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ON A SYMPLECTIC GENERALIZATION

OF PETRIE’S CONJECTURE

SUSAN TOLMAN

Abstract. Motivated by the Petrie conjecture, we consider the following
questions: Let a circle act in a Hamiltonian fashion on a compact symplec-
tic manifold (M,ω) which satisfies H2i(M ;R) = H2i(CPn,R) for all i. Is
Hj(M ;Z) = Hj(CPn;Z) for all j? Is the total Chern class of M determined
by the cohomology ring H∗(M ;Z)? We answer these questions in the six-
dimensional case by showing that Hj(M ;Z) is equal to Hj(CP3;Z) for all j,
by proving that only four cohomology rings can arise, and by computing the
total Chern class in each case. We also prove that there are no exotic actions.

More precisely, if H∗(M ;Z) is isomorphic to H∗(CP3;Z) or H∗(G̃2(R5);Z),
then the representations at the fixed components are compatible with one of
the standard actions; in the remaining two cases, the representation is strictly
determined by the cohomology ring. Finally, our results suggest a natural
question: Do the remaining two cohomology rings actually arise? This ques-
tion is closely related to some interesting problems in symplectic topology,
such as embeddings of ellipsoids.

1. Introduction

In the early 1970s, Ted Petrie wanted to address two related fundamental ques-
tions: Given a compact Lie group G and a manifold M , does M admit a G-action?1

If so, how many different actions can we find?
One of his important insights was that these questions are much more tractable

when M is a homotopy projective space, that is, a simply connected manifold
so that H∗(M ;Z) = H∗(CPn;Z) as rings, or equivalently a manifold which is
homotopy equivalent to CPn.

For example, the first key step in answering these questions is understanding the
relationship between the tangent bundle near the fixed components and the global
invariants of M . Petrie proved that if the circle acts on a homotopy projective
space with isolated fixed points, then the Pontrjagin classes are determined by the
representations at the fixed points [Pe1].

Motivated by this and other evidence, he stated what is now known as the Petrie
conjecture: If a homotopy projective space M admits a circle action, then the
Pontrjagin classes of M are standard, that is, agree with the Pontrjagin classes
of CPn itself. Although this conjecture has not been resolved in general, it has
motivated a good deal of research. In particular, it has been proven if M is at most
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eight-dimensional [Dej, Ja], if M admits an invariant almost complex structure
whose first Chern class is at least 1

2 dim(M) + 1 times the generator of H2(M ;Z)
[Ha], and in many other special cases [Des, Ma, Mu, Pe2, TsWa, Wan, Yo].

We are interested in addressing the analogous questions for symplectic manifolds:
Given a compact Lie group G and a symplectic manifold (M,ω), does M admit a
Hamiltonian G-action? If so, how many different actions can we find?

In the symplectic case, several additional tools are available. For example, there
is an almost complex structure J : T (M) −→ T (M) which is compatible with
ω, i.e., ω(J ·, ·) is a Reimannian metric. Moreover, the set of such structures is
contractible, and so there is a well-defined total Chern class c(M) ∈ H∗(M ;Z).
Additionally, the components of the moment map Φ: M −→ g∗ are Morse-Bott
functions with extremely nice properties; see §2.

Therefore, instead of insisting that our symplectic manifold (M,ω) be a homo-
topy projective space, we merely assume that H2i(M ;R) = H2i(CPn;R) for all
i. We prove that if the circle acts on such a manifold in a Hamiltonian fashion
with isolated fixed points, then both the cohomology ring and the total Chern class
are determined by the representations at the fixed points; see Corollary 3.16 and
Remark 3.17. This leads to the following questions.

Question 1. Consider a Hamiltonian circle action on a symplectic manifold (M,ω)
which satisfies H2i(M ;R) = H2i(CPn;R) for all i. Is Hj(M ;Z) = Hj(CPn;Z) for
all j? Is the total Chern class c(M) completely determined by the cohomology ring
H∗(M ;Z)?

Our first main theorem answers this question affirmatively in the 6-dimensional
case. In fact, we are able to show that only a few possible rings arise.

Theorem 1. Let the circle act on a 6-dimensional compact symplectic manifold
(M,ω) with moment map Φ: M −→ R. If H2(M,R) = R, then one of the following
four statements is true:

(A) H∗(M ;Z) = Z[x]/(x4) and c(M) = 1 + 4x+ 6x2 + 4x3.
(B) H∗(M ;Z) = Z[x, y]/(x2 − 2y, y2) and c(M) = 1 + 3x+ 8y + 4xy.
(C) H∗(M ;Z) = Z[x, y]/(x2 − 5y, y2) and c(M) = 1 + 2x+ 12y + 4xy.
(D) H∗(M ;Z) = Z[x, y]/(x2 − 22y, y2) and c(M) = 1 + x+ 24y + 4xy.

In each case, x has degree 2 and y has degree 4.

Remark 1.1. Since H2(M ;R) = R and M is a 6-dimensional symplectic manifold,
Poincaré duality implies that b0 = b2 = b4 = b6 = 1, where bi = dim(Hi(M ;R))
denotes the ith Betti number. If the fixed set is discrete, then this immediately
implies that Hj(M ;Z) = Hj(CP3;Z) for all j, that is, that b1 = b3 = b5 = 0 and
the cohomology is torsion free; see §2. However, when the fixed set is not discrete,
this fact is somewhat surprising; it follows from the analysis in §4.

Remark 1.2. By Corollary 1.6 below, the manifold M described above is simply
connected. If we assume that statement (A) is true, then w2(M) = 0; therefore,
Wall’s theorem implies that M and CP3 are diffeomorphic [Wal]. Similarly, any
two manifolds which satisfy statement (C) must be diffeomorphic.

Petrie was able to construct exotic circle actions on projective spaces, that is,
actions so that the induced representations at the fixed points do not agree with
those of any circle subgroup S1 ⊂ SU(n+ 1). Our second main theorem is that, in
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contrast, in the 6-dimensional symplectic case, there are no exotic actions. More
precisely, the representations at the fixed components are either strictly determined
by the cohomology ring or are compatible with one of the standard actions described
below.

Example 1.3. Given n > 1, let CPn denote the projective space of lines in Cn+1.
Since this 2n-dimensional manifold naturally arises as a coadjoint orbit of SU(n+1),
it inherits a symplectic form ω and a Hamiltonian SU(n+ 1) action. Hence, every
circle subgroup S1 ⊂ SU(n+ 1) induces a Hamiltonian circle action on CPn.

Example 1.4. Given n > 1, let G̃2(R
2n+1) denote the Grassmannian of oriented

2-planes in R2n+1. Since this (4n − 2)-dimensional manifold naturally arises as a
coadjoint orbit of SO(2n + 1), it inherits a symplectic form ω and a Hamiltonian
SO(2n + 1) action. Hence, every circle subgroup S1 ⊂ SO(2n + 1) induces a

Hamiltonian circle action on G̃2(R
2n+1).

Given any subgroup H ⊂ S1, let MH denote the set of points fixed by H.
Each component N ⊂ MH is a symplectic manifold which inherits a symplectic
circle action with moment map Φ|N . If H �= {e}, we call each component N of
MH which is not fixed by S1 an isotropy submanifold. Each two-dimensional
isotropy submanifold is a sphere which contains exactly two isolated fixed points; we
call these isotropy spheres. We can now state our second main theorem, which
is an immediate consequence of Propositions 4.1, 6.1, and 7.1, and the remarks
subsequent to each.

Theorem 2. Let the circle act faithfully2 on a 6-dimensional compact symplectic
manifold (M,ω) with moment map Φ: M −→ R. If H2(M,R) = R, then one of
the following four statements is true:3

(A) There is a subgroup S1 ⊂ SU(4) and an orientation-preserving diffeomor-

phism f : MS1 −→
(
CP3

)S1

so that T (M)|MS1 ∼= f∗
(
T
(
CP3

)∣∣
(CP3)S1

)
.

(B) There is a subgroup S1 ⊂ SO(5) and an orientation-preserving diffeomor-

phism f : MS1 −→G̃2(R
5)S

1

so that T (M)|MS1 ∼=f∗
(
T
(
G̃2(R

5)
)∣∣

G̃2(R5)S1

)
.

(C) The fixed set consists of four points; the weights at these points are

{1, 2, 3}, {1,−1, 4}, {1,−1,−4}, and {−1,−2,−3}.
(D) The fixed set consists of four points; the weights at these points are

{1, 2, 3}, {1,−1, 5}, {1,−1,−5}, and {−1,−2,−3}.
Moreover, M contains a pair of isotropy spheres which intersect in two points in
cases (C) and (D), but not in cases (A) or (B).

Remark 1.5. In case (A), M is cobordant to CP3 (with some multiple of the stan-
dard symplectic form) as a stable-complex Hamiltonian G-space. In fact, we may
assume that f is a symplectomorphism; see Remarks 3.17 and 4.3. Similar com-
ments apply in each case.

2 A group G acts faithfully on M if for every non-trivial g ∈ G there exists m ∈ M so that
g ·m �= m.

3 Throughout this paper, the symbol ∼= implies that the two sides are equivariantly isomorphic
complex vector bundles.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3966 SUSAN TOLMAN

We can convert any non-trivial circle action into an effective circle action by
quotienting out the subgroup which acts trivially. Therefore, Theorem 1 follows
immediately from Theorem 2 above and Corollaries 3.16 and 3.19; see Example 3.22.

In each of the cases described above, each component of the fixed set is simply
connected. By [Li1], this implies that Theorem 2 has the following corollary.

Corollary 1.6. Let the circle act faithfully on a 6-dimensional compact symplectic
manifold (M,ω) with moment map Φ: M −→ R. If H2(M,R) = R, then M is
simply connected.

Finally, we can describe the equivariant cohomology of M ; by definition,
this is H∗

S1(M) = H∗(M ×S1 S∞). For example, if p is a point, then H∗
S1(p;Z) =

H∗(CP∞;Z) = Z[t]. The projection map π : M ×S1 S∞ −→ CP∞ induces a pull-
back map

(1.7) π∗ : H∗(CP∞;Z) −→ H∗
S1(M ;Z);

thus, H∗
S1(M ;Z) is a H∗(CP∞;Z) module. Moreover, the inclusion ι : MS1 −→ M

induces a restriction map ι∗ : H∗
S1(M ;Z) −→ H∗

S1(MS1

;Z); define

H∗
S1(M ;Z)|MS1 = ι∗(H∗

S1(M ;Z)).

Finally, let cS
1

(M) ∈ H∗
S1(M ;Z) denote the total equivariant Chern class of M .

The theorem below follows immediately from Theorem 2 and Corollaries 3.13

and 3.14; see Example 3.15. Note that, since H∗(MS1

;Z) has no torsion, the image
H∗

S1(M ;Z)|MS1 naturally determines the equivariant cohomology ring itself; see §2.

Theorem 3. Let the circle act faithfully on a 6-dimensional compact symplectic
manifold (M,ω) with moment map Φ: M −→ R. If H2(M,R) = R, then one of
the following four statements is true:

(A) There is a subgroup S1 ⊂ SU(4) and diffeomorphism f : MS1 −→
(
CP3

)S1

so that

H∗
S1(M ;Z)

∣∣
MS1 = f∗(H∗

S1(CP3;Z)
∣∣
(CP3)S1

)
and

cS
1

(M)
∣∣
MS1 = f∗(cS1

(CP3)
∣∣
(CP3)S1

)
.

(B) There is a subgroup S1 ⊂ SO(5) and diffeomorphism f : MS1 −→ G̃2(R
5)S

1

so that

H∗
S1(M ;Z)

∣∣
MS1 = f∗

(
H∗

S1

(
G̃2(R

5);Z
)∣∣

G̃2(R5)S1

)
and

cS
1

(M)|MS1 = f∗
(
cS

1(
G̃2(R

5)
)∣∣

G̃2(R5)S1

)
.

(C) The fixed set consists of four points: p0, p1, p2 and p3. As an H∗(CP∞;Z) =
Z[t] module, H∗

S1(M ;Z) is generated by 1, α1, α2, and α3, where

α1|p1
= t, α1|p2

= 5t, α1|p3
= 6t, α2|p2

= 4t2,

α2|p3
= 6t2, α3|p3

= 6t3, and αi|pj
= 0 ∀ j < i; moreover,

cS
1

(M)|p0
= 1 + 6t+ 11t2 + 6t3, cS

1

(M)|p1
= 1 + 4t− t2 − 4t3,

cS
1

(M)|p2
= 1− 4t− t2 + 4t3 and cS

1

(M)|p3
= 1− 6t+ 11t2 − 6t3.
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(D) The fixed set consists of four points: p0, p1, p2 and p3. As an H∗(CP∞;Z) =
Z[t] module, H∗

S1(M ;Z) is generated by 1, α1, α2, and α3, where

α1|p1
= t, α1|p2

= 6t, α1|p3
= 12t, α2|p2

= 5t2,

α2|p3
= 6t2, α3|p3

= 6t3, and αi|pj
= 0 ∀ j < i; moreover,

cS
1

(M)|p0
= 1 + 6t+ 11t2 + 6t3, cS

1

(M)|p1
= 1 + 5t− t2 − 5t3,

cS
1

(M)|p2
= 1− 5t− t2 + 5t3, and cS

1

(M)|p3
= 1− 6t+ 11t2 − 6t3.

Note that, in the case that the action is semifree and there is no four-dimensional
fixed component, these three theorems are due to Li [Li2].

Open questions. In these theorems, the first two cases correspond to Exam-
ples 1.3 and 1.4, but the last two cases do not correspond to any known examples.4

This raises the following natural question:

Question 2. Do there exist examples exhibiting properties (C) or (D) of Theorem
2? More precisely, let l = 4 or 5. Does there exist a Hamiltonian circle action on a
compact symplectic (alternatively, Kähler) manifold so that the fixed set consists
of four points with weights {1, 2, 3}, {1,−1, l}, {1,−1,−l}, and {−1,−2,−3}?

We do not know the answer to this question. These manifolds cannot be ruled
out by any of the techniques used in this paper; see also Remarks 2.10 and 2.11.

Moreover, this question seems to be related to interesting problems in symplectic
topology. To see this, we need to introduce some more notation. Given an (n+1)-
tuple of natural numbers k = (k0, . . . , kn), consider the weighted projective space
of type k,

CPn(k) = S2n+1/(z0, . . . , zn) ∼ (λk0z0, . . . , λ
knzn);

let CP
n
(k) denote the same manifold with the opposite orientation. Let αk ∈

H2
(
CPn(k)

)
denote the first Chern class of the tautological circle bundle S2n+1 −→

CPn(k). Finally, given real numbers a and b, define the ellipsoid

E(a, b) =
{
(x1, x2) ∈ C2

∣∣ 1
ax

2
1 +

1
bx

2
2 ≤ 1

}
.

Now suppose that a manifold (M,ω) satisfying the conditions of Question 2
does exist. By Corollary 3.13 (see Example 3.15) and Lemma 2.7 – after possibly
rescaling ω – there exists a moment map Φ: M −→ R so that

Φ(p0) = −6, Φ(p1) = −l, Φ(p2) = l, and Φ(p3) = 6,

where pi is the unique fixed point of index 2i for all i such that 0 ≤ 2i ≤ 6. By
[Go], this implies that for all κ ∈ (−l, l), the reduced space Mκ = Φ−1(κ)/S1 is
diffeomorphic to the connected sum

X = CP2(1, 2, 3)#CP
2
(1, 1, l).

Moreover, let ωκ ∈ Ω2(Mκ) denote the reduced symplectic form; the cohomol-
ogy class [ωκ] ∈ H2(Mκ) is the unique class so that [ωκ]

∣∣
CP1(2,3)

= (6 + κ)α(2,3)

and [ωκ]
∣∣
CP

1
(1,l)

= −(l + κ)α(1,l). Here, the inclusions of CP1(2, 3) and CP1(1, l)

into X = Mκ are induced by the natural inclusions CP1(2, 3) ⊂ CP2(1, 2, 3) and

4 Since this paper was originally submitted, McDuff has used symplectic techniques to construct
manifolds corresponding to the last two cases [Mc2]. In fact, as she points out, both manifolds
(which are Kähler) were already known.
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CP
1
(1, l) ⊂ CP

2
(1, 1, l). In particular, an affirmative answer to Question 2 implies

an affirmative answer to the question below.

Question 3. Given any λ < 2, is there a symplectic (Kähler) form

ωλ ∈ Ω2
(
CP2(1, 2, 3)#CP

2
(1, 1, l)

)
such that

[ωλ]
∣∣
CP1(2,3)

= (6 + l)α(2,3) and [ωλ]
∣∣
CP

1
(1,l)

= −λlα(1,l)?

As in the manifold case, we can construct such a symplectic form if we can find
the symplectic embeddings described below.

Question 4. Given any λ < 2, is there a symplectic embedding

E(λ, λl) ↪→ E
(
6+l
3 , 6+l

2

)
?

Unfortunately, although symplectic embeddings have been extensively studied,
this particular question does not seem to follow easily from known results [S].5 In

particular, it cannot be ruled out by volume constraints; volume(E(2,2l))

volume
(
E
(

6+l
3 , 6+l

2

)) is equal

to 24
25 if l = 4 and to 120

121 if l = 5.
We conclude this section with a brief overview of this paper. In §2, we intro-

duce some background material and establish our notation. In §3, we prove a few
useful results which hold in arbitrary dimensions. As a consequence, we prove that
Theorem 1 and Theorem 3 follow immediately from Theorem 2. In §4, we return
to the six-dimensional case, proving Theorem 2 in the case that the fixed set is
not discrete. We spend the remainder of the paper proving this theorem in the
case that the fixed set is discrete. To do so, we first define a labeled multigraph
associated to M in §5 and then prove Theorem 2 in the cases that the associated
multigraph is simple and not simple in §6 and §7, respectively.
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2. Background

In this section, we introduce some background material and establish our nota-
tion.

Let M be a compact manifold. A symplectic form on M is a closed, non-
degenerate two-form ω ∈ Ω2(M). A circle action on M is symplectic if it preserves
ω. A symplectic circle action is Hamiltonian if there exists a moment map, that
is, a map Φ: M −→ R such that

−dΦ = ιξMω,

where ξM is the vector field on M induced by the circle action. Since ιξMω is closed,
every symplectic action is Hamiltonian if H1(M ;R) = 0.

Let the circle act on a compact symplectic manifold (M,ω) with moment map
Φ: M −→ R. Since the set of compatible almost complex structures J : T (M) −→

5 Again, McDuff has published new results on this question since this paper was originally
submitted [Mc1]; she uses these in [Mc2].
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T (M) is contractible, there is a well-defined multiset of integers, called weights,
associated to each fixed point p. Indeed, for any fixed component F , the tangent
bundle T (M)|F naturally splits into subbundles – one corresponding to each weight.

The moment map Φ: M −→ R is a Morse-Bott function whose critical set is
the fixed point set. Moreover, the negative normal bundle at F is the sum of the
subbundles of T (M)|F with negative weights. In particular, the index of a fixed
component F is 2λF , where λF is the number of negative weights in TpM for

any p ∈ F (counted with multiplicity). More interestingly, let eS1(N−
F ) ∈ H2λF

S1 (F )

denote the equivariant Euler class of the negative normal bundle at F . If p ∈ MS1

is
an isolated point, then eS1(N−

p ) = Λ−
p t

λp , where Λ−
p ∈ Z�{0} is the product of the

negative (integer) weights at p. More generally, for any fixed component F , we can
naturally identifyH∗

S1(F ) = H∗(F×CP∞) withH∗(F )[t]. Under this identification,

eS1(N−
F ) is a polynomial in t; the highest degree term is Λ−

F t
λF . Therefore, as

Atiyah and Bott pointed out, eS1(N−
F ) is not a zero divisor in H2λF

S1 (F ;Q) for any
fixed component F .

Kirwan uses this idea to prove three remarkable theorems: “perfection”, “in-
jectivity”, and “formality” [Ki]. Let R = Z if the fixed set is torsion free, that

is, H∗(MS1

;Z) has no torsion; otherwise, let R = Q. (See [ToWe1] for com-
ments on the integral case.) Let F be any fixed component, and let M± =
Φ−1(−∞,Φ(F )± ε), where ε > 0 is sufficiently small. Since eS1(N−

F ) ∈ H∗
S1(F ;R)

is not a zero divisor, the natural restriction H∗
S1(M+,M−;R) −→ H∗

S1(F ;R) is
an injection. Therefore, the long exact sequence in equivariant cohomology for the
pair (M+,M−) breaks into short exact sequences

(2.1) 0 −→ Hj
S1(M

+,M−;R) −→ Hj
S1(M

+;R) −→ Hj
S1(M

−;R) −→ 0.

If Hj
S1(M−;R) is a free group, this implies immediately that

Hj
S1(M

+;R) = Hj
S1(M

+,M−;R)⊕Hj
S1(M

−;R).

By induction, Hj
S1(M ;R) is a free group and the moment map is an equivariantly

perfect Morse-Bott function; in fact,

Hj
S1(M ;R) =

⊕
F⊂MS1

Hj−2λF

S1 (F ;R),

where the sum is over all fixed components. Similarly, by induction and (2.1),

the restriction map ι∗ : H∗
S1(M ;R) −→ H∗

S1(MS1

;R) is an injection. Hence, every
equivariant cohomology class is determined by its restriction to the fixed point set.
Finally, restriction induces a natural map of exact sequences

0 −−→ Hj
S1(M+,M−;R) −−→ Hj

S1(M+;R) −−→ Hj
S1(M−;R) −−→ 0⏐⏐� ⏐⏐� ⏐⏐�

. . . −−→ Hj(M+,M−;R) −−→ Hj(M+;R) −−→ Hj(M−;R) −−→ . . . .

Moreover, the restriction map from H∗
S1(M+,M−;R) to H∗(M+,M−;R) is sur-

jective because H∗
S1(F ;R) = H∗(F ;R)[t]. Hence, by an easy diagram chase, if the

restriction map from H∗
S1(M−;R) to H∗(M−;R) is surjective, then so is the re-

striction map from H∗
S1(M+;R) to H∗(M+;R); moreover, the long exact sequence
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in cohomology for the pair (M+,M−) breaks into short exact sequences

0 −→ Hj(M+,M−;R) −→ Hj(M+;R) −→ Hj(M−;R) −→ 0.

By induction, Φ is a perfect Morse-Bott function and the restriction mapH∗
S1(M ;R)

−→ H∗(M ;R) is a surjection. By Leray-Hirsch, this implies that the kernel of this
map is the ideal generated by π∗(t), where t ∈ H2(CP∞;R) is the generator. (See
(1.7).) Hence, if we want to compute the (ordinary) cohomology of M , it is enough
to determine the equivariant cohomology of M as an H∗(CP∞;R) module. Nearly
identical arguments prove the following closely related proposition.

Proposition 2.2. Let the circle act on a compact symplectic manifold (M,ω) with
moment map Φ: M −→ R. If the fixed set is torsion-free, let R = Z; otherwise let
R = Q.

Given a fixed component F and a class u ∈ Hi(F ;R), there exists a class α ∈
Hi+2λF

S1 (M ;R) so that

(1) α|F = u eS1(N−
F ), and

(2) α|F ′ = 0 for all other fixed components F ′ with Φ(F ′) ≤ Φ(F ).

Moreover, let {uj} be a basis for H∗(MS1

;R), where each uj ∈ Hij (Fj ;R) for

some fixed component Fj. If αj ∈ H
ij+2λFj

S1 (M ;R) and uj satisfy (1) and (2) above
for each j, then {αj} is a basis for H∗

S1(M ;R) as an H∗(CP∞;R) module.

Corollary 2.3. Let the circle act on a compact symplectic manifold (M,ω) with
moment map Φ: M −→ R. If the fixed set is torsion-free, let R = Z; otherwise
let R = Q. Consider β ∈ H∗

S1(M ;R) and c ∈ R so that β|F ′ = 0 for all fixed
components F ′ such that Φ(F ′) < c.

(1) If c = Φ(F ) for some fixed component F , then β|F is a multiple of eS1(N−
F ).

(2) More generally, let {uj} be a basis for H∗(MS1

;R), where each uj ∈
Hij (Fj ;R) for some fixed component Fj. Assume that αj ∈H

ij+2λFj

S1 (M ;R)
and uj satisfy (1) and (2) above for each j. Then

β =
∑

Φ(Fj)≥c

xj αj ,

where xj ∈ H∗(CP∞;R) for all j. Here, the sum is over all j such that
Φ(Fj) ≥ c.

Proof. By the proposition above, we can write β =
∑

j xjαj , where here the sum

is over all j. If xj = 0 for all j such that Φ(Fj) < c, then the second claim holds.
Moreover, if Φ(F ) = c for some fixed component F , then properties (1) and (2)
together imply that β|F is a multiple of eS1(N−

F ).
Otherwise, there exists j so that Φ(Fj) < c and xj �= 0 but xk = 0 for k such

that Φ(Fk) < Φ(Fj). By properties (1) and (2), this implies that β|Fj
�= 0. Since

Φ(Fj) < c, this contradicts the assumption. �

The projection π : M ×S1 S∞ −→ CP∞ induces a natural push-forward map
π∗ : H

∗
S1(M ;Z) −→ H∗(CP∞;Z). Since this map is given by “integration over the

fiber,” we will usually denote it by the symbol
∫
M
. We will need the following

theorem, due to Atiyah-Bott and Berline-Vergne [AB, BV].
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Theorem 2.4. Let the circle act on a compact manifold M . Fix α ∈ H∗
S1(M ;Q).

As elements of Q(t), ∫
M

α =
∑

F⊂MS1

∫
F

α|F
eS1(NF )

,

where the sum is over all fixed components, and eS1(NF ) denotes the equivariant
Euler class of the normal bundle to F .

Remark 2.5. If p ∈ MS1

is an isolated fixed point, and the (integer) weights at p

are ξ1, . . . , ξn (repeated with multiplicity), then cS
1

i (M)|p = σi(ξ1, . . . , ξn)t
i, where

σi is the ith elementary symmetric polynomial and t is the generator of H2
S1(p;Z).

For example, cS
1

1 (M) =
∑

ξit and eS1(Np) = cS
1

n (M)|p = (
∏

ξj) t
n. Hence,∫

p

cS
1

i |p
eS1(Np)

=
σi(ξ1, . . . , ξn)∏

ξj
ti−n.

If Σ is a fixed surface of genus gΣ instead, then – since every vector bundle over
a surface splits – the normal bundle to Σ is the direct sum of line bundles with
equivariant Chern classes ξ1t+ a1u, . . . , ξn−1t+ an−1u, where ξ1, . . . , ξn−1 are the
non-zero weights at Σ (repeated with multiplicity), u is the positive generator of

H2(Σ;Z), and the ai’s are integers. Since eS1(NΣ) =
(∏

j ξjt
)(

1 + u
t

∑
j

aj

ξj

)
and

1|Σ = 1,∫
Σ

1|Σ
eS1(NΣ)

=

∫
Σ

1(∏
j ξjt

)(
1 + u

t

∑
j

aj

ξj

) =

∫
Σ

(
1− u

t

∑
j

aj

ξj

)
∏

j ξjt
= −

∑
j

aj

ξj∏
j ξj

t−n.

Similarly, since cS
1

1 (M)|Σ = c1(Σ) + u
∑

j aj + t
∑

j ξj ,∫
Σ

cS
1

1 (M)|Σ
eS1(NΣ)

=

∫
Σ

(
c1(Σ) + u

∑
j aj + t

∑
j ξj

)(
1− u

t

∑
j

aj

ξj

)
∏

j ξjt

=

∫
Σ

(
c1(Σ)− u

∑
i �=j

ajξi
ξj

+ t
∑

j ξj

)
∏

j ξjt

=
2(1− gΣ)−

∑
i �=j

ajξi
ξj∏

j ξj
t1−n.

Finally, since (cS
1

1 (M))2 − 2cS
1

2 (M) = t2
∑

j ξ
2
j + 2ut

∑
j ξjaj ,∫

Σ

(cS
1

1 (M))2|Σ − 2cS
1

2 (M)|Σ
eS1(NΣ)

=

∫
Σ

(
t2
∑

j ξ
2
j + 2ut

∑
j ξjaj

)(
1− u

t

∑
j

aj

ξj

)
∏

j ξjt

=

∫
Σ

(
ut

∑
j ajξj − ut

∑
i �=j

ajξ
2
i

ξj
+ t2

∑
j ξ

2
j

)
∏

j ξjt

=

∑
j ajξj −

∑
i �=j

ajξ
2
i

ξj∏
j ξj

t2−n.

Finally, we will need the following very simple lemmas.
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Lemma 2.6. Let the circle act on a compact symplectic manifold (M,ω). Let p
and p′ be fixed points which lie in the same component N of MZk , for some k > 1.
Then the S1-weights at p and at p′ are equal modulo k.

Proof. Since Zk fixes N , the weights of the representation of Zk on the tangent
space TqM are the same for all q ∈ N . Moreover, if q ∈ N is fixed by the circle
action, then the weights for the Zk-action on TqM are exactly the reduction modulo
k of the weights for the circle action. �

Lemma 2.7. Let the circle act on a compact symplectic manifold (M,ω) with
moment map Φ: M −→ R. There exists an equivariant extension w ∈ H2

S1(M ;R)
of [ω] ∈ H2(M ;R) so that w|F ′ = [ω|F ′ ]− Φ(F ′)t for all fixed components F ′.

Proof. Take w = [ω − Φt] in the Borel model for equivariant cohomology. �

Example 2.8. Let the torus (S1)3 ⊂ SU(4) act on CP3 by

(λ1, λ2, λ3) · [x0, x1, x2, x3] = [x0, λ1x1, λ2x2, λ3x3].

Let e1, e2 and e3 denote the standard basis for the weight lattice (Z3)∗. The fixed
points are [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1]; the weights at these points
are {e1, e2, e3}, {−e1, e2 − e1, e3 − e1}, {−e2, e1 − e2, e3 − e2}, and {−e3, e1 − e3,
e2 − e3}, respectively.

Example 2.9. Let the torus (S1)2 ⊂ SO(5) act on G̃2(R
5) induced by the S1-

action on R5 = R× C2 given by

(λ1, λ2) · (t, x1, x2) = (t, λ1x1, λ2x2).

Let e1 and e2 denote the standard basis for the weight lattice (Z2)∗. The fixed
points are the planes {(y1, . . . , y5) ∈ R5 | y1 = y4 = y5 = 0} and {(y1, . . . , y5) ∈
R5 | y1 = y2 = y3 = 0}, with either orientation; the weights at these points
are {e1, e1 + e2, e1 − e2}, {−e1,−e1 + e2,−e1 − e2}, {e2, e2 + e1, e2 − e1}, and
{−e2,−e2 + e1,−e2 − e1}.

Remark 2.10. The cases (C) and (D) described in Theorem 1 are consistent with
Wu’s theorem, so we cannot use this theorem to rule out such manifolds. Wu’s
theorem states that the total Steifel-Whitney class w(M) of a connected manifold
M is equal to Sq(v(M)), where Sq: H∗(M ;Z2) −→ H∗(M ;Z2) is the Steenrod
square operator and v(M) ∈ H∗(M ;Z2) is the unique class so that v(M) ∪ x =
Sq(x) for all x ∈ H∗(M ;Z2). (See §18.8 in [Hu].) For example, if H∗(M ;Z2) =
Z2[x]/(x

4), as in case (C), then Sq2(x2) = 0 and so Wu’s theorem implies that
w(M) = 0. Since w(M) is the image of c(M) under the coefficient homomorphism
H∗(M ;Z) −→ H∗(M ;Z2), this is satisfied in both cases. Similarly, if H∗(M ;Z2) =
Z2[x, y]/(x

2, y2), as in case (D), then either Sq2(y) = 0 and w(M) = 1, or Sq2(y) =
xy and w(M) = 1 + x. The latter statement is satisfied in both cases.

Remark 2.11. Similarly, cases (C) and (D) are consistent with the fixed point for-
mula for the Hirzebruch genus. Let M be a compact almost complex manifold; let
χy denote the Hirzebruch genus corresponding to the power series

x
(
1 + ye−x(1+y)

)
1− e−x(1+y)

.
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On the one hand, if M is 6-dimensional, then a direct calculation shows that

χy(M) =
1

24
(1 + y − y2 − y3)

∫
M

c1(M)c2(M) +
1

2
(−y + y2)

∫
M

c1(M).

On the other hand, if a circle acts onM , then by [HBJ], χy(M) =
∑

F (−y)λFχy(F ),
where the sum is over all fixed components. In particular, in cases (C) and (D),

χy(M) = 1− y + y2 − y3.

Since
∫
M

c1(M)c2(M) = 24 and
∫
M

c3(M) = 4 in both cases, these formulas agree.

3. Arbitrary dimensions

We begin by exploring some of the consequences of our central assumptions in
arbitrary dimensions. More precisely, let a circle act in a Hamiltonian fashion on
a compact symplectic manifold (M,ω); assume that Hi(M ;Z) = Hi(CPn;Z) for
all i. Our main result is that the fixed point data determines the (equivariant)
cohomology ring and Chern classes; see Proposition 3.9. We also show, in Propo-
sition 3.4, that the index of the fixed components determines the order of their
moment images.

Roughly speaking, our first result states that critical components near the min-
imum must have low index.

Lemma 3.1. Let the circle act on a compact symplectic manifold (M,ω) with
moment map Φ: M −→ R. Given any fixed component F ,

λF ≤
∑

Φ(F ′)<Φ(F )

(
1

2
dim(F ′) + 1

)
,

where the sum is over all fixed components F ′ such that Φ(F ′) < Φ(F ).

Proof. Pick a fixed component F . Let N =
∑

Φ(F ′)<Φ(F )

(
1
2 dim(F ′) + 1

)
. By

Lemma 2.7, there exists an equivariant extension w ∈ H2
S1(M ;R) of ω so that

w|F ′ = [ω|F ′ ]− Φ(F ′)t for all fixed components F ′. Define β ∈ H2N
S1 (M ;R) by

β =
∏

Φ(F ′)<Φ(F )

(w +Φ(F ′)t)
1
2 dim(F ′)+1,

where now the product is over all fixed components F ′ such that Φ(F ′) < Φ(F ).
Given any fixed component F ′,

((w +Φ(F ′)t)|F ′)
1
2 dim(F ′)+1

= [ω|F ′ ]
1
2 dim(F ′)+1 = 0.

Hence, the restriction β|F ′ vanishes for all fixed components F ′ such that Φ(F ′) <
Φ(F ). In contrast, as a polynomial in t,

β|F =
∏

Φ(F ′)<Φ(F )

((w +Φ(F ′)t)|F )
1
2 dim(F ′)+1

=
∏

Φ(F ′)<Φ(F )

([ω|F ] + Φ(F )t− Φ(F ′)t)
1
2 dim(F ′)+1

=
∏

Φ(F ′)<Φ(F )

(Φ(F )t− Φ(F ′)t)
1
2 dim(F ′)+1 + lower order terms.

Hence β|F �= 0. Since β|F is a multiple of eS1(N−
F ) by Corollary 2.3, this implies

that N ≥ λF . �
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Remark 3.2. In fact, by eliminating some of the redundant factors of β, one can
show that there exist fixed components F1, . . . , Fk such that Φ(Fi) < Φ(F ) for all
i, λF ≤

∑
i

(
1
2 dim(Fi) + 1

)
, and Φ(Fi) �= Φ(Fj) for all i �= j.

When H2i(M ;R) = H2i(CPn;R) for all i, there are not many fixed components,
and so this determines the order of the fixed components under the moment map.

Lemma 3.3. Let the circle act on a compact symplectic manifold (M,ω) with
moment map Φ: M −→ R; assume that H2i(M ;R) = H2i(CPn;R) for all i. There
exists a unique fixed component F such that 2λF ≤ 2i ≤ 2λF + dim(F ) for all i
such that 0 ≤ 2i ≤ 2n.

Proof. Since every fixed component F is symplectic, H2i(F ;R) �= 0 for every integer
i such that 0 ≤ 2i ≤ dim(F ). The first claim thus follows immediately from the
assumption and the fact that moment maps are perfect Morse-Bott functions. �
Proposition 3.4. Let the circle act on a compact symplectic manifold (M,ω) with
moment map Φ: M −→ R; assume that H2i(M ;R) = H2i(CPn;R) for all i. Then
for all fixed components F and F ′,

Φ(F ′) < Φ(F ) exactly if λF ′ < λF .

Proof. Consider any fixed component F . Define

(3.5) N =
∑

Φ(F ′)<Φ(F )

(
1

2
dim(F ′) + 1

)
,

where the sum is over all fixed components F ′ such that Φ(F ′) < Φ(F ). Since
H2i(M ;R) = H2i(CPn;R) for all i, Lemma 3.3 implies that there exists a unique
fixed component F ′ such that 2λF ′ ≤ 2i ≤ 2λF ′ + dim(F ′) for all i such that
0 ≤ 2i ≤ 2n. Therefore, since the fixed components are all even-dimensional,

(3.6)
∑

λF ′<N

(
1

2
dim(F ′) + 1

)
≤ N,

where here the sum is over all fixed components F ′ such that λF ′ < N . On the
other hand, by Lemma 3.1, for any fixed component F ′ with Φ(F ′) ≤ Φ(F ),

λF ′ ≤
∑

Φ(F ′′)<Φ(F ′)

(
1

2
dim(F ′′) + 1

)
≤

∑
Φ(F ′′)<Φ(F )

(
1

2
dim(F ′′) + 1

)
= N,

with equality impossible unless Φ(F ′) = Φ(F ). In particular, λF ′ < N for all fixed
components F ′ such that Φ(F ′) < Φ(F ), and so equations (3.5) and (3.6) imply
that λF ′ < N exactly if Φ(F ′) < Φ(F ). Since λF ≤ N , we can conclude that
λF = N ; this proves the claim. �

For our main proposition, we will also need the fact that the moment map is also
a perfect Morse-Bott function over any field whenever H2i(M ;R) = H2i(CPn;R)
for all i.

Lemma 3.7. Let the circle act on a compact symplectic manifold (M,ω) with
moment map Φ: M −→ R; assume that H2i(M ;R) = H2i(CPn;R) for all i. Then

Hj(M ;Z) =
⊕

F⊂MS1

Hj−2λF (F ;Z) ∀ j,

where the sum is over all fixed components.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON A SYMPLECTIC GENERALIZATION OF PETRIE’S CONJECTURE 3975

Proof. Consider a fixed component F and integer j so that Hj−2λF (F ;Z) �= 0. Let
M± = Φ−1(−∞,Φ(F )±ε) for ε > 0 sufficiently small. Since each fixed component is
even-dimensional, Lemma 3.3 implies that Hj−2λF ′ (F ′;Z) = Hj−2λF ′+1(F ′;Z) = 0
for all fixed components F ′ �= F . Therefore, Hj(M−;Z) = Hj+1(M−;Z) = 0, and
so Hj(M+;Z) = Hj−2λF (F ;Z). By a similar argument, Hj(M+;Z) = Hj(M ;Z).

�
Given any fixed component F , let ΓF ∈ Z denote the sum of the weights at F .

Lemma 3.8. Let the circle act on a compact symplectic manifold (M,ω) with
moment map Φ: M −→ R. Then c1(M) �= 0.

Proof. Given a point p in a fixed component F , cS
1

1 (M)|p = ΓF t. Each weight at
the minimal fixed component F is positive, while each weight at the maximal fixed

component F ′ is negative. Hence, ΓF �= ΓF ′ ; this implies that cS
1

1 (M) is not a
multiple of t. �

Finally, we state our main proposition.

Proposition 3.9. Let the circle act on a compact symplectic manifold (M,ω) with
moment map Φ: M −→ R; assume that Hj(M ;Z) = Hj(CPn;Z) for all j.

For each integer i such that 0 ≤ 2i ≤ 2n, there exists a unique fixed component
Fi so that H2i−2λFi (Fi;Z) = Z; let ui be a generator of H2i−2λFi (Fi;Z), and let
c1(M)i−λFi |Fi

= miui. Then the cohomology class

αi =
Λ−
Fi

mi

(
cS

1

1 (M)− ΓFi
t
)i−λFi

∏
λF ′<λFi

(
cS

1

1 (M)− ΓF ′ t

ΓFi
− ΓF ′

) 1
2 dim(F ′)+1

is well-defined and lies in H2i
S1(M ;Z). (Here, the product is over all fixed compo-

nents F ′ such that λF ′ < λFi
.) Moreover, the classes α0, . . . , αn form a basis for

H∗
S1(M ;Z) as an H∗(CP∞;Z) = Z[t] module.

Proof. By Lemma 3.3, for each integer i such that 0 ≤ 2i ≤ 2n there exists a
unique fixed component Fi such that 2λFi

≤ 2i ≤ 2λFi
+ dim(Fi). By Lemma 3.7,

H2i−2λFi (Fi;Z)  Z; let ui be a generator. Then u0, . . . , un is a basis for H∗(MS1

).
By Proposition 2.2, for each such i there exists a class αi ∈ H2i

S1(M ;Z) so that

(1) αi|Fi
= ui eS1(N−

Fi
), and

(2) αi|F ′ = 0 for all other fixed components F ′ with Φ(F ′) ≤ Φ(Fi).

Moreover, α0, . . . , αn is a basis for H∗
S1(M ;Z) as an H∗(CP∞;Z) module.

Since each fixed component has even dimension, Lemma 3.3 implies that for each
fixed component F , ∑

λF ′<λF

(
1

2
dim(F ′) + 1

)
= λF ,

where here the sum is over all fixed components F ′ such that λF ′ < λF . Hence, for
each i such that 0 ≤ 2i ≤ dim(M) we may define

βi =
(
cS

1

1 (M)− ΓFi
t
)i−λFi

∏
λF ′<λFi

(
cS

1

1 (M)− ΓF ′ t
) 1

2 dim(F ′)+1 ∈ H2i
S1(M ;Z).

Moreover, for every fixed component F ′,

(cS
1

1 (M)− ΓF ′t)
1
2 dim(F ′)+1|F ′ = (c1(M)|F ′)

1
2 dim(F ′)+1 = 0.
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Therefore, the restriction βi|F ′ vanishes for every fixed component F ′ such that
λF ′ < λFi

. Combining Corollary 2.3 and Proposition 3.4, this implies that

βi =
∑

λFj
≥λFi

xjαj ,

where xj ∈ H∗(CP∞;Z) = Z[t] for all j. Here, the sum is over j such that λFj
≥ λFi

.

Since βi ∈ H2i
S1(M ;Z), Lemma 3.3 and degree considerations imply that

(3.10) βi =
∑

Fj=Fi

j≤i

xjαj ,

where now the sum is over j such that Fj = Fi and j ≤ i.
Additionally, recall that c1(M)i−λFi |Fi

= miui. As a polynomial in t,

βi|Fi
= c1(M)i−λFi |Fi

∏
λF ′<λF

(
c1(M)|F + (ΓF − ΓF ′)t

) 1
2 dim(F ′)+1

= miui

∏
λF ′<λFi

(ΓFi
− ΓF ′)

1
2 dim(F ′)+1 tλFi + lower order terms.

(3.11)

On the other hand, for any j such that Fj = Fi,

(3.12) αj |Fi
= ujeS1(N−

Fi
) = ujΛ

−
Fi
tλFi + lower order terms.

Comparing equations (3.10), (3.11), and (3.12), we see that

βi =
mi

Λ−
Fi

∏
λF ′<λFi

(ΓFi
− ΓF ′)

1
2 dim(F ′)+1αi.

Finally, by Lemma 3.8, c1(M) �= 0. Since H2(M ;R) = R, this implies that
c1(M) is a non-zero multiple of ω. Therefore, c1(M)i �= 0. Since βi maps to c1(M)i

under the natural restriction map from the equivariant cohomology of M to the
ordinary cohomology, this clearly implies that βi �= 0. �

We can use this proposition (and Remark 2.4) to obtain a particularly nice
description of the equivariant cohomology and total Chern class in the following
special cases.

Corollary 3.13. Let the circle act on compact symplectic manifolds (M,ω) and

(M̂, ω̂) with moment maps Φ: M −→ R and Φ̂ : M̂ −→ R, respectively; assume that

Hj(M̂ ;Z) = Hj(CPn;Z) for all j. If f : MS1 −→ M̂S1

is a diffeomorphism and

T (M)
∣∣
MS1

∼= f∗(T (M̂)
∣∣
M̂S1

)
, then H∗

S1(M ;Z)
∣∣
MS1 = f∗(H∗

S1(M̂ ;Z)
∣∣
M̂S1

)
and

c(M)
∣∣
MS1 = f∗(c(M̂)

∣∣
M̂S1

)
.

Proof. Lemma 3.7 implies that⊕
F̂⊂M̂S1

Hj−2λ
F̂ (F̂ ;Z) = Hj(M̂ ;Z) = Hj(CPn;Z) ∀ j.

Since, T (M)
∣∣
MS1

∼= f∗(T (M̂)
∣∣
M̂S1

)
, this implies that⊕

F⊂MS1

Hj−2λF (F ;Z) = Hj(CPn;Z) ∀ j.
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As in Lemma 3.7, this implies that

Hj(M ;Z) = Hj(CPn;Z) ∀ j.

The claim now follows immediately from Proposition 3.9. �

Corollary 3.14. Let the circle act on a compact symplectic manifold (M,ω) with
moment map Φ: M −→ t∗; assume that there is a unique fixed point of index 2i for
all i such that 0 ≤ i ≤ n. As an H∗(CP∞;Z) = Z[t] module, H∗

S1(M ;Z) is freely
generated by 1, α1, . . . , αn, where

αi = Λ−
pi

i−1∏
j=0

cS
1

1 (M)− Γpj
t

Γpi
− Γpj

.

(In particular, αi ∈ H2i
S1(M ;Z) for all i.)

Example 3.15. Let the circle act on a compact symplectic manifold (M,ω) with
moment map Φ: M −→ t∗. Assume that the fixed set consists of four points
p0, p1, p2 and p3 with weights {1, 2, 3}, {1,−1, l}, {1,−1,−l}, and {−1,−2,−3}, re-
spectively. As an H∗(CP∞;Z) = Z[t] module, H∗

S1(M ;Z) is freely generated by
1, α1, α2, α3, where

α1|p1
= t, α1|p2

=
6 + l

6− l
t, α1|p3

=
12

6− l
t, α2|p2

= lt2,

α2|p3
= 6t2, α3|p3

= 6t3, and αi|pj
= 0 ∀ j < i; moreover,

cS
1

(M)|p0
= 1 + 6t+ 11t2 + 6t3, cS

1

(M)|p1
= 1 + lt− t2 − lt3,

cS
1

(M)|p2
= 1− lt− t2 + lt3, and cS

1

(M)|p3
= 1− 6t+ 11t2 − 6t3.

In the above cases, the fixed set is torsion-free and so formality holds. Thus, the
ordinary cohomology H∗(M ;Z) and total Chern class c(M) are also very easy to
describe.

Corollary 3.16. Let the circle act on compact symplectic manifolds (M,ω) and

(M̂, ω̂) with moment maps Φ: M −→ R and Φ̂ : M̂ −→ R, respectively; assume that

Hj(M̂ ;Z) = Hj(CPn;Z) for all j. If f : MS1 −→ M̂S1

is a diffeomorphism and

T (M)
∣∣
MS1

∼= f∗(T (M̂)
∣∣
M̂S1

)
, then f induces an isomorphism f � : H∗(M̂ ;Z) −→

H∗(M ;Z) so that c(M) = f �
(
c(M̂)

)
.

Remark 3.17. More generally, let the circle act on compact symplectic manifolds

(M,ω) and (M̂, ω̂) with moment maps Φ: M −→ R and Φ̂: M̂ −→ R, respec-

tively; let f : MS1 −→ M̂S1

be an orientation-preserving diffeomorphism such that

T (M)
∣∣
MS1

∼= f∗(T (M̂)
∣∣
M̂S1

)
.

Since moment maps are (equivariantly) perfect Morse-Bott functions, M and M̂
have the same (equivariant) Betti numbers. Moreover, Theorem 2.4 immediately

implies that M and M̂ have the same (equivariant) Chern numbers. Alternately, by

[GGK], M and M̂ are cobordant as oriented equivariant stable-complex manifolds,
and so have the same (equivariant) Chern numbers. Additionally, if H2(M ;R) =

H2(M̂ ;R), then since c1(M) �= 0 by Lemma 3.8, cS
1

1 (M) and t are a basis for
H2

S1(M ;R) as a vector space. By assumption,

f∗(cS
1

(M̂)
∣∣
M̂S1 ) = cS

1

(M)
∣∣
MS1 .
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Hence, after possibly multiplying ω̂ by a constant and adding a constant to Φ̂,

f∗([ω̂ − Φ̂t]
∣∣
M̂S1 ) = [ω − Φt]

∣∣
MS1 .

Therefore, by [GGK], M and M̂ are also cobordant as Hamiltonian S1-spaces. This

(or Theorem 2.4) implies that M and M̂ have the same Duistermaat-Heckman
measure. More generally, any product of equivariant Chern classes and powers of

the class [ω − Φt] have the same integral over M and M̂ .
However, in general, cobordant manifolds do not have isomorphic (equivariant)

cohomology rings. For example, let M be the blow-up of CP2 at [0, 1, 0], where S1

acts on CP2 by

λ · [x0, x1, x2] = [x0, λx1, λ
2x2],

and let S1 act on M̂ = CP1 × CP1 by

λ · ([y0, y1], [z0, z1]) = ([y0, λy1], [z0, λ
2z1]).

For the appropriate choice of symplectic forms, M and M̂ are cobordant as stable-

complex Hamiltonian S1-spaces, but as rings H∗(M ;Z) �∼= H∗(M̂ ;Z).

Remark 3.18. Alternately, let the circle act on compact symplectic manifolds (M,ω)

and (M̂, ω̂) with moment maps Φ: M −→ R and Φ̂: M̂ −→ R, respectively; assume

that Hj(M̂ ;Z) = Hj(CPn;Z) for all j. Also assume that there is a bijection from

the fixed components F1, . . . , Fk of M to the fixed components F̂1, . . . , F̂k of M̂

and that there exists an isomorphism f∗ : H∗
S1(F̂i;Z) −→ H∗

S1(Fi;Z) such that

f∗(cS
1

(M̂)|F̂i
) = cS

1

(M)|Fi
for all i. Then all the symmetric polynomials in the

weights at F and F̂ are the same, and so they have the same weights, and hence
the same index. Therefore, the conclusions of Corollaries 3.13 and 3.13 still hold.

Corollary 3.19. Let the circle act on a compact symplectic manifold (M,ω) with
moment map Φ: M −→ t∗; assume that there is a unique fixed point pi of index
2i for all i such that 0 ≤ 2i ≤ 2n. As a group, H∗(M ;Z) is freely generated by
1, α̃1, . . . , α̃n, where

α̃i =
Λ−
pi

(Λ−
p1)

i

(Γp1
− Γp0

)i∏i−1
j=0(Γpi

− Γpj
)
(α̃1)

i; moreover,

ci(M) =
Λ+
pi∏n

j=i+1(Γpi
− Γpj

)

(
i∑

k=0

cS
1

i (M)|pk

∏n
j=i+1(Γpk

− Γpj
)

tiΛpk

)
α̃i

=
1

Λ−
pit

i

i−1∏
j=0

(Γpi
− Γpj

)

(
i∑

k=0

cS
1

i (M)|pk∏
j∈{0,...,k̂,...i}(Γpk

− Γpj
)

)
α̃i.

(In particular, α̃i ∈ H2i(M ;Z) for all i.)

Proof. As an H∗(CP∞;Z) = Z[t] module, H∗
S1(M ;Z) is freely generated by the

classes 1, α1, . . . , αn, where

αi = Λ−
pi

i−1∏
j=0

cS
1

1 (M)− Γpj
t

Γpi
− Γpj

∈ H2i
S1(M ;Z) ∀ i.
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The image of αi under the restriction map from equivariant cohomology to ordinary
cohomology is

α̃i = Λ−
pi

c1(M)i∏i−1
j=0(Γpi

− Γpj
)
∈ H2i(M ;Z).

By formality, H∗(M ;Z) is freely generated (as a group) by α̃0, . . . , α̃n.
Applying Proposition 3.9 to the reversed circle action with moment map −Φ, we

may define

βn−i = Λ+
pi

n∏
j=i+1

cS
1

1 (M)− Γpj
t

Γpi
− Γpj

∈ H2n−2i
S1 (M ;Z);

let β̃n−i ∈ H2n−2i(M ;Z) be the image of βn−i under the restriction map from
equivariant cohomology to ordinary cohomology. Note that

(αiβn−i)|pk
=

{
Λpi

k = i,

0 otherwise.

Therefore, Theorem 2.4 implies that

(3.20)

∫
M

αiβn−i = 1,

and so

(3.21)

∫
M

α̃iβ̃n−i = 1.

Since ci(M) is a multiple of α̃i, this implies that

ci(M) =

(∫
M

ci(M)β̃n−i

)
α̃i =

(∫
M

cS
1

i (M)βn−i

)
α̃i.

Since

βn−i|pk
=

{
Λ+
pi
tn−i

∏n
j=i+1

Γpk
−Γpj

Γpi
−Γpj

if 0 ≤ k ≤ i,

0 if i < k ≤ n,

the first equality follows immediately from Theorem 2.4.
Finally, since

∫
M

αkβn−k = 1 for all k ∈ {0, . . . , n} by (3.20),∏
j �=k(Γpk

− Γpj
)

Λpk

=

∫
M

∏
j �=k

(
cS

1

1 (M)− Γpj

)
=

∫
M

c1(M)n.

Hence, ∏
j �=k(Γpk

− Γpj
)

Λpk

=

∏
j �=l(Γpl

− Γpj
)

Λpl

∀k, l ∈ {0, . . . , n}.

The second equality follows immediately. �

Note that the equations for ci(M) above simplify in some cases. Not only is
c0(M) = 1 and cn(M) = (n+ 1)α̃n, but also

c1(M) =
Γp1

− Γp0

Λ−
p1

α̃1, and

c2(M) =
cS

1

2 (M)|p0
(Γp2

− Γp1
)− cS

1

2 (M)|p1
(Γp2

− Γp0
) + cS

1

2 (M)|p2
(Γp1

− Γp0
)

(Γp1
− Γp0

)Λ−
p2t

2
α̃2.
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Example 3.22. Let the circle act on a symplectic manifold (M,ω) with moment
map Φ: M −→ t∗. Assume that the fixed set consists of four points p0, p1, p2
and p3 with weights {1, 2, 3}, {1,−1, l}, {1,−1,−l}, and {−1,−2,−3}, respectively.
Then Λ−

p1
= −1, Λ−

p2
= l, Γp0

= 6, Γp1
= −Γp2

= l, c2(M)|p0
= 11t2, and

c2(M)|p1
= c2(M)|p2

= −t2. Therefore, Corollary 3.19 (and the equations above)
immediately imply that

H∗(M ;Z) = Z[x, y]/
(
x2 − 2(l + 6)

(6− l)2
y, y2

)
, and

c(M) = 1 + (6− l)x+
24

6− l
y + 4xy,

where x has degree 2 and y has degree 4.

The final lemma gives the relationship between the moment image and the sum
of the weights at fixed components.

Lemma 3.23. Let the circle act on a compact symplectic manifold (M,ω) with
moment map Φ: M −→ R. If H2(M ;R) = R, then for all fixed components F and
F ′,

ΓF > ΓF ′ exactly if Φ(F ) < Φ(F ′).

Proof. By Lemma 2.7, there exists an equivariant extension w ∈ H2
S1(M ;R) of [ω]

so that w|p = −Φ(p)t for all fixed points p. Since H2(M ;R) = R and [ω] �= 0,

cS
1

1 (M) = aw + bt for some real numbers a and b. Therefore, given any fixed

component F , ΓF t = cS
1

1 (M)|p = (aw + bt)|p = (−aΦ(F ) + b)t for all p ∈ F . On
the other hand, if F is the minimal fixed component and F ′ is the maximal fixed
component, then Φ(F ) < Φ(F ′) and ΓF > 0 > ΓF ′ . Therefore, a > 0. �

4. The case that the fixed set is not discrete

We now return to the 6-dimensional case. In this section, we prove Theorem 2
in the case that the fixed set is not discrete. In fact, in this case only the first two
possibilities can arise.

Proposition 4.1. Let the circle act faithfully on a 6-dimensional compact symplec-
tic manifold (M,ω) with moment map Φ: M −→ R. Assume that H2(M,R) = R

and the fixed set is not discrete. Then one of the following two statements is true:

(A) There is a subgroup S1 ⊂ SU(4) and an orientation-preserving diffeomor-

phism f : MS1 −→
(
CP3

)S1

so that T (M)|MS1 ∼= f∗
(
T
(
CP3

)∣∣
(CP3)S1

)
.

(B) There is a subgroup S1 ⊂ SO(5) and an orientation-preserving diffeomor-

phism f : MS1 −→G̃2(R
5)S

1

so that T (M)|MS1 ∼=f∗
(
T
(
G̃2(R

5)
)∣∣

G̃2(R5)S1

)
.

Remark 4.2. The manifolds described above do not contain an isolated fixed point
with three distinct weights. A fortiori, they do not contain a pair of isotropy spheres
which intersect in two points.

Remark 4.3. In fact, after possibly multiplying the standard symplectic form ω̂ on

CP3 (or G̃2(R
5)) by a constant, we may assume that f is a symplectomorphism on

each fixed component. To see this, first note that the argument in Remark 3.17 im-
plies that f∗([ω̂]|

M̂S1 ) = [ω]|MS1 . If each fixed component is at most 2-dimensional,

this immediately implies that there exists a symplectomorphism f ′ : MS1 −→ M̂S1
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which is homotopic to f . Otherwise, the claim follows from [Del]; see Case IV
below.

We will need the following lemma to analyze the isotropy submanifolds which
might arise.

Lemma 4.4. Let the circle act on a 4-dimensional compact symplectic manifold
(Z, σ) with moment map Ψ: Z −→ R.

(1) If ZS1

consists of a minimal surface Σ and one point, then e(NΣ), the Euler
class of the normal bundle to Σ, is the positive generator of H2(Σ;Z).

(2) If ZS1

consists of a minimal surface Σ and two points, then e(NΣ) = 0.

(3) If ZS1

consists of a minimal surfaces Σ and a maximal surface Σ′, then
there exists a ∈ Z so that e(NΣ) = au and e(NΣ′) = −au′. Here, u and u′

are the positive generators of H2(Σ;Z) and H2(Σ′;Z), respectively.

Proof. By dividing out by a finite subgroup, we may assume that the action is
faithful. Let eS1(NΣ) = t+ e(NΣ) = t+ au, where H∗(CP∞;Z) = Z[t]. Recall that
every isotropy sphere contains exactly two isolated fixed points.

In case (1), since Ψ is a Morse-Bott function the fixed point must have index 4.
Since there is only one isolated fixed point, there are no isotropy spheres. Hence,
both weights at the isolated fixed point are −1. Since the degree of 1 is 0 < 4,∫
Z
1 = 0. Hence Theorem 2.4 and Remark 2.5 imply that −a + 1 = 0, that is,

a = 1.
In case (2), since Ψ is a Morse-Bott function, one fixed point must have index

2 and one must have index 4. There are no isotropy spheres except possibly one
joining these two points. Therefore, the weights at these points are {−1, l} and
{−1,−l} for some natural number l. Since

∫
Z
1 = 0, Theorem 2.4 implies that

−a− 1
l +

1
l = 0, that is, a = 0.

In case (3), let eS1(NΣ′) = −t+ e(NΣ′) = −t+ bu′. Since
∫
Z
1 = 0, Theorem 2.4

implies that −a− b = 0. �

We will spend the remainder of this section proving Proposition 4.1. Let the
circle act on a symplectic manifold (M,ω) with moment map Φ: M −→ R; assume
that the conditions of the proposition are satisfied. By Remark 1.1, H2i(M ;R) = R

for all i such that 0 ≤ 2i ≤ 6.
Let N ⊂ MZk be any 4-dimensional isotropy submanifold. Since Φ|N is a Morse-

Bott function and the critical sets of Φ|N are the fixed sets, NS1

must contain at
least two fixed components, and at least one component must have index 0 or 2.

Finally, notice that the action obtained by reversing the circle action and replac-
ing Φ by −Φ also satisfies the assumptions of Proposition 4.1. Moreover, if this
new action satisfies the conclusions of the proposition, then the original action does
as well. Therefore, we can replace Φ by −Φ at any time. Given this symmetry, we
only need to consider four cases.

Case I. The fixed set is discrete except for one minimal fixed surface.

Since Φ is a perfect Morse-Bott function, Poincaré duality implies that the fixed
set consists of a minimal fixed sphere Σ0 and two fixed points p2 and p3 of index
4 and 6, respectively. Since every vector bundle over a surface splits, the normal
bundle to Σ0 is the direct sum of two line bundles with equivariant Euler classes
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mt + au and nt + bu, where m and n are natural numbers, a and b are integers,
and u is the positive generator of H2(Σ0;Z).

Assume first that there is a 4-dimensional isotropy submanifold N ⊂ MZm which
contains both p2 and p3. Since the intersection of any two distinct 4-dimensional
isotropy submanifolds is 2-dimensional, each component of the intersection must
be either a fixed surface or an isotropy sphere. Hence, every 4-dimensional isotropy
submanifold must contain both fixed points. So there exists a natural number l
which is a multiple of bothm and n so that the weights at p2 and p3 are {−m,−n, l}
and {−m,−n,−l}, respectively. Applying Lemma 4.4 to the isotropy submanifold
N ⊂ MZm , we see that a = 0. Moreover, Lemma 2.6 implies that 2n = 0 mod m.
Since m �= 1 and n and m are relatively prime, this implies that m = 2 and n = 1.

Since the degree of 1 is 0 < 6 and the degree of cS
1

1 (M) is 2 < 6,
∫
M

1 = 0 and∫
M

cS
1

1 (M) = 0. Therefore, Theorem 2.4 and Remark 2.5 imply that

− b

2
+

1

2l
− 1

2l
= 0 and (1− b) +

l − 3

2l
+

l + 3

2l
= 0.

These equations simplify to b = 0 and b = 2, which is impossible.
Therefore, there is no 4-dimensional isotropy submanifold which contains both

p2 and p3. If m �= 1, then this implies that MZm contains a 4-dimensional isotropy
submanifold N which contains Σ0 and exactly one fixed point. By Lemma 4.4, this
implies that a = 1. A nearly identical argument implies that if n �= 1, then b = 1.
Moreover, if there exist any isotropy spheres, then each one must contain p2 and
p3. Hence, there exists a natural number l so that the weights at p2 and p3 are

{−m,−m, l} and {−n,−n,−l}, respectively. Since
∫
M

1 = 0 and
∫
M

cS
1

1 (M) = 0,
Theorem 2.4 and Remark 2.5 imply that

−
(

a

m2n
+

b

mn2

)
+

1

lm2
− 1

ln2
= 0, and(4.5) (

2

mn
− a

m2
− b

n2

)
+

(
1

m2
− 2

lm

)
+

(
1

n2
+

2

ln

)
= 0.(4.6)

Assume first that l ≥ m and l ≥ n. If l = 1, then m = n = 1 as well. Otherwise,
applying Lemma 2.6 to the isotropy sphere N ⊂ MZl implies that m = n mod l,
and hence again m = n. Equations (4.5) and (4.6) now simplify to a + b = 0 and
a+ b = 4, respectively. This is impossible.

Assume next that m > l and m ≥ n. As we saw in the third paragraph of this
proof, the fact that m �= 1 implies that a = 1. Moreover, applying Lemma 2.6 to
the isotropy submanifold N ⊂ MZm implies that n = l mod m, and hence n = l.
Equations (4.5) and (4.6) now simplify to bn+m = 0 and b = 3, respectively. Since
n and m are both positive, this is impossible.

Finally, assume that n > m and n > l. As we saw in the third paragraph of
this proof, the fact that n �= 1 implies that b = 1. Moreover, applying Lemma 2.6
to the isotropy submanifold N ⊂ MZn implies that m + l = 0 mod n, and hence
n = m+l. Equation (4.5) now simplifies to a = 1. In sum, a = b = 1 and n = m+l.
Comparing with Example 2.8, statement (A) is true for the action

λ · [x0, x1, x2, x3] = [x0, x1, λ
mx2, λ

nx3].

Case J. The fixed set is discrete except for one non-extremal fixed surface.

Since Φ is a perfect Morse-Bott function, the fixed set consists of a point p0 of
index 0, a surface Σ1 of index 2, and a point p3 of index 6. Since Σ1 has index
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2, the normal bundle to Σ1 is the direct sum of two line bundles with equivariant
Euler classes mt+ au and −nt+ bu, where m and n are natural numbers, a and b
are integers, and u is the positive generator of H2(Σ1;Z). After possibly replacing
Φ by −Φ, we may assume that m ≥ n.

Assume first that m = n = 1. Let {l1, l2, l3} be the weights at p0, where
l1 ≥ l2 ≥ l3. Since m = n = 1, if there exist any isotropy submanifolds, then each
one has minimum p0 and maximum p3. Hence, the weights at p3 are {−l1,−l2,−l3}.

Let α = cS
1

1 (M) − Γp0
t ∈ H2

S1(M ;Z). Since α|p0
= 0, Proposition 2.2 implies

that α|Σ1
is a multiple of −t+bu, which is the equivariant Euler class of the negative

normal bundle at Σ1. On the other hand,

cS
1

1 (M)|Σ1
= c1(Σ1) + (t+ au) + (−t+ bu) = c1(Σ1) + (a+ b)u, and

α|Σ1
= c1(Σ1) + (a+ b)u− Γp0

t = c1(Σ1) + (a+ b− Γp0
b)u+ Γp0

(−t+ bu).

Therefore, c1(Σ1) = −(a+ b−Γp0
b)u. Applying the same argument to the moment

map −Φ we see that c1(Σ1) = −(a+b+Γp3
a)u. Since Γp3

= −Γp0
�= 0, this implies

that a = b.
Since

∫
M

cS
1

1 (M) = 0, Theorem 2.4 and Remark 2.5 imply that

Γp0

Λp0

− Γp0
a+

Γp3

Λp3

= 0.

Since Λp0
= −Λp3

and Γp0
= −Γp3

�= 0, this simplifies to a = 2
Λp0

. Hence, either

a = 1, l1 = 2, and l2 = l3 = 1; or a = 2 and l1 = l2 = l3 = 1. In either case,
c1(Σ1) = 2 and so Σ1 is a sphere.

Suppose first that a = b = 1, and l1 = 2, and l2 = l3 = n = m = 1. Comparing
with Example 2.8, statement (A) is true for the circle action

λ · [x0, x1, x2, x3] = [x0, λx1, λx2, λ
2x3].

Suppose instead that a = b = 2 and l1 = l2 = l3 = n = m = 1. Comparing with

Example 2.9, statement (B) is true for the circle action on G̃2(R
5) induced by the

action on R5 = R× C2 given by

λ · (t, x1, x2) = (t, x1, λx2).

So instead, assume that m �= 1. Then there is a 4-dimensional isotropy subman-
ifold N ⊂ MZm with minimum Σ1 and maximum p3. Since Φ|N is a perfect Morse-
Bott function, Poincaré duality implies that Σ1 is sphere. Moreover, Lemma 4.4
implies that a = 1. Similarly, if n �= 1, then there is a 4-dimensional isotropy
submanifold N ⊂ MZn with maximum Σ1 and minimum p0. If there exist other
isotropy submanifolds, then each one has minimum p0 and maximum p3. Hence,
there exists a natural number l so that the weights at p0 and p3 are {n, n, l} and
{−m,−m,−l}, respectively.

Since
∫
M

1 = 0 and
∫
M

cS
1

1 (M) = 0, Theorem 2.4 and Remark 2.5 imply that

1

n2l
+

(
1

m2n
− b

mn2

)
− 1

m2l
= 0, and(4.7)

2n+ l

n2l
−
(

1

m2
+

b

n2
+

2

mn

)
+

2m+ l

m2l
= 0.(4.8)

Suppose first that m ≥ l. Then applying Lemma 2.6 to the 4-dimensional
isotropy submanifold N ⊂ MZm implies that n = l mod m, and so n = l. Then
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equations (4.7) and (4.8) simplify to nb = m and 3n = b. Hence, 3n2 = m; but this
contradicts n ≥ m.

So assume instead that l > m. Then applying Lemma 2.6 to the isotropy sphere
Z ⊂ MZl implies that m + n = 0 mod l, and so l = m + n. Then equation (4.7)
simplifies to b = 1. In sum, a = b = 1 and the weights at p0 and p3 are {n, n,m+n}
and {−m,−m,−(m+n)}. Comparing with Example 2.8, statement (A) is true for
the circle action on CP3 given by

λ · [x0, x1, x2, x3] = [x0, λ
nx1, λ

nx2, λ
m+nx3].

Case K. The fixed set contains more than one fixed surface.

Since Φ is a perfect Morse-Bott function, the fixed set consists of two surfaces
Σ0 and Σ2 of the same genus with indices 0 and 4, respectively. Let u and u′ be
the positive generators of H2(Σ0;Z) and H2(Σ2;Z), respectively. Our first claim
is that Σ0 and Σ2 are spheres. Suppose on the contrary that Σ0 and Σ2 have
positive genus. Then there exist classes v1 and v2 ∈ H1(Σ0;Z) so that v1v2 = u.
By Proposition 2.2, there exist classes α1 and α2 ∈ H1

S1(M ;Z) so that αi|Σ0
= vi;

let β = α1α2. On the one hand, β|Σ0
= u, and so Proposition 2.2 implies that

cS
1

1 (M) ∈ H2
S1(M ;Z) is a linear combination of t and β. On the other hand,

because αi|p = 0 for dimensional reasons, β|p = 0 for all fixed points p. Since

ΓΣ0
> 0 > ΓΣ2

, this contradicts the facts that cS
1

1 (M)|p = ΓF t for all p in a fixed
component F . Hence, Σ0 and Σ2 are spheres.

The normal bundle over Σ0 splits as the sum of two line bundles with equivariant
Euler classes mt + au and nt + bu, where m and n are natural numbers, and a
and b are integers. Since every isotropy submanifold must have minimum Σ0 and
maximum Σ2, the negative weights at Σ2 are −m and −n. Hence, the normal
bundle over Σ2 splits as the sum of two line bundles with equivariant Euler classes
−mt+ cu′ and −nt+ du′, where c and d are integers.

Since the degree of (cS
1

1 )2 − 2cS
1

2 is 4 < 6,
∫
M

1 = 0,
∫
M

cS
1

1 = 0, and∫
M
((cS

1

1 )2 − 2cS
1

2 ) = 0. Therefore, Theorem 2.4 and Remark 2.5 imply that

−
(

a

m2n
+

b

mn2

)
+

(
c

m2n
+

d

mn2

)
= 0,(4.9) (

2

mn
− a

m2
− b

n2

)
+

(
2

mn
− c

m2
− d

n2

)
= 0, and(4.10) (

a

n
+

b

m
− na

m2
− mb

n2

)
−
(
c

n
+

d

m
− nc

m2
− md

n2

)
= 0.(4.11)

We may assume that m ≥ n. If m �= 1, then applying Lemma 2.6 to the isotropy
submanifold N ⊂ MZm implies that 2n = 0 mod m. Since m and n are relatively
prime, this implies that m = 2 and n = 1. Hence m ≤ 2 and n = 1.

Assume first that m = n = 1. Then equations (4.9) and (4.10) simplify to
a + b = c + d and a + b + c + d = 4. In sum, m = n = 1 and a + b = c + d = 2.
Comparing with Example 2.8, statement (A) is true for the circle action on CP3

given by

λ · [x0, x1, x2, x3] = [x0, x1, λx2, λx3].

So assume instead that m = 2 and n = 1. Applying Lemma 4.4 to the isotropy
submanifold N ⊂ MZ2 , we see that a = −c. Therefore, equations (4.9), (4.10), and
(4.11) simplify to a+ b = d, b+ d = 2, and a+ d = b, respectively. In sum, m = 2,
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n = 1, a = c = 0 and b = d = 1. Comparing with Example 2.9, statement (B) is

true for the circle action on G̃2(R
5) induced by the action on R5 = R × C2 given

by

λ · (t, x1, x2) = (t, λx1, λx2).

Case L. The fixed set contains a four-dimensional component.

Let F be a four-dimensional component of the fixed set. Since F is symplectic,

H2(F ;R) �= 0. Since Φ is a perfect Morse-Bott function, this implies that MS1

consists of F and one isolated fixed point. By Delzant [Del] – after possibly rescaling
ω and reversing the circle action – (M,ω) is equivariantly symplectomorphic to CP3

with its standard symplectic form and the circle action given by

λ · [x0, x1, x2, x3] = [x0, x1, x2, λx3].

A fortiori, statement (A) is true.
This completes the proof of Proposition 4.1.

5. The case that the fixed set is discrete: Defining the multigraph

In the remainder of the paper, we prove Theorem 2 in the case that the fixed set
is discrete. In particular, in this section, we assume that the fixed set is discrete
and define an associated multigraph which is labeled: a real number and an even
integer are associated to each vertex, and a natural number le (the length of e) is
associated to each edge e.

Let the circle act faithfully on a 6-dimensional compact symplectic manifold

(M,ω) with moment map Φ: M −→ R; assume that the fixed set MS1

is discrete.
We define an associated labeled multigraph as follows: The vertex set is the fixed

set MS1

; each fixed point p is labeled by its moment image Φ(p) and its index 2λp.

Given distinct p and q ∈ MS1

, let Epq denote the set of edges joining p and q. If
Φ(p) ≤ Φ(q), then there is a (unique) edge e ∈ Epq of length k �= 1 exactly if the
following are all true:

(1) p and q lie in the same component N ⊂ MZk .
(2) k is one of the weights at p; −k is one of the weights at q.
(3) The index of Φ|N at q is equal to 2 plus the index of Φ|N at p.

(In particular, Φ(p) < Φ(q).) We say the edge e ∈ Epq has minimum p and
maximum q.

A multigraph contains multiple edges if there are several edges with the same
minimum and maximum. The multigraph is simple if there are no multiple edges.

Example 5.1. Fix natural numbers m, n, and k, and consider the circle action on
CP3 given by

λ · [x0, x1, x2, x3] = [x0, λ
mx1, λ

m+nx2, λ
m+n+kx3].

There is a unique fixed point pi of index 2i for all i such that 0 ≤ 2i ≤ 6. If
1 �∈ {m,n, k}, the associated multigraph is the complete graph on {p0, p1, p2, p3};
moreover, l01 = m, l12 = n, l23 = k, l02 = m+n, l13 = n+k, and l03 = m+n+k,
where lij is the length of the edge from pi to pj . (In contrast if, for example, m = 1,
then there is no edge joining p0 to p1.)
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This multigraph has a number of nice properties. First, the labeled multigraph
determines the weights at every fixed point. Second, the weights at the minimum
and maximum of any edge are equal modulo its length. Third, if two edges have
the same minimum and maximum, then their lengths are relatively prime. To
prove the first property, we need the following proposition to analyze the isotropy
submanifolds which might arise; see [Kar].

Proposition 5.2 (Karshon). Let the circle act faithfully on a 4-dimensional com-
pact connected symplectic manifold (N, σ) with moment map Ψ: N −→ R; assume

that the fixed set NS1

is discrete. The multiplicity of the weight +1 at the mini-
mum is the number of fixed points of index 2 with negative weight −1. Similarly,
the multiplicity of the weight −1 at the maximum is the number of fixed points of
index 2 with positive weight +1.

We are now ready to prove the properties described above.

Lemma 5.3. Let the circle act faithfully on a 6-dimensional compact symplectic

manifold (M,ω) with moment map Φ: M −→ R. Assume that the fixed set MS1

is discrete and consider the associated labeled multigraph. Given any fixed point p,
there are at most λp edges with maximum p and at most 3−λp edges with minimum
p. Moreover, the multiset of weights at p is the multiset of λp negative integers and
3 − λp positive integers obtained by adding 1 and −1 with appropriate multiplicity
to

{sign(Φ(q)− Φ(p)) le | q ∈ MS1

and e ∈ Epq}.

Proof. It is enough to show that for all k > 1, the multiplicity of the weight k at p
is the number of edges e ∈ E with minimum p and length k (the analogous claim
then holds for all k < −1).

LetN be the component ofMZk which contains p. If dim(N) = 0 or dim(N) = 2,
then the claim above is obvious. On the other hand, if dim(N) = 4, then the claim
follows immediately from Proposition 5.2, where we consider the faithful S1/Zk-
action on N . �

Lemma 5.4. Let the circle act faithfully on a 6-dimensional compact symplectic

manifold (M,ω) with moment map Φ: M −→ R. Assume that the fixed set MS1

is discrete and consider the associated labeled multigraph. Given any edge e ∈ Epq,
the weights at p and q are equal modulo le.

Proof. Since p and q are contained in the same component of MZle , the claim
follows immediately from Lemma 2.6. �

Lemma 5.5. Let the circle act faithfully on a 6-dimensional compact symplectic

manifold (M,ω) with moment map Φ: M −→ R. Assume that the fixed set MS1

is
discrete and consider the associated labeled multigraph. Given any distinct edges e
and e′ in Epq, the lengths le and le′ are relatively prime.

Proof. Assume not; let k �= 1 be the greatest common divisor of le and le′ . We may
also assume that Φ(p) ≤ Φ(q) and that le ≥ le′ . Let N ⊂ MZle and N ′ ⊂ MZle′ be
the components which contain p and q. The component Z ⊂ MZk which contains
p also contains N and N ′, and hence q. By construction, the weights at p and q
are {le, le′ , a} and {−le,−le′ , b}, respectively, for some integers a and b. Since the
action is faithful, a is not a multiple of k; therefore, le′ �= a mod le. On the other
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hand, by Lemma 2.6 the weights at p are equal to the weights at q modulo le. Since
le = −le mod le, this implies that 2le′ = 0 mod le. Since le ≥ le′ , this implies that
le is a multiple of le′ , that is, le′ = k. But then the index of Φ|N ′ at p is 0, while
the index of Φ|N ′ at q is 4. This is impossible by assumption (3) in the definition
of the multigraph. �
Remark 5.6. We will sometimes add edges of length 1 to G in order to reduce the
number of cases that we need to consider. (For example, this allows us to drop
the condition 1 �∈ {m,n, k} in Example 5.1.) Lemmas 5.4 and 5.5 clearly still hold
for this “extended” multigraph. Moreover, as long as we add these edges so that
there are still at most λp edges with maximum p and 3− λp edges with minimum
p, Lemma 5.3 still holds.

6. The case that the fixed set is discrete and the associated

multigraph is simple

In this section, we prove Theorem 2 in the case that the fixed set is discrete and
the associated multigraph is simple, that is, contains no multiple edges. In fact, in
this case only the first two possibilities can arise.

Proposition 6.1. Let the circle act faithfully on a 6-dimensional compact symplec-
tic manifold (M,ω) with moment map Φ: M −→ R. Assume that H2(M ;R) = R,
the fixed set is discrete, and the associated multigraph is simple. Then one of the
following two statements is true:

(A) There is a subgroup S1 ⊂ SU(4) and bijection f : MS1 −→
(
CP3

)S1

so that

T (M)|MS1
∼= f∗

(
T
(
CP3

)∣∣
(CP3)S1

)
.

(B) There is a subgroup S1 ⊂ SO(5) and bijection f : MS1 −→ G̃2(R
5)S

1

so

that T (M)|MS1 ∼= f∗
(
T
(
G̃2(R

5)
)∣∣

G̃2(R5)S1

)
.

Remark 6.2. Since the associated multigraph is simple, the manifolds described
above do not contain a pair of isotropy spheres which intersect in two points.

Our proof relies heavily on the following technical lemma.

Lemma 6.3. Fix a natural number lij ≥ 1 for each pair {i, j} ⊂ {0, 1, 2, 3}. As-
sume that the multisets {sign(k − i) lik | k �= i} and {sign(k − j) ljk | k �= j} are
equal modulo lij for each such pair. Then one of the following three statements is
true:

(a) l02 ≤ l01 + l12, l13 ≤ l12 + l23, l03 ≤ l01 + l13, and l03 ≤ l02 + l23.
(b) l01 = l23, l02 ≤ l12 + l03, l13 ≤ l12 + l03, and l03 ≤ l01 + l12.
(c) l02 = l13 and l03 ≤ l12.

Proof of Proposition 6.1. By Remark 1.1, H2i(M ;R) = R for all i such that 0 ≤
2i ≤ 6. Hence, since Φ is a perfect Morse function, there is exactly one fixed point
pi of index 2i for all i such that 0 ≤ 2i ≤ 6. By Proposition 3.4, Φ(pi) < Φ(pj)
exactly if i < j.

By assumption, the associated labeled multigraph G is simple. Add edges of
length 1 so that G is a complete graph. Then for each vertex pi there are exactly
i edges with maximum pi and 3 − i edges with minimum pi. (See Remark 5.6.)
By Lemma 5.3 the multiset of weights at pi is {sign(k − i) lik | k �= i}, where lik
denotes the length of the edge {i, k}. By Lemma 5.4, the weights at pi and pj are
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equal modulo lij for each pair {i, j} ⊂ {0, 1, 2, 3}. Therefore, Lemma 6.3 implies

that one of the three statements (a), (b), or (c) is true. Finally, since cS
1

1 (M) has

degree 2 < 6,
∫
M

cS
1

1 (M) = 0. Hence, Theorem 2.4 (together with Remark 2.5)
implies that

(6.4)
l01 + l02 + l03

l01l02l03
+

l01 − l12 − l13
l01l12l13

+
l23 − l02 − l12

l02l12l23
+

l03 + l13 + l23
l03l13l23

= 0.

First assume that statement (a) is true. Rewrite equation (6.4) as

l01 + l12 − l02
l01l12l02

+
l12 + l23 − l13

l12l23l13
+

l01 + l13 − l03
l01l13l03

+
l02 + l23 − l03

l02l23l03
= 0.

Since all the lengths are positive, this implies that the inequalities in statement (a)
are equalities, that is, l02 = l01 + l12, l13 = l12 + l23, and l03 = l01 + l12 + l23.
Comparing with Example 2.8, the weights at the fixed points agree with those
associated to the circle action on CP3 given by

λ · [x0, x1, x2, x3] = [x0, λ
l01x1, λ

l01+l12x2, λ
l01+l12+l23x3].

Hence statement (A) is true.
Now assume that statement (b) is true. Since l01 = l23, we can rewrite equation

(6.4) as
l12 + l03 − l02

l12l03l02
+

l12 + l03 − l13
l12l03l13

+ 2
l01 + l12 − l03

l01l12l03
= 0.

Together with the inequalities in statement (b), this implies that l01 = l23, l03 =
l01 + l12, and l02 = l13 = l01 + 2l12. Comparing with Example 2.9, the weights at

the fixed points agree with those associated to the circle action on G̃2(R
5) induced

by the action on R5 = R× C2 given by

λ · (t, x1, x2) = (t, λl12x1, λ
l01+l12x2).

Hence statement (B) is true.
Finally, assume that statement (c) is true. Since l02 = l13, we can rewrite

equation (6.4) as

2

l02l03
+

2

l02l12
+

l12 − l03
l01l12l03

+
l12 − l03
l23l12l03

= 0.

This contradicts the fact that l03 ≤ l12. �
We will spend the remainder of this section proving Lemma 6.3. Fix a natural

number lij for each pair {i, j} ⊂ {0, 1, 2, 3}; assume that they satisfy the assump-
tions of the lemma. We will think of lij as labeling the edge eij on the complete
graph G on {p0, p1, p2, p3}. We say that eij is longer than emn if either lij > lmn

or if lij = lmn and eij appears before emn on this list: e01, e23, e12, e02, e13, e03.
6

Fix an edge eij , and let {m,n} = {1, 2, 3, 4}\{i, j}. We say that eij is regular if
sign(m−i) lim = sign(m−j) ljm mod lij and sign(n−i) lin = sign(n−j) ljn mod lij .
In contrast, we say that eij is goofy7 if sign(m − i) lim = sign(n − j) ljn mod lij
and sign(n − i) lin = sign(m− j) ljm mod lij . Since lij = −lij mod lij , every edge
must be regular, goofy, or both.

6 We break the ties in this way to simplify the argument. For example, the arguments are very
similar in the case that l01 = l12 and the case that l01 > l02.

7 These terms are borrowed from surfing, where they describe which foot is in front. We chose
them to emphasize that there are exactly two possibilities, that one of them is more common, and
that both are equally valid.
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We will need the following fact.

Lemma 6.5. If l03 = l13, then l03 ≤ l02 + l23. Similarly, if l03 = l23, then
l03 ≤ l01 + l13.

Proof. Assume that l03 = l13. If e03 is regular, then l02 + l23 = 0 mod l03, whereas
if e03 is goofy, then l02+ l03 = l02+ l13 = 0 mod l03, and so l02 = 0 mod l03. Either
way, since these are all natural numbers this implies that l03 ≤ l02 + l23. The other
claim is proved similarly. �

Finally, notice that the labeled graph G′ obtained from G by exchanging p0
with p3 and p1 with p2 also satisfies the assumption of Lemma 6.3. Moreover, if
G′ satisfies the conclusions of the lemma, then G does as well. Therefore, we can
replace G by G′ at any time. Given this symmetry, we only need to consider eight
possible cases.

Case Ia. e01 is the longest edge and it is regular.

Since e01 is the longest edge, l01 is greater than or equal to l12, l02, l13, and l03.
Since e01 is regular, l03 = l13 mod l01 and l02 = l12 mod l01. Since these are all
natural numbers this implies that

l03 = l13 and l02 = l12.

By Lemma 6.5, the displayed equations imply that (a) is true.

Case Ib. e01 is the longest and is goofy.

By an argument similar to the first paragraph above,

l02 = l13 and l03 = l12.

Hence, (c) is true.

Case IIa. e12 is the longest and is regular.

By an argument similar to the first paragraph of case Ia,

l01 = l02 and l13 = l23.

Since l01 = l02, the edge e03 is both goofy and regular. Thus l01 + l13 = 0 mod l03,
and hence

l03 ≤ l01 + l13.

Together, the displayed equations imply that (a) is true.

Case IIb. e12 is the longest and is goofy (and not regular).

If l02 = l13, then since e12 is the longest edge, (c) is true; so assume that l02 �= l13.
Since e12 is the longest edge, l12 is strictly greater than l01 and l23 and greater

than or equal to l02 and l13. Since e12 is goofy, l01+ l23 = 0 mod l12 and l02+ l13 =
0 mod l12. Since these are all natural numbers and l02 �= l13, this implies that

l12 = l01 + l23 and l12 = l02 + l13.

Assume first that e01 is longer than e23, e02, and e13. Because e12 is not regular,
l01 �= l02, so this implies that l02 < l01, l23 ≤ l01, and l13 ≤ l01. Since also
l03 ≤ l12 = l02 + l13, we conclude that l03 < l01 + l13. If e01 is regular, then
l03 = l13 mod l01, and so l03 = l13. Since e12 is the longest edge, by Lemma 6.5 this
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implies that (a) is true. On the other hand, if e01 is goofy, then l02 = l13 mod l01,
which contradicts l02 �= l13.

Up to symmetry, the only remaining possibility is that e02 is longer than e01,
e23, and e13. This implies that l01 < l02, l23 < l02, and l13 ≤ l02. Since also
l03 ≤ l12 = l01 + l23, we conclude that l03 < l02 + l23. If e02 is regular, then
l03 = l23 mod l02, and so l03 = l23. Since e12 is the longest edge, by Lemma 6.5 this
implies that (a) is true. On the other hand, if e02 is goofy, then l01 = l23 mod l02,
and so l01 = l23. Since e12 is the longest edge, this implies that (b) is true.

Case IIIa. e02 is the longest and is regular.

Since e02 is the longest edge, l02 is strictly greater than l01, l23, and l12, and
greater than or equal to l03. Therefore, since e02 is regular,

l02 = l01 + l12 and l03 = l23.

By Lemma 6.5, this implies that

l03 ≤ l01 + l13.

Finally, since l03 = l23, e13 is regular and goofy. Thus, l12+ l23 = 0 mod l13, and so

l13 ≤ l12 + l23.

Together, the displayed equations imply that (a) is true.

Case IIIb. e02 is the longest and is goofy.

Since e02 is the longest edge, l02 is strictly greater than l01, l23, and l12, and
greater than or equal to l03. Therefore, since e02 is goofy,

l01 = l23 and l02 = l03 + l12.

Since l01 = l23, the edge e13 is goofy, that is, l03 + l12 = 0 mod l13. Hence,

l13 ≤ l03 + l12.

Assume first that e03 is regular. Then l03 + l12 + l01 = l02 + l23 = mod l03,
that is, l01 + l12 = 0 mod l03. Hence, l03 ≤ l01 + l12. Together with the displayed
equations above, this implies that (b) is true.

So assume instead that e03 is goofy. Then 2l01 = l01 + l23 = 0 mod l03. If
l03 ≤ l01 then (b) is true; otherwise, l03 = 2l01 = l01 + l23. If e23 is regular, then
l03 + l12 = l02 = l03 mod l23, while if e23 is goofy, then 2l23 = l03 = l12 mod l23. In
either case, l12 = 0 mod l23 and so l23 ≤ l12; hence l03 ≤ l01 + l12. As before, this
implies that (b) is true.

Case IVa. e03 is the longest and is regular.

Since l03 is strictly greater than every other lij and e03 is regular,

l03 = l01 + l13 = l02 + l23.

Since l03 = l02 + l23 = l23 mod l02, the edge e02 is regular. Therefore, l01 + l12 =
0 mod l02. A similar argument shows l12 + l23 = 0 mod l13. Therefore,

l02 ≤ l01 + l12 and l13 ≤ l12 + l23.

Together, the displayed equations above imply that (a) is true.
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Case IVb. e03 is the longest and is goofy (and not regular).

Since l03 is strictly greater than every other lij and e03 is goofy,

l03 = l01 + l23 = l02 + l13.

Assume first that e01 is longer than e23, e02, and e13. If e01 is regular, then
l01 + l23 = l03 = l13 mod l01, which implies that l13 = l23. This contradicts the
claim that e03 is not regular. Therefore, e01 is goofy and so l02 = l13 mod l01
and l03 = l12 mod l01. Since l23, l02, and l13 are all less than or equal to l01 and
l12 < l03 = l01 + l23, this implies that l02 = l13 and l12 = l23. Now if e02 is regular,
then 2l02 = l03 = −l23 mod l02, while if e02 is goofy, then 2l02 = l03 = l23 mod l02;
either way, l23 = 0 mod l02 and so l02 ≤ l23. Since l02 ≤ l01 and 2l02 = l01+ l23, this
implies that l01 = l02, which contradicts the assumption that e03 is not regular.

Up to symmetry, the only remaining possibility is that e02 is longer than e01,
e23, and e13. If e02 is regular, then l13 + l02 = l03 = l23 mod l02, which implies
that l13 = l23. This contradicts the assumption that e03 is not regular. Therefore
e02 is goofy and so l01 = l23 mod l02; hence, l01 = l23. If e01 is regular, then
2l01 = l03 = l13 mod l01, that is, l13 = 0 mod l01. Since l13 < l03 = 2l01 and
l01 = l23, this implies that l13 = l23. This contradicts the assumption that e03
is not regular. Therefore e01 is goofy and so 2l01 = l03 = l12 mod l01, that is,
l12 = 0 mod l01. Therefore, l23 = l01 ≤ l12. Together with the displayed equations
above, this implies that (b) is true.

This completes the proof of Lemma 6.3.

7. The case that the fixed set is discrete but the associated

multigraph is not simple

In this section, we prove Theorem 2 in the case that the fixed set is discrete but
the associated multigraph is not simple, that is, it contains multiple edges. In fact,
in this case only the last two possibilities can arise.

Proposition 7.1. Let the circle act faithfully on a 6-dimensional compact symplec-
tic manifold (M,ω) with moment map Φ: M −→ R. Assume that H2(M,R) = R,
the fixed set is discrete, and the associated multigraph is not simple. Then one of
the following two statements is true:

(C) The fixed set consists of four points; the weights at these points are

{1, 2, 3}, {1,−1, 4}, {1,−1,−4}, and {−1,−2,−3}.

(D) The fixed set consists of four points; the weights at these points are

{1, 2, 3}, {1,−1, 5}, {1,−1,−5}, and {−1,−2,−3}.

Remark 7.2. Every isotropy sphere N ⊂ MZk must contain exactly one fixed point
with weight −k and one with weight k. Therefore, the manifolds described above
must contain a pair of isotropy spheres N ⊂ MZ2 and N ′ ⊂ MZ3 which intersect
in two points.

Given a labeled multigraphG with vertices {p0, p1, p2, p3}, we adopt the following
notational conventions: For any pair {i, j} ⊂ {0, 1, 2, 3}, Eij is the set of edges from
pi to pj . Moreover, the edges eij and e′ij (if they exist) lie in Eij and have lengths
lij and l′ij , respectively. Our proof relies heavily on the following technical lemma.
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Lemma 7.3. Let G be a labeled multigraph with vertices {p0, p1, p2, p3}. Assume
that the following hold:

(1) The graph is not simple and le �= 1 for every edge e.
(2) The set

⋃
j<i Eij contains at most i edges and the set

⋃
j>i Eij contains

at most 3− i edges for each vertex pi; let the weights at pi be the multiset
of i negative integers and 3 − i positive integers obtained by adding 1 and
−1 with appropriate multiplicity to

{sign(j − i) le | 0 ≤ j ≤ 3 and e ∈ Eij}.
(3) Given any edge eij, the weights at pi and pj agree modulo lij.
(4) Given any distinct pair of edges eij and e′ij in Eij, the lengths lij and l′ij

are relatively prime.

Then, after possibly exchanging p0 with p3 and p1 with p2, one of the following three
statements is true:

(x) E is either {e03, e′03} or {e03, e′03, e12}, l03 = 3, and l′03 = 2.
(y) E = {e12, e′12, e01, e23, e03} and l′12 = l01 = l23 = l03 = 2.
(z) E = {e03, e02, e′02, e23}, l03 = 4, l02 = 3, and l′02 = l23 = 2.

Proof of Proposition 7.1. By the first paragraph of the proof of Proposition 6.1,
there is exactly one fixed point pi of index 2i for all i such that 0 ≤ 2i ≤ 6 and
Φ(pi) < Φ(pj) exactly if i < j.

We will now check that the associated labeled multigraph G satisfies the as-
sumptions of Lemma 7.3. Since G is not simple, it satisfies assumption (1). By
Lemma 5.3, assumption (2) holds and the weights at pi consist of the multiset of
i negative integers and 3 − i positive integers obtained by adding 1 and −1 with
appropriate multiplicity to {sign(j− i) le | 0 ≤ j ≤ 3 and e ∈ Eij}. Finally, assump-
tions (3) and (4) hold by Lemmas 5.4 and 5.5, respectively. Therefore, Lemma 7.3
implies that one of the statements (x), (y), or (z) is true.

First assume that statement (x) is true. For some natural number l12 ≥ 1,
the weights at p0, p1, p2, and p3 are {1, 2, 3}, {1,−1, l12}, {1,−1,−l12}, and
{−1,−2,−3}, respectively. By Proposition 3.9 (see also Example 3.15), as an
H∗(CP∞;Z) = Z[t] module, H∗

S1(M ;Z) is generated by 1, α1, α2, α3, where

(7.4)
α1|p1

= t, α1|p2
=

6 + l12
6− l12

t, α1|p3
=

12

6− l12
t,

α2|p2
= l12 t

2, α2|p3
= 6t2, α3|p3

= 6t3, and αi|pj
= 0 ∀ j < i.

Since α1 is an integral class, this implies that 6 − l12 divides 12. In particular,
l12 �= 1 and so there is an isotropy sphere N ⊂ MZl12 which contains p1 and p2.
Let γ ∈ H4

S1(M ;Z) be the push-forward in equivariant cohomology of the natural
generator 1 ∈ H0

S1(N). Since p0 and p3 are not in N , γ|p0
= γ|p3

= 0. On the
other hand, for i = 1 or 2, γ|pi

is the product of the weights of the normal bundle
to N at pi, that is, γ|p1

= γ|p2
= −t2. Comparing with equation (7.4), this implies

that γ = 2
6−l12

α2−α1t. Since γ is an integral linear combination of t2, α1t, and α2,
this implies that 6 − l12 divides 2. Hence, l12 = 4, 5, 7 or 8. Finally, Lemma 3.23
implies that 6 = Γp0

> Γp1
= l12. Hence, l12 = 4 or 5, as required.

Now assume that statement (y) is true. Then the weights at the fixed points
are {1, 2, 2}, {2,−2, l12}, {2,−2,−l12} and {−1,−2,−2} for some natural number

l12. Since
∫
M

cS
1

1 (M) = 0, Theorem 2.4 (together with Remark 2.5) implies that
5
4 − 1

4 − 1
4 + 5

4 = 0, which is not true.
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Finally, assume that statement (z) holds. Then the weights at the fixed points
are either

• {2, 3, 4}, {1, 1,−1}, {2,−2,−3}, and {−1,−2,−4}; or
• {−2,−3,−4}, {−1,−1, 1}, {−2, 2, 3}, and {1, 2, 4}.

Since
∫
M

1 = 0, Theorem 2.4 implies that 1
24 −1+ 1

12 −
1
8 = 0, which is not true. �

We will spend the remainder of this section proving Lemma 7.3. Let G be any
labeled multigraph satisfying the assumptions of the lemma.

Consider any distinct pair of edges eij and e′ij in Eij , where i < j. By assumption
(4), the lengths lij and l′ij are relatively prime. By definition, the weights at pi and

pj are {lij , l′ij , x} and {−lij ,−l′ij , y}, respectively, for some integers x and y. By
assumption (3), these sets agree modulo lij and also agree modulo l′ij . Therefore,
we can apply the following facts.

Lemma 7.5. Let l ≥ l′ ≥ 1 be relatively prime natural numbers; let x and y be
integers. Assume that the multisets {l, l′, x} and {−l,−l′, y} are equal modulo l and
also equal modulo l′. Then the following hold:

(i) If l′ �= 1, then 2l′ �= 0 mod l, x �= y mod l, x + l′ = 0 mod l, and
y = l′ mod l.

(ii) If l ≥ x > 0, then either l′ = 2 = l− x and x and y are odd, l′ = 1 = l− x,
or l′ = 1 and x = l. A similar claim holds if l ≥ −y > 0.

(iii) If l ≥ y > 0, then either l′ = 2 = y and l is odd, l′ = 1 = y, or l′ = 1 and
l = 2 = y. A similar claim holds if l ≥ −x > 0.

Proof. If 2l′ = 0 mod l, then since l and l′ are relatively prime and l ≥ l′, l′ = 1
and l ≤ 2. Otherwise, since 2l = 0 mod l, the assumption that {l, l′, x} and
{−l,−l′, y} are equal modulo l implies immediately that 2l′ �= 0 mod l, x �= y mod l,
x+ l′ = 0 mod l, and y = l′ mod l. In particular, (i) holds. Similarly, if l′ > 2, then
2l �= 0 mod l′ and so l = y mod l′ and l + x = 0 mod l′.

To prove (ii), assume that l ≥ x > 0. If l′ = 1 and l ≤ 2, then l ≥ x > 0
implies immediately that either l′ = l− x or x = l. Otherwise, x+ l′ = 0 mod l by
the previous paragraph, and l > l′ since l and l′ are relatively prime. Therefore,
l′ = l− x. If l′ > 2, then 2l �= 0 mod l′ and l+ x = 0 mod l′, that is, 2l = 0 mod l′.
Since these equations give a contradiction, l′ ≤ 2, as required. Finally, if l′ = 2,
then l is odd since l and l′ are relatively prime. Since x = l − 2, x is odd as well.
Moreover, since 2l = 0 mod 2, x+ y = 0 mod 2, and so y is also odd.

To prove (iii), assume that l ≥ y > 0. If l′ = 1 and l ≤ 2, then l ≥ y > 0 implies
immediately that either y = 1 or l = 2 = y. Otherwise, by the first paragraph,
y = l′ mod l, and so y = l′. If l′ > 2, then l = y mod l′, that is, l = 0 mod l′. Since
this is impossible, l′ ≤ 2, as required. Finally, if l′ = 2, then l is odd since l and l′

are relatively prime. �

Finally, notice that the labeled multigraph G′ obtained by exchanging p0 with
p3 and p1 with p2 also satisfies the assumptions of Lemma 7.3. Therefore, we can
replace G by G′ at any time. Given this symmetry, we only need to consider four
cases.

Case I. E02 �= ∅ and E03 contains at least two edges.

Let l03 ≥ l′03 �= 1 be the lengths of two edges e03 and e′03 from p0 to p3, and let
l02 be the length of an edge e02 from p0 to p2. Let m be the positive weight at p2.
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Note that since l′03 �= 1, (ii) above implies that the third weight at p0 cannot be
either l03 or l′03. Hence, there cannot be any other edge of length l03 or l′03 with
minimum p0. A similar argument proves that there cannot be any other edge of
length l03 or l′03 with maximum p3. In particular, if m is l03 or l′03, then since
m > 1, there is an edge from p2 to p3 with length l03 or l′03; this is impossible.

Suppose first that l02 ≥ l03 and l02 ≥ m. Then compatibility along the edge e02
implies that m is either l03 or l′03. As we have seen above, this is impossible.

So suppose next that m ≥ l03 and m ≥ l02. Since m �= 1, there is an edge
e23 ∈ E23 of length m. Compatibility along e23 implies that l02 is either l03 or l′03.
Again, this is impossible.

Finally, suppose that l03 > l02 and l03 > m. Since l′03 �= 1, by (ii) above l′03 = 2
and l03 = l′03 + l02. But then compatibility along e02 implies that m = l′03 mod l02.
Because l′03 + l02 = l03 > m and l02 ≥ l′03 (since l02 �= 1 and l′03 = 2), this implies
that m = l′03. Once again, this is impossible.

Case J. E02 �= ∅ and E03 contains exactly one edge.

By assumptions (1) and (2), this implies that – up to symmetry – there must be
exactly two edges e02 and e′02 from p0 to p2; we may assume that l02 ≥ l02. Let l03
denote the length of the edge e03 from p0 to p3. Since l′02 �= 1, by (iii) above the
positive weight at p2 is not 1. Hence, the graph also contains an edge e23 of length
l23 from p2 to p3. By assumption (2), after possibly adding an edge of length 1, the
graph consists of these edges and an edge e13 of length l13 from p1 to p3.

Assume first that l02 ≥ l03 and l02 ≥ l23. Since l′02 �= 1, by (ii) and (iii) above
this implies that l23 is both even and odd, which is impossible.

Now, assume that that l23 ≥ l03 and l23 ≥ l02. Then compatibility along e23
implies that l03 is either equal to l02 or l′02. Since l′02 �= 1, this contradicts (ii)
above, just as in the previous case.

Now, assume that l13 ≥ l03 and l13 ≥ l23. Since the negative weight at p1 is −1,
compatibility along e13 implies that l03 = 1 or l23 = 1. This is impossible.

Finally, assume that l03 > l02, l03 > l23, and l03 ≥ l13. Then compatibility along
e03 implies that either l03 = l23 + l′02 = l13 + l02 or l03 = l23 + l02 = l13 + l′02. Since
l′02 �= 1, fact (i) above implies that l03 �= l23 mod l02. Hence,

l03 = l23 + l′02 = l13 + l02.

But (i) above also implies that l03 + l′02 = 0 mod l02, and l23 = l′02 mod l02. Hence,
3l′02 = 0 mod l02. Since l02 and l′02 are relatively prime and l02 ≥ l′02 �= 1, this
implies that

l02 = 3 and l′02 = 2.

Since l03 = l′02 mod l23, compatibility along e23 implies that l02 = l13 mod l23; hence
4 = 0 mod l23. Moreover, l23 = l′02 mod l02, that is, l23 = 2 mod 3. Combined,
these imply that

l23 = 2.

Together, the displayed equations imply that (z) is true.

Case K. E02 �= ∅ and E03 = ∅.

Since E02 �= ∅, assumption (2) implies that E12 cannot contain two edges. By
assumption (1), this implies that either E02 or E13 must contain two edges. Hence,
by assumption (2), after possibly adding edges of length 1, the multigraph contains
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exactly six edges: e02, e
′
02, e13, e

′
13, e01 and e23. We may assume that l13 ≥ l′13 and

that l02 ≥ l′02. By assumption (1), we cannot have l′02 = l′13 = 1.
Assume first that l01 ≥ l02 and l01 ≥ l13. Then compatibility along e01 implies

that l02 = l13 and l′02 = l′13; hence l′02 = l′13 �= 1. Since l′02 �= 1, (i) above implies
that 2l′02 �= 0 mod l02 and l′02 = l23 mod l02. Since l′13 �= 1, (i) above implies that
l13′ + l23 = 0 mod l13, that is, l

′
02+ l23 = 0 mod l02. Together, these three equations

give a contradiction.
Hence, by symmetry we may assume that l02 > l01, l02 > l23, and l02 ≥ l13.

If l′02 �= 1, (ii) and (iii) above imply that l23 is both odd and even. Since this is
impossible, l′02 = 1. Therefore, (ii) above implies that l02 = l01 + 1. Now, since
l02 ≥ l13 ≥ l′13 and l13 and l′13 are relatively prime, compatibility along e01 implies
that l′13 = l′02 = 1, which is impossible.

Case L. E02 = E13 = ∅.

First suppose that there are three edges from p0 to p3 of length l03 ≥ l′03 ≥ l′′03 >
1. Then by (ii) above l′03 ≤ 2, which is impossible. So there are at most two edges
from p0 to p3.

Therefore, by assumption (2), after possibly adding edges of length 1, G contains
exactly six edges: e03, e

′
03, e12, e

′
12, e01, and e23. We may assume that l03 ≥ l′03 and

that l12 ≥ l′12. By symmetry, we may also assume that l01 ≥ l23. By assumption
(1), we cannot have l′03 = l′12 = 1.

First, assume that l01 ≥ l03 and l01 ≥ l12. Then compatibility along e01 implies
that l03 = l12 and l′03 = l′12; hence l′03 = l′12 �= 1. Since l′03 �= 1, (i) above implies
that 2l′03 �= 0 mod l03 and l′03 + l01 = 0 mod l03. Since l′12 �= 1, (i) above implies
that l′12 = l01 mod l12, that is, l

′
03 = l01 mod l03. Together, these three equations

give a contradiction.
Next, assume that l12 ≥ l01 ≥ l03. Since l12 ≥ l01 ≥ l23, by (iii) above either

l′12 = l01 = l23 = 2 and l12 is odd, or l′12 = 1. In the first case, compatibility along
e01 implies that l03 = 2 and l′03 = 1; therefore, statement (y) holds. In the second
case, compatibility along e01 implies that l′03 = 1, which is impossible.

Next, assume that l03 > l01 > l12. Then, since l03 > l01, by (ii) above, 2 ≥
l′03 = l03 − l01. Since l01 �= 1, this implies that l01 ≥ l′03. So compatibility along e01
implies that l12 = l′12 = l′03. Since l12 and l′12 are relatively prime this implies that
l′12 = l′03 = 1, which is impossible.

Finally, assume that l12 ≥ l01 and l03 > l01. Since l03 > l01, by (ii) above
either l′03 = l03 − l01 = 2 and l01 is odd, or l′03 = l03 − l01 = 1. In the first case,
since l12 ≥ l01 and l01 is odd, by (iii) above, l′12 = l01 = 1. Since l01 ≥ l23 and
l03 = l01 + 2, this implies that l23 = 1 and l03 = 3 as well; therefore, statement (x)
holds. In the second case, since l12 ≥ l01 and l′12 �= 1, by (iii) above, l′12 = l01 = 2,
and so l03 = l01 + 1 = 3. But then l03 and l′03 are both odd, while l′12 is even. This
violates compatibility along e01.

This completes the proof of Lemma 7.3.
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