On a tensor product C^{*}-algebra associated with the free group on two generators

By Charles A. Akemann ${ }^{\dagger}$ and Phillip A. Ostrand

(Received Dec. 23, 1974)

Let G be the free group on two generators, and L^{2} the Hilbert space of square summable complex valued functions on G. Let \mathcal{L} and \mathscr{R} be the C^{*} algebras generated respectively by the left and right regular representations of G on L^{2} and let \mathfrak{A} be the C^{*}-algebra generated by \mathcal{L} and \mathscr{R} jointly. In [1] the authors provided a formula for computing the norm of certain operators in \mathcal{L}. In this paper the results of [1] are applied to the study of \mathfrak{N}, which may be regarded as a C^{*}-tensor product. (See the remark preceding Lemma 4.) We prove that \mathfrak{A} contains the compact operators \mathcal{C} in L^{2} Theorem 1) as its only closed two-sided ideal (Theorem 3), and that there is a derivation of \mathfrak{A} into \mathcal{C} which is not inner (Example 5). This investigation was suggested by Jun Tomiyama and Masamichi Takesaki at the Japan-U.S. Seminar on C^{*} Algebras and Applications to Physics in Kyoto in May of 1974. Some related papers are listed in the references.

§ 1. Notation and Terminology.

Let S be a non-empty set. By $L^{2}(S)$ we mean the vector space of square summable complex valued functions on S. We prefer, however, to write the elements of $L^{2}(S)$ as (generally) infinite linear combinations, identifying the complex valued function f on S with the vector $\sum_{w \in S} f(w) w$. Thus we have

$$
L^{2}(S)=\left\{\left.\sum_{w \in S} \lambda_{w} w\left|\sum_{w \in S}\right| \lambda_{w}\right|^{2}<\infty\right\} .
$$

$L^{2}(S)$ is a Hilbert space with inner product

$$
\left(\sum_{w \in S} \lambda_{w} w, \sum_{w \in S} \mu_{w} w\right)=\sum_{w \in S} \lambda_{w} \bar{\mu}_{w},
$$

and resulting l_{2} norm

$$
\left\|\sum_{w \in S} \lambda_{w} w\right\|_{2}=\left(\sum_{w \in S}\left|\lambda_{w}\right|^{2}\right)^{\frac{1}{2}} .
$$

By $L(S)$ we mean the subspace of $L^{2}(S)$ spanned by S; i. e., $L(S)$ consists of

[^0]all finite linear combinations $\sum_{i=1}^{n} \alpha_{i} x_{i}$ with x_{i} in S.
Let G be the free group on two generators. For simplicity of reference we will abbreviate $L^{2}(G)$ to L^{2} and $L(G)$ to $L . G$ acts on L^{2} from either the left or right. For x in G and $\Lambda=\sum_{w=G} \lambda_{w} w$ in L^{2}, let
$$
L_{x}(\Lambda)=\sum_{w \in G} \lambda_{w} x w, \quad R_{x}(\Lambda)=\sum_{w \in G} \lambda_{w} w x^{-1} .
$$

These are the left and right regular representations of G on L^{2}. Each extends by linearity to an action of L on L^{2}. For $A=\sum_{i=1}^{n} \alpha_{i} x_{i}$ in L,

$$
L_{A}=\sum_{i=1}^{n} \alpha_{i} L_{x_{i}}, \quad R_{A}=\sum_{i=1}^{n} \alpha_{i} R_{x_{i}}
$$

For each $A=\sum_{i=1}^{n} \alpha_{i} x_{i}$ in L, L_{A} and R_{A} are bounded operators on L^{2}, with operator norm satisfying

$$
\left\|L_{A}\right\|=\left\|R_{A}\right\| \leqq \sum_{i=1}^{n}\left|\alpha_{i}\right|
$$

\mathcal{L} and \mathscr{R} denote the completions in operator norm of $\left\{L_{A} \mid A \in L\right\}$ and $\left\{R_{A} \mid A \in L\right\}$ respectively, and \mathscr{A} is the closed subalgebra of \mathcal{B}, the bounded operators on L^{2}, generated by $\mathcal{L} \cup \mathscr{R} . \mathfrak{A}$ is the principal object of study in this paper.

