full propagators 

(4·17) 

(4·18) 
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2056 K. Fujilwwa 

(4 ·19) 

( 4. 20) 

(4. 21) 

(4. 22) 

~<(A"" (81) ~1,b (8 2)) 

z 

(4. 23) 

where the factor (jab is suppressed, and we utilize a symbolic notation for the 

Fourier transform of the time-ordered product. The following parameters are also 

defined: 

(4. 24) 

K-- C:i\/a1m') '{1/ F (m') + (L/ Z) [a,ja:1 - J'i,/{31 + (Z-1) / (m'Z)]}, 

N=z[cz4;a1)Y(m') +()__(Y(s)/C(s)) ], as s~m' 

N1= (ct1m'/f]1)N+ (a1m'//11)"K, 

N,= C81/a1m')N-K. 

These parameters satisfy the crucial relation 

(4 ·25) 

(4· 26) 

(4· 27) 

we find the following pole structure by using (3·19), (4·25) and (4·26): 

(4 ·28) 

( 4. 29) 

l_<C(r(8)rf}(8)) )~aab[_J;_N1_1- L J 
i 1 2 + k'- m 2 (k 2 - m 2) 2 

(4. 30) 

and all other propagators vanish except for 
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On a Superfield Theoretical Treatment of the I-Iiggs-Kibble 1v!echanism 2057 

(4· 31) 

( 4. 32) 

Note that the propagator ( (t;r;) +) appeats as an auxiliary device in the present 

formulation, and the precise form of Z:. and z" is not important in the following 

discussion. 

and 

We next define the "metric" by inverting ( 4 · 29) and ( 4 · 30) 

¢} (6z) t;" (6z) 

iE<1)(61 6z)=t;a(61)( (f]1jmzz)zZN1 

' <rce~) + ca~/m 2 Z)o(6~-6z) 

- (f]l/m2Z) 0 (61- 6z)) (" 2) .'>ao 
r?--Jn u 

0 

(4. 33) 

(4· 34) 

This metric satisfies, for example, 

( ( ¢ (61) A~ (02)) +) m = sd6sd0" :2::: ( (¢ (6~)f(6s)) +) m E'1) (6s, 64) Jg 
f.g 

(4. 35) 

where the summation runs over f, g=t; and¢, and ((¢(01)AA62))+)(1), for ex

ample, stands for the single-pole part of ( 4 · 22). This relation holds for all the 
propagators (4·19)~(4·23) including (t;r;) in (4·32) near the single-pole at k 2 

= m 2 if one remembers the relation ( 4 · 26). Similarly for the double-pole part, 
e.g., 

( CL1,, (61) Av (8z)) +)'2) = S d8sd8/ (.11 1, (81) ¢ (8s)) +)"1 E'2l (Os, 81) 

X ( (¢ (04) Av (8z)) +)(2), (4· 36) 

where < (r11, (81 ) ¢ (83)) +) "\ for example, stands for the double-pole part of ( 4 · 23). 
These relations (4·35) and (4·36) show that the Green's functions of the 

form (with an arbitrary number of c/J and A4~' (or UJ at the physical pole position 
added) 

(4· 37) 

and the "metric tensors" EUJ and E<2) are sufficient to generate a combined Green's 

function in the Landau-Cutkosky rule near the unphysical pole position ki 2 = m 2 • 

(If one looks at the proper vertex, there is no such simplification.) 

4.2. Cutting rule (or Landau-Cutkosky rule) 3) 

In the proof of unitarity via the Landau-Cutkosky rule, one considers a diagram 
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2058 K. Fujikawa 

Fig. 2. Landau-Cutkosky diagram. 

such as in Fig. 2, where all the external lines correspond to the physical particles 

(</;at k"=m;}, and A~a(or U~a) at k 2 =1'vf2). The internal lines in general contain 

the physical as well as unphysical particles on the mass-shell. 

We want to show that the intermediate states with unphysical particles give 

rise to a vanishing contribution. We dispense with the on-shell physical particles as 

they are BRS scalars. Consequently we consider to combine two Green's functions 

of the form ( 4 · 37) by the "metric tensors" Eul and E''l. 

Single-pole contribution 

We first consider the single-pole contributions when they are jointed by the 

off-diagonal elements of ECll in ( 4 · 33). Namely, we combine ( 4 · 37) with an

other Green's function of the form 

(4· 38) 

by the off-diagonal elements of Ew, which have the 6-dependence of the form 

(4· 39) 

The translation and dilatation in variance in 6-variables determine ( 4 · 37) as a sum 

of Z-th order monomials formed by the (n -1) differences of 6-variables. Symboli

cally 

l 

Eq. (4·37) =l:{[l1(6;-0j)JJ(kl> ···,kn)}. (4· 40) 

Similarly 

n-l 

Eq. (4·38) =l:{[l1(6/-0/)]g(k" ···,kn)}. (4·41) 

The multiplication of these Green's functions with the metric ( 4 · 39) identically 

vanishes before the integration is performed, as one obtains a 2n-th power in 

(2n-1) independent anti-commuting variables of the form (6i- 6i). The simplest 

example is obtained by combining < (t; (61) ¢ (62)) +) with < ( ¢ (6/) t; (6/)) + ). In this 

case we have the 6-dependence 

( 4. 42) 

This cancellation mechanism is analogous to the divergence cancellation in the 
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On a Superfield Theoretical Treatment of the Riggs-Kibble Mechanism 2059 

ordinary supersymmetric field theory. 131 ' 141 

When the diagonal element of Ew is involved, one combines two Green's 

functions of the form, e.g., 

( 4. 43) 

instead of ( 4 · 37) and the one corresponding to ( 4 · 38) by the metric ( 4 · 39). 

As the second component of t; (x, (}) is scalar under the full BRS symmetry, the 

{}-dependence of ( 4 · 43) is identical to ( 4 · 37) and, consequently, we again have a 

vanishing result. We note that 

( 4. 44) 

due to the same reasoning as in (3·19) (this is valid for off-shell t;'s also). 

Therefore the combination of two Green's functions jointed by the diagonal element 

of Ew alone also vanishes. 

Double-pole contribution 

Some of the ¢ (6) 's in the Green's function can be bridged by the dipole 

ghosts in the intermediate summation via Ec21 • We here notice that the residues of 

< ( ¢ (e1 ) ¢ (e2)) +) <21 in ( 4 · 22) and < ( ¢ (e1 ) A~ (6,)) +) <21 in ( 4 · 23) are proportional to 

those of JdB<(t;(e)¢(9,))-c)m in (4·21) and JdB<(t;((})A11 (62))+)<11 in (4·20), re

spectively. This means that the dipole contribution to the intermediate sum is 

proportional to the diagonal single-pole term such as ( 4 · 43) except for the differ

ence in the powers appearing in the denominator. Consequently, these contribu

tions again vanish. 

This completes the proof of unitarity via the Landau-Cutkosky rule, and the 

essential ingredient is the full BRS covariance of all the Green's functions. 

4.3. Gauge independence 

We consider the perturbative construction of the connected physical T-matrix 

element 

( 4. 45) 

where all the (amputated) cf/s are on the mass shell k" = m/, and the (amputated) 

vector particles are also restricted to the physical pole position by choosing the 

arbitrary renormalization point fJ. in (4·10) at ;i=M2• Here we include the com

posite operators written in the interaction picture for external legs of the Green's 

function with appropriate renormalization factors added. It can be checked that the 

physical Green's function specified above is in fact independent of 6-variables for 

m'=/=111'. 

We next examine the dependence of ( 4 · 45) on the renormalized parameter 

r in .Lg (3 · 8) by expanding it in powers in r. The linear term in r is in the 

symbolic notation 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

9
/6

/2
0
4
5
/1

9
3
1
4
9
0
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



2060 K. Fujikazoa 

+counter terms linear in r. (4· 46) 

The operator inserted into ( 4 · 46) transforms covariantly with BRS dimension 
d= -1, and the first term in (4-46) identically vanishes due to a reasoning similar 
to (3 -19), if one remembers that ( 4 · 46) is independent of 01 ~en. Consequently, 

the corresponding counter terms linear in r also vanish if renormalized in a BRS 
cm'ariant manner. This argument can be continued to higher powers in r, and the 

r-independence of ( 4 · 45) is established.*) Similarly, any one of the terms in 

(3 · 8) gives rise to a \'anishing result when inserted into ( 4 · 45). The E

independence, for example, can be shown by considering the insertion of the BRS 
coyariant operator with d = -1 

\\·here (Z,1Z1 / ZA) 0 indicates the zeroth order in the renormalized parameter E. 

See also (4·1). 

vVe here note that there appear two basically different classes of BRS invariant 

operators in the present formulation; the first with d = 0 such as .Linv a ncl the 

on-shell l(J and All (or U 1,), and the second with d= -1 such as .£9 and ;(x, 0) 
(or B (x)). It is the lat~er class of operators which give rise to a vanishing 
result \Yhen inserted into the on-shell T-matrix. 

4.4. Canonical treatment 

The proof of unitarity m the canonical treatment is based on the observation 

that all the (proper) BRS invariant states (i.e., inntriant under U (}.) (2· 6)) formed 
by unphysical particles have the zero norm. 81 ' g) One can see a close correspondence 

between our discussion of unitarity on the basis of the Landau-Cutkosky rule and the 

canonical treatment given by Kugo and Ojima. 9) In the following we briefly sketch 

how the canonical treatment can be made more intuitively understandable in the 
present formulation. 

All the steps up to ( 4 · 30) are identical in any approach. Equations ( 4 · 29) 
and ( 4 · 30) are simplified if one makes the finite renormalization, 

and 

we also set L = 0 by suitably choosing the parameter r; this avoids the unnecessary 

complications arising from the dipole ghost. vVe then have the pole structure 

(4. 48) 

*l This argument is essentially the same as the proof of the gauge independence in the case 
of the Abelian model given by B. W. Lee, Phys. Rev. D5 (1972), 823. 
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~< (¢/' (81) ¢l (82)) +>~oab 2 ~:1:_ 2 , 
z k-m 

(4. 49) 

which can be converted into commutation relations among the asymptotic fields 

and 

[~~. (x, 81), ¢~, (y, 82)] = - ioab (gv /2) D (x- y; m 2) o (81- 82), 

[ ¢~. (x, 81), ¢~, (y, 82)] = ioab D (x- y; m 2) 

(4· 50) 

(4·51) 

Expanding these into plane-wave solutions, one introduces the creation and anm

hilation operators, e.g., 

rpa (k, e) 1=¢a (k) t + ie (gv/2) 1ja (k) t, 

~a (k, e)t=e'(k)t +eBa (k) t. 
(4· 52) 

Here we suppress the suffix "asymptotic". The n-ghost state Is constructed by 

¢ Ck1, e1) t · · ·¢ Ch~> el) ~~ (k1+1, el+1) t · · -~ Chm en) t I phys ), C 4 ·53) 

where lphys) stands for the state formed by <jJ and U11 • The (proper) BRS 

invariant state is projected out by the operation (2 · 20) 

s dA.U(A.) ¢ (k~> e1)f .. ·~ (kn, en) 1U (A.) 1lphys) 

=fMJ(kh e1 +A.)t.··~(kn, en+A.) 1Iphys), 

=Q¢(kh e1) 1 ···~(kn, en) 1lphys), 

(4·54a) 

(4·54b) 

where (4·54b) follows from U(A.) 1Iphys)= lphys). A set of n-ghost states can be 

generated from (4·54a) by performing the differentiation and expanding it into 

powers in e-variables. By comparing the same powers in e in (4·54b), one finds 

alternative expressions for these states. Equation ( 4 · 54b) indicates that all the 

BRS invariant states thus obtained have the zero norm and are orthogonal to the 

physical states. *J 

The simplest example is given by considering the state ¢ (kh e1) t~ (!?2, e2) t I phys ). 

Namely, 

[i (gv/2) r;+ (k1H+ (k.) + ¢+ (k1) B+ (k2)] lphys) = Q¢+ (k1) ~+ (k") lphys), 

i (gv /2) r;+ (k1) B+ (k2) I phys) = Q (- igv /2) r;+ (k1) ~+ (k2) I phys) 

=Q¢+ (k1)B+ Ck2) lphys), (4·55) 

*l What (4·54) means is that any n-ghost state In) which satisfies the constraint Qln>=O 

can be written as ln>=Qin'> by using a suitable n-ghost state In'>. Consequently, Qln>=O 
automatically implies <nln>=O and they amount to the basic algebra {Q, Q} =0. It is also possible 
to prove this by using the n-ghost projection operator p<•J introduced in Ref. 9). Written in our 
notation, ln>=P<•J In>= Q~.( -1/n) {~(k) tp<•-•l¢(k) +¢(k) tp<•-•l~(k) + B(k) 1 P<•-•>~(k)} In>= Qln'> if 

Qln>=O. 
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2062 K. Fvjikawa 

The first state in (4·55) corresponds to the example given in Ref. 9). As was 

shown by Kugo and Ojima, 91 one can consistently express the charge Q in terms of 

creation and annihilation operators, and the above argument can be refined. 

4.5. Jvlultiplicative renormalization and the quartic ghost coupling 

We next comment that the quartic ghost coupling, the f-term in (3 · 8), is 

required to multiplicatively renormalize the non-linear gauge condition with o=I=O 
in (3 · 8). See also Ref. 4). The divergent diagrams in the lowest order are 

shown in Fig. 3. All of these diagrams are of order o2 and logarithmically diver-

8 v 'Z/ 0 ' 
' ,.I., ,· .... ,' ~ .. 

' ' , 
' 

, ' 
1/J :' \ 1/.1 tJ>{ : t/1 ¢: :1/1 

"'' 
:¢ 

' ' . . ' 

h 
' ' 

~ ~ 0 
Fig. 3. Logarithmically divergent diagrams which are 

absorbed by the renormalization of the E·term. 

gent, and they can be simultaneously renormalized by an adjustment of f in (3 · 8). 

It should be noted that all the terms in L 9 (3 · 8) and Linv (3 -1) are separately 

BRS invariant and, consequently, the divergence in the f-term cannot be regulated 

by other terms via ST identities. This can be confirmed by writing the ST 

identity for the proper vertices 71 in terms of the component fields. What happens 

then is that the divergent Part of the Bt;r; three-point vertex, for example, com

pletely decouples from the ST identity for three-point vertices. 

In this connection, we note that some of the previous treatments6J' 201 of the 

non-linear gauge condition renormalized the f-term subtractively by super-imposing 

the equation of motion for t; (x, fJ) with E = 0 on the ST identity. The f-term is 

somewhat akin to the graphic r:p4 coupling in the old Yukawa interaction, 

although the physical S-matrix is independent of it in the present case. The 

explicit presence of the f-term allows us to discuss the renormalization solely on 

the basis of the BRS symmetry without any additional constraint. It is also grat

ifying that the fundamental coupling in (2 ·10) plays a non-trivial role in gauge 

theory. *1 
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*1 It would be interesting to investigate whether a non-linear gauge condition with the quartic 
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linear gauge conditions (the so-called Gribov ambiguity). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

9
/6

/2
0
4
5
/1

9
3
1
4
9
0
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



On a Szrperfield Theoretical Treatment of tlze Higgs-Kibble "l1echanism 2063 

References 

1) C. N. Yang and R. I. Mills, Phys. Rev. 96 (1951), 191. 
R. Utiyama, Phys. Rev. 101 (1956), 1597. 

M. Gell-Mann and S. L. Glashow, Ann. of Phys. 15 (1961), 437. 
2) P. W. Higgs, Phys. Rev. 145 (1966), 1156. 

T. W. Kibble, Phys. Rev. 155 (1967), 1554. 

See, E. S. Abers and B. vV. Lee, Phys. 1\.eports 9 (1973), 1 for further references. 
3) G. 't Hooft, Nucl. Phys. B33 (1971), 173; B35 (1971), 167. 

G. 't Hooft ancl M. Veltman, Nucl. Phys. B50 (1972), 318. 
B. W. Lee, Phys. Rev. D5 (1972), 823. 
B. W. Lee and J. Zinn-Justin, Phys. Rev. D5 (1972), 2121, 3137; D7 (1972), 1049. 

4) ]. Zinn-Justin, Lecture Note in Physics, Vol. 37 (Springer, Berlin, 1975), 2. 
5) L. D. Faddeev and V. N. Popov, Phys. Letters 25B (1967), 29; NAL report, NAL

THY-57 (1972). 

6) C. Becchi, A. Rouet and R. Stora, Comm. Math. Phys. 42 (1975), 127; Ann. of Phys. 98 
(1976), 287. 

Cf., H. Kluberg-Stern and ]. B. Zuber, Phys. Rev. D12 (1975), 467, 482. 
7) A. A. Slavnov, Theor. Math. Phys. 19 (1972), 99. 

]. C. Taylor, Nucl. Phys. B33 (1971), 436. 

B. W. Lee, Phys. Letters 46B (1973), 214. 
8) G. Curci and R. Ferrari, Nuovo Cim. 35A (1976), 273. 
9) T. Kugo and I. Ojima, Phys. Letters 73B (1978) 459, and Kyoto reports, KUNS-420, 422 

and 425 (1977). 

As for the Abelian Higgs model, see N. Nakanishi, Prog. The or. Phys. 49 (1973), 640 
and references therein. 

See also N. Nakanishi, Kyoto report, RIMS-237 (1977), where the operator representation 
of the infinitesimal anti-commuting parameter is emphasized. 

10) D. A. Ross and ]. C. Taylor Nucl. Phys. B51 (1973), 125. 
11) J. Wess and B. Zumino, Nucl. Phys. B70 (1974), 39; Phys. Letters 49B (1971), 52. 

For a review, see S. Ferrara, Riv. Nuovo Cim. 6 (1976), 105. 
12) A. Salam and J. Strathdee, Nne!. Phys. B76 (1974), 477. 

S. Ferrara, ]. Wess and B. Zumino, Phys. Letters 51B (1974), 239. 
13) K. Fujikawa and W. Lang, Nucl. Phys. BSS (1975), 61. 
14) A. Salam and ]. Strathdee, Nucl. Phys. B86 (1975), 142. 

R. Delbourgo, Nuovo Cim. 25A (1975), 646. 
D. M. Capper and G. Leibbrandt, Nucl. Phys. B85 (1975), 492. 

15) S. Ferrara, 0. Pigue! and M. Schweda, Nucl. Phys. B119 (1977), '193 and references 
therein. 

16) G. Curci and R. Ferrari, Phys. Letters 63B (1976), 91. 
17) S. Coleman and R. Jackiw, Ann. of Phys. 67 (1971), 552 and references therein. 
18) F. A. Berczin, The ~Method of Scond Quantization (Academic Press, New York, 1966). 
19) G. Leibbrandt, Rev. Mod. Phys. 47 (1975), 849 and refrences therein. 
20) K. Shizuya, Nucl. Phys. Bl09 (1976), 397. 

Cf., S. D. J oglekar, Phys. Rev. D10 (1974), 4095. As for practical applications of the 
non-linear gauge condition, K. Fujikawa, Phys. Rev. D7 (1973), 393; B. \V. Lee and R E. 
Shrock, F ermilab-77 /21-THY (1977). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

9
/6

/2
0
4
5
/1

9
3
1
4
9
0
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2