In L^{2} we have a convolution operation. For $A=\sum_{x \in G} \alpha_{x} x$ and $\Lambda=\sum_{u \in G} \lambda_{u} u$,

$$
A \Lambda=\sum_{w \in G}\left(\sum_{x \in G} \alpha_{x} \lambda_{x-1}\right) w .
$$

$A \Lambda$ is always well defined in the sense that each coefficient is finite (in fact $\leqq\|A\|_{2}\|A\|_{2}$ by the Schwarz inequality). But $A \Lambda$ is not generally in L^{2}. When $A \Lambda \in L^{2}$ for every $\Lambda \in L^{2}$ we say that A is a convolver of L^{2}.

Clearly each $A \in L$ is a convolver and

$$
L_{A}(\Lambda)=A \Lambda
$$

for each Λ in L^{2}. More generally, if $\varphi \in \mathcal{L}$, then $A=\varphi(e)$ is a convolver (e is the identity of G), and

$$
\varphi(\Lambda)=A \Lambda
$$

for each Λ in L^{2}. This follows from [7, p. 788-9] but may easily be verified directly. Let

$$
U=\{\varphi(e) \mid \varphi \in \mathcal{L}\} .
$$

For each $A \in \mathcal{U}$ let L_{A} be the linear operator given by

$$
L_{A}(\Lambda)=A \Lambda
$$

For $A \in \mathcal{U}$ define the operator norm of A by

$$
\|A\|=\left\|L_{A}\right\| .
$$

Then

$$
\mathcal{L}=\left\{L_{A} \mid A \in \mathcal{U}\right\},
$$

and the mapping $A \rightarrow L_{A}$ is an isometry of \mathcal{U} (with operator norm) onto \mathcal{L}.
\mathcal{U} represents \mathcal{R} in a similar manner. For $A=\sum_{x \in G} \alpha_{x} x$ in L^{2}, let $\hat{A}=\sum_{x \in G} \alpha_{x} x^{-1}$. For $A \in Q$ define the operator R_{A} on L^{2} by

$$
R_{A}(\Lambda)=\Lambda \hat{A} .
$$

Then

$$
\mathscr{R}=\left\{R_{A} \mid A \in \mathcal{U}\right\}
$$

and the mapping $A \rightarrow R_{A}$ is an isometry of U onto \mathcal{R}. (For $\theta \in \mathscr{R}, \theta=R_{A}$ where $A=\widehat{\theta(e)}$.)

Thus in a sense U is an abstract formulation of either regular representation of G on L^{2}. It also provides a convenient way to describe the algebra \mathfrak{A}, namely, as the closure in \mathscr{B} of

$$
\left\{\sum_{i=1}^{n} L_{A_{i}} R_{B_{i}} \mid A_{i}, B_{i} \in \mathcal{U}\right\} .
$$

Tensor product spaces play an important role in our study of \mathfrak{A}. Let $L \otimes L$ denote the usual algebraic tensor product of L with itself. Each element of $L \otimes L$ can be expressed uniquely in the form

$$
\sum_{i=1}^{n} \lambda_{i} x_{i} \otimes y_{i}
$$

with $x_{i}, y_{i} \in G$. In particular for $A=\sum_{i=1}^{n} \alpha_{i} x_{i}$ and $B=\sum_{j=1}^{t} \beta_{j} y_{j}$ in L,

$$
A \otimes B=\sum_{i=1}^{n} \sum_{j=1}^{t} \alpha_{i} \beta_{j} x_{i} \otimes y_{j} .
$$

In $L \otimes L$ we have the usual l_{2} norm. For $\Lambda=\sum_{i=1}^{n} \lambda_{i} x_{i} \otimes y_{i}$,

$$
\|\Lambda\|_{2}=\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}\right)^{\frac{1}{2}} .
$$

We note that $\|A \otimes B\|_{2}=\|A\|_{2}\|B\|_{2}$ for each $A, B \in L$.
$L^{2} \otimes L^{2}$ denotes the completion of $L \otimes L$ in the l_{2} norm. This may be formally represented

$$
L^{2} \otimes L^{2}=\left\{\left.\sum_{x, y \in G} \lambda_{x, y} x \otimes y\left|\sum_{x, y \in G}\right| \lambda_{x, y}\right|^{2}<\infty\right\},
$$

with

$$
\left\|\sum_{x, y \in G} \lambda_{x, y} x \otimes y\right\|_{2}=\left(\sum_{x, y \in G}\left|\lambda_{x, y}\right|^{2}\right)^{\frac{1}{2}} .
$$

$L \otimes L$ acts on $L^{2} \otimes L^{2}$ from the left. For $u, v \in G$, and $\Lambda=\sum_{x, y \in G} \lambda_{x, y} x \otimes y$ in $L^{2} \otimes L^{2}$,

$$
(u \otimes v) \Lambda=\sum_{x, y \in G} \lambda_{x, y}(u x) \otimes(v y) .
$$

This leads to the usual operator norm on $L \otimes L$ which we call the α-norm.

$$
\|A\|_{\alpha}=\sup \left\{\|A \Lambda\|_{2} \mid \Lambda \in L^{2} \otimes L^{2},\|\Lambda\|_{2}=1\right\} .
$$

This is a cross-norm on $L \otimes L$, meaning that

$$
\|A \otimes B\|_{\alpha} \leqq\|A\|\|B\|
$$

for each $A, B \in L$. (See [9, p. 111].) Thus we may extend by continuity to an action of $\mathscr{Q} \mathcal{U}$ on $L^{2} \otimes L^{2} . \quad(\Psi \otimes \mathscr{U}$ is the algebraic tensor product of \mathcal{U} with itself.) $\mathcal{U} \otimes_{\alpha} \mathscr{U}$ denotes the closure of $\mathscr{\exists} Q$ in the algebra of all bounded operators on $L^{2} \otimes L^{2}$.

We are now prepared to prove some theorems.

§ 2. Results.

Recall that \mathcal{C} denotes the algebra of compact operators on L^{2}.
Theorem 1. $\mathcal{C} \subset \mathfrak{Z}$.
To prove Theorem 1 it is sufficient to show that \mathfrak{N} is irreducible and that $\mathcal{C} \cap \mathfrak{X} \neq\{0\}$. (See [2, 4.1.10].) The irreducibility of \mathfrak{A} is a consequence of [7, pp. 788-9]. To complete the proof we will show that \mathfrak{A} contains the orthogonal projection P of L^{2} onto the one-dimensional subspace of L^{2} spanned by e, the identity of G. To that end fix an integer $n \geqq 3$ and let X be a free subset of G of cardinality n (meaning that X freely generates a subgroup of G). Define $A \in \mathfrak{A}$ by

$$
A=\frac{1}{n^{2}} \sum_{x \in X} \sum_{y \in X} L_{x-1 y} R_{x-1 y}
$$

We shall show $\|A-P\|<4 / n$. Since $n \geqq 3$ is arbitrary, it follows that $P \in \mathfrak{X}$. The short proof of the following lemma was suggested to us by Marek Borejko. We first establish some notation.

Let $D=\left\{x^{-1} y: x, y \in X\right\}$ and let S be the subgroup of G generated by D. Let T be an abelian subgroup of S and let S / T denote the left coset space. Let ϕ be the representation of S on $L^{2}(S / T)$ defined by left multiplication and extend ϕ to $L(S)$. Let $B=\sum_{x \in X} \sum_{y \in X} x^{-1} y$ and $\bar{B}=\phi(B)$.

Lemma 2. $\|\bar{B}\| \leqq 4(n-1)$.
Proof of Lemma 2. Since T is abelian, the trivial representation on T is weakly contained (in the sense of [3]) in the left regular representation of T. By Theorem 4.2 of [3] and [6, p. 121] ϕ is weakly contained in the left
regular representation of S. Thus $\|\bar{B}\| \leqq\left\|\sum_{x \in X} \sum_{y \in X} L_{x-1 y}\right\|=4(n-1)$, where the last equality is Theorem IV. J of [1].

Proof of Theroem 1. For each word w of G let $G_{w}=\left\{z w z^{-1} \mid z \in S\right\}$ and let $H_{w}=L\left(G_{w}\right)$. It is apparent that L is the direct sum of the distinct orthogonal subspaces H_{w}, each of which is invariant under $A-P$. Thus it suffices to show that $A-P$ restricted to H_{w} is of norm $<4 \sqrt{3} / n$ for each $w \in G$. Since $(A-P)(e)=0$ we need only consider $w \neq e$, in which case $A-P=A$ on H_{w}.

Fix $w \neq e$ in G, and let $T=\left\{z \in S \mid z w z^{-1}=w\right\}$. In any free group elements which commute with a given non-trivial element also commute with each other. Thus T is an abelian subgroup of S. For each $y, z \in S, y w y^{-1}=z w z^{-1}$ if and only if $y T=z T$. Thus the mapping $\theta: H_{w} \rightarrow L(S / T)$ defined by $\theta\left(z w z^{-1}\right)=z T$ is an isometry. Moreover,

$$
A \left\lvert\, H_{w}=\frac{1}{n^{2}} \theta^{-1} \bar{B} \theta .\right.
$$

Thus by Lemma 2 we have

$$
\left\|A \mid H_{w}\right\|=\frac{1}{n^{2}}\|\bar{B}\|<4 / n,
$$

and Theorem 1 is proved.
Theorem 3. \mathcal{C} is the only proper non-zero closed two-sided ideal in \mathfrak{A}.
We first need some notation and a lemma.
Define a linear mapping $\theta: U \otimes \mathcal{U} \rightarrow \mathfrak{A}$ by

$$
\theta\left(\sum_{i=1}^{n} A_{i} \otimes B_{i}\right)=\sum_{i=1}^{n} L_{A_{i}} R_{B_{i}} .
$$

It is clear that

$$
\begin{aligned}
& \theta\left(\left(A_{1}+A_{2}\right) \otimes B-A_{1} \otimes B-A_{2} \otimes B\right) \\
& \quad=\theta\left(A \otimes\left(B_{1}+B_{2}\right)-A \otimes B_{1}-A \otimes B_{2}\right) \\
& \quad=\theta(\lambda(A \otimes B)-(\lambda A) \otimes B) \\
& \quad=\theta(\lambda(A \otimes B)-A \otimes(\lambda B)) \\
& \quad=0
\end{aligned}
$$

for all appropriate $A, A_{1}, A_{2}, B, B_{1}, B_{2}, \lambda$. Thus θ is well defined. Moreover \mathcal{U} is central simple [8] and therefore $\mathcal{Q} \otimes \mathcal{U}$ is simple [4, p. 91]. Then θ is an isomorphism. Thus θ induces a norm on $U \otimes Q$ given by

$$
\left\|\sum_{i=1}^{n} A_{i} \otimes B_{i}\right\|=\left\|\sum_{i=1}^{n} L_{A_{i}} R_{B_{i}}\right\| .
$$

This is a C^{*}-cross norm on $\Psi \otimes \mathscr{U}$. But the α-norm on $\Psi \otimes Q$ is the minimal C^{*}-cross norm on $\mathcal{U} \otimes \mathcal{U}$ [9, p. 116]. Thus

$$
\left\|\sum_{i=1}^{n} A_{i} \otimes B_{i}\right\|_{\alpha} \leqq\left\|\theta\left(\sum_{i=1}^{n} A_{i} \otimes B_{i}\right)\right\|
$$

Let φ be the inverse mapping of θ. Then φ is a $*$-isomorphism of a dense $*$-subalgebra of \mathfrak{A} onto a dense $*$-subalgebra of $\mathcal{U} \otimes_{\alpha} \mathcal{U}$, and $\|\varphi\|=1$. By [2, p. 18] φ extends to a $*$-homomorphism of \mathfrak{A} onto $U \otimes_{a} U$.

Remark. Via the isomorphism θ, \mathfrak{A} can be regarded as a C^{*}-tensor product of U with itself; i.e., \mathcal{U} is the completion of $\mathcal{U} \otimes \mathcal{U}$ with respect to a C^{*}-cross norm on $U \otimes \cup$.

We now come to the heart of the argument.
Lemma 4. The kernel of φ is \mathcal{C}.
Proof of Lemma 4. \mathcal{C} has no non-trivial closed ideals [2, 4.1] so either $\varphi(\mathcal{C})=0$ or φ is $1-1$ on \mathcal{C}. \mathcal{U} is simple and therefore $\mathcal{U} \otimes_{\alpha} \mathcal{U}$ is simple [9, p. 117]. Since $\varphi(\mathcal{C})$ is an ideal of $\mathscr{U} \otimes_{\alpha} \mathscr{U}$ and contains no unit, $\varphi(\mathcal{C})=0$.

Conversely, fix A in the kernel of φ and $\varepsilon>0$. There is a $B=\sum_{i=1}^{n} \beta_{i} L_{x_{i}} R_{y_{i}}$ in \mathfrak{A} with $\|A-B\|<\varepsilon$. Since $\varphi(A)=0$ and $\|\varphi\|=1$, we have $\|\varphi(B)\|_{\alpha}<\varepsilon$. To complete the proof we will find $C \in \mathcal{C}$ such that $\|B-C\|<\sqrt{2}\|\varphi(B)\|_{\alpha}$. Because \mathcal{C} is closed and $\varepsilon>0$ is arbitrary, this implies that $A \in \mathcal{C}$.

Before proceeding we must introduce some special notation associated with G as the free group on two generators, say a and b. Each element $w \neq e$ in G can be written uniquely in the form $w=w_{1}^{\varepsilon_{1}} w_{2}^{\varepsilon_{2}} \cdots w_{t}^{\varepsilon_{t}}$ where $w_{1}, \cdots, w_{t} \in\{a, b\}$, and $\varepsilon_{1}, \cdots, \varepsilon_{t} \in\{-1,1\}$, and for each $1 \leqq i<t$ either $w_{i} \neq w_{i+1}$ or $\varepsilon_{i}=\varepsilon_{i+1}$. We call any such product a reduced product. If $w=w_{1}^{\varepsilon_{1}} \cdots w_{t}^{\varepsilon_{t}}$ is a reduced product then t is the length of w, denoted $|w|$. In particular $|e|=0$. For each integer $i \geqq 1$, let

$$
S_{i}=\{w \in G| | w \mid<i\} \quad \text { and } \quad T_{i}=\{w \in G| | w \mid \geqq i\} .
$$

Let $w=w_{1}^{\varepsilon_{1}} \cdots w_{t}^{\varepsilon_{t}}$ be a reduced product. For each $0 \leqq i \leqq t$ let

$$
f_{i}(w)=w_{1}^{\varepsilon_{1}} w_{2}^{\varepsilon_{2}} \cdots w_{i}^{\varepsilon_{i} i} \quad\left(f_{0}(w)=e\right)
$$

and

$$
g_{i}(w)=w^{-1} f_{i}(w)=w_{t}^{-\varepsilon_{t}} w_{t-1}^{-\varepsilon_{t} t-1} \cdots w_{i+1}^{-\varepsilon_{i}+1} \quad\left(g_{t}(w)=e\right) .
$$

We note that $f_{i}, g_{i}: T_{i} \rightarrow G$ and for each $w \in T_{i}$ we have

$$
f_{i}(w) g_{i}(w)^{-1}=w .
$$

Returning now to the problem at hand, we must find a $C \in \mathcal{C}$ such that $\|B-C\|<\sqrt{2}\|\varphi(B)\|_{\alpha}$, where $B=\sum_{i=1}^{n} \beta_{i} L_{x_{i}} R_{y_{i}}$. Let

$$
p=\max \left\{\left|x_{i}\right|,\left|y_{i}\right| \mid 1 \leqq i \leqq n\right\} .
$$

Let P be the orthogonal projection of L^{2} onto $L^{2}\left(S_{6 p}\right)$, and let $C=B P$. Then
C is certainly in \mathcal{C}. Note that $B-C=0$ on $L^{2}\left(S_{6 p}\right)$ and $B-C=B$ on $L^{2}\left(T_{6 p}\right)$. Thus

$$
\|B-C\|=\sup \left\{\|B \Lambda\|_{2} \mid \Lambda \in L\left(T_{6 p}\right),\|\Lambda\|_{2}=1\right\}
$$

Now fix $\Lambda=\sum_{i=1}^{n} \lambda_{i} w_{i}$ in $L\left(T_{6 p}\right)$ with $\|\Lambda\|_{2}=1$. We may presume that the w_{i} are distinct. For each $z \in G$, let

$$
I(z)=\left\{(i, j) \mid 1 \leqq i \leqq n, 1 \leqq j \leqq t, x_{i} w_{j} y_{i}^{-1}=z\right\}
$$

and let $H=\{z \in G \mid I(z) \neq \emptyset\}$. H is finite. For each $z \in H$ let

$$
\mu_{z}=\sum_{(i, j) \in I(z)} \beta_{i} \lambda_{j} .
$$

Then

$$
B \Lambda=\sum_{i=1}^{n} \beta_{i} \sum_{j=1}^{t} \lambda_{j} x_{i} w_{j} y_{i}^{-1}=\sum_{z \in H} \mu_{2} z,
$$

so

$$
\|B \Lambda\|_{2}=\left(\sum_{z \in G}\left|\mu_{z}\right|^{2}\right)^{\frac{1}{2}}
$$

We will now construct a $\Gamma \in L \otimes L$ with $\|\Gamma\|_{2}=1$ such that $\|B \Lambda\|_{2} \leqq \sqrt{2}\|\varphi(B) \Gamma\|_{2}$. It will then follow that $\|B-C\| \leqq \sqrt{2}\|\varphi(B)\|_{\alpha}$ as desired.

For each $z \in G$ let K_{z} be the subspace of $L \otimes L$ spanned by $\left\{u \otimes v \mid u v^{-1}=z\right\}$. Note that the K_{z} constitute a decomposition of $L \otimes L$ into orthogonal subspaces. For each $1 \leqq j \leqq t$ define $\Gamma_{j} \in K_{w_{j}}$ by

$$
\Gamma_{j}=\frac{1}{\sqrt{4 p}} \sum_{k=p}^{5 p-1} f_{k}\left(w_{j}\right) \otimes g_{k}\left(w_{j}\right)
$$

and define $\Gamma \in L \otimes L$ by

$$
\Gamma=\sum_{j=1}^{t} \lambda_{j} \Gamma_{j} .
$$

Clearly $\left\|\Gamma_{j}\right\|_{2}=1$ for each j. Since the subspaces $K_{w_{j}}$ are orthogonal, $\|\Gamma\|_{2}$ $=\left(\sum_{j=1}^{t}\left|\lambda_{j}\right|^{2}\right)^{\frac{1}{2}}=\|\Lambda\|_{2}=1$.

Let $z \in H$ and $(i, j) \in I(z)$. Then

$$
\left(x_{i} \otimes y_{i}\right) \Gamma_{j}=\frac{1}{\sqrt{4 p}} \sum_{k=p}^{5 p-1}\left(x_{i} f_{k}\left(w_{j}\right)\right) \otimes\left(y_{i} g_{k}\left(w_{j}\right)\right) .
$$

Note that $x_{i} w_{j} y_{i}^{-1}=z$ and $\left|w_{j}\right| \geqq 6 p$. Thus for each $p \leqq k \leqq 5 p-1, x_{i} f_{k}\left(w_{j}\right)$ is an "initial portion" of z whose length depends only on the amount of cancellation in the product $x_{i} w_{j}$ when x_{i} and w_{j} are written as reduced products. This is independent of k for all $k \geqq p$. Thus there exists an integer $r(i, j)$ with $|r(i, j)| \leqq p$ such that

$$
x_{i} f_{k}\left(w_{j}\right)=f_{k+r(i, j)}(z)
$$

for all $p \leqq k \leqq 5 p-1$. Also

$$
y_{i} g_{k}\left(w_{j}\right)=g_{k+r(i, j)}(z)
$$

for each k, since

$$
\begin{aligned}
y_{i} g_{k}\left(w_{j}\right) & =y_{i} w_{j}^{-1} f_{k}\left(w_{j}\right) \\
& =\left(y_{i} w_{j}^{-1} x_{i}^{-1}\right)\left(x_{i} f_{k}\left(w_{j}\right)\right) \\
& =z^{-1} f_{k+r(i, j)}(z) \\
& =g_{k+r(i, j)}(z) .
\end{aligned}
$$

Then

$$
\left(x_{i} \otimes y_{i}\right) \Gamma_{j}=\frac{1}{\sqrt{4 p}}_{k=p+r(i, j)}^{5 p-1+(i, j)} f_{k}(z) \otimes g_{k}(z) .
$$

In particular we note that $\left(x_{i} \otimes y_{i}\right) \Gamma_{j} \in K_{z}$ for each $(i, j) \in I(z)$. Now let Q_{z} denote the orthogonal projection of K_{z} onto the subspace spanned by $\left\{f_{k}(z) \otimes g_{k}(z) \mid 2 p \leqq k \leqq 4 p-1\right\}$, and let

$$
\Delta_{z}=\frac{1}{\sqrt{4 p}} \sum_{k=2 p}^{4 p-1} f_{k}(z) \otimes g_{k}(z) .
$$

Then $\left\|\Delta_{z}\right\|_{2}^{2}=\frac{1}{2}$ and $Q_{z}\left(\left(x_{i} \otimes y_{i}\right) \Gamma_{j}\right)=\Delta_{z}$ for each $(i, j) \in I(z)$.
Finally we estimate $\|\varphi(B) \Gamma\|_{2}$.

$$
\begin{aligned}
\varphi(B) \Gamma & =\sum_{i=1}^{n} \beta_{i} \sum_{j=1}^{t} \lambda_{j}\left(x_{i} \otimes y_{i}\right) \Gamma_{j} \\
& =\sum_{z \in H}\left(\sum_{(i, j) \in I(z)} \beta_{i} \lambda_{j} x_{i} \otimes y_{i} \Gamma_{j}\right) .
\end{aligned}
$$

Since $x_{i} \otimes y_{i} \Gamma_{j} \in K_{z}$ for each $(i, j) \in I(z)$,

$$
\begin{aligned}
\|\varphi(B) \Gamma\|_{2}^{2} & =\sum_{z \in H}\left\|\sum_{(i, j) \in I(z)} \beta_{i} \lambda_{j} x_{i} \otimes y_{i} \Gamma_{j}\right\|_{2}^{2} \\
& \geqq \sum_{z \in H}\left\|Q_{z}\left(\sum_{(i, j) \in I(z)} \beta_{i} \lambda_{j} x_{i} \otimes y_{i} \Gamma_{j}\right)\right\|_{2}^{2} \\
& =\sum_{z \in H}\| \|_{(i, j) \in I(z)} \beta_{i} \lambda_{j} \Delta_{z} \|_{2}^{2} \\
& =\sum_{z \in H}\left\|\mu_{z} \Delta_{z}\right\|_{2}^{2} \\
& =\frac{1}{2} \sum_{z \in H}\left|\mu_{z}\right|^{2} \\
& =\frac{1}{2}\|B \Lambda\|_{2}^{2}
\end{aligned}
$$

Thus

$$
\|B \Lambda\|_{2} \leqq \sqrt{2}\|\varphi(B) \Gamma\|_{2},
$$

and the lemma is proved.
The proof of Theorem 3 is now a triviality.
Proof of Theorem 3. As noted earlier, $U \otimes_{\alpha} U$ is simple. The kernel of φ is simple and \mathfrak{A} is irreducible. Thus the kernel of φ is the only nontrivial two-sided closed ideal of \mathfrak{A}.

Our final result is an example associated with the algebra \mathfrak{A}.
Example 5. \mathfrak{U} has a derivation which is not inner.
To construct this derivation we need an auxiliary operator on L^{2}. For each $w \in G$ define the real number β_{w} as follows. $\beta_{e}=1$. For $w \neq e$ there is a unique non-negative integer i such that $2^{i} \leqq|w|<2^{i+1}$, where $|w|$ is the length of w as previously defined. Define

$$
\beta_{w}= \begin{cases}\frac{|w|}{2^{i}}-1 & \text { if } i \text { is even } \\ 2-\frac{|w|}{2^{i}} & \text { if } i \text { is odd }\end{cases}
$$

The numbers β_{w} have these properties.
(1) $0 \leqq \beta_{w} \leqq 1$ for all $w \in G$.
(2) $\beta_{w}=0$ if $|w|=2^{i}$ for some even i.
(3) $\beta_{w}=1$ if $|w|=2^{i}$ for some odd i.
(4) $\left|\beta_{w}-\beta_{v}\right| \leqq \frac{1}{2^{i}}$ if $|w|,|v| \geqq 2^{i}$ and $||w|-|v||=1$.

Now define the linear operator B on L^{2} by

$$
B\left(\sum_{w \in G} \lambda_{w} w\right)=\sum_{w \in G} \lambda_{w} \beta_{w} w .
$$

Clearly B is a bounded operator on L^{2} with $\|B\|=1$, and $B^{*}=B$. To complete the construction we need two key facts about B which we present as lemmas.

Lemma 6. $B \notin \mathfrak{A}$.
Proof. Let $A=\sum_{i=1}^{n} \alpha_{i} L_{x_{i}} R_{y_{i}}$. We may presume without loss of generality that the pairs $\left(x_{i}, y_{i}\right)$ are distinct and that $x_{1}=y_{1}=e$ (with α_{1} possibly 0). We shall show that $\|A-B\| \geqq \frac{1}{2}$, thus establishing that $B \notin \mathfrak{X}$.

Let $2 \leqq i \leqq n$. If either x_{i} or y_{i} is e then the other is not e and clearly $x_{i} w y_{i}^{-1} \neq w$ for every $w \in G$. Suppose $x_{i}, y_{i} \neq e$. Then there are at most two words w of any given length such that $x_{i} w y_{i}^{-1}=w$. To see this, suppose that $x_{i} w y_{i}^{-1}=w$ and $x_{i} v y_{i}^{-1}=v$. Then $x_{i}=w y_{i} w^{-1}=v y_{i} v^{-1}$. Then $v^{-1} w$ commutes with y_{i}. If $H=\left\{z \in G \mid z y_{i}=y_{i} z\right\}$ then $v^{-1} w \in H$ so $v H=w H$. Conversely if $x_{i} w y_{i}^{-1}=w$ and $v H=w H$ then $x_{i} v y_{i}^{-1}=v$. Thus $\left\{w \in G \mid x_{i} w y_{i}^{-1}=w\right\}$ is either empty or is a coset of the abelian subgroup H, and every such coset contains
at most two words of any given length.
For each $t \geqq 1$ there are $4 \cdot 3^{t-1}$ words of length t. For all but at most $2 n$ words w of length $t, x_{i} w y_{i}^{-1} \neq w$ for all $2 \leqq i \leqq n$. Thus we can choose words v, w such that $\beta_{v}=0, \beta_{w}=1$ and $x_{i} v y_{i}^{-1} \neq v, x_{i} w y_{i}^{-1} \neq w$ for all $2 \leqq i \leqq n$. Then

$$
\|A-B\| \geqq\|(A-B) v\|_{2} \geqq\left|\alpha_{1}-\beta_{v}\right|=\left|\alpha_{1}\right|
$$

and

$$
\|A-B\| \geqq\|(A-B) w\|_{2} \geqq\left|\alpha_{1}-\beta_{w}\right|=\left|\alpha_{1}-1\right| .
$$

Thus $\|A-B\| \geqq \frac{1}{2}$.
Lemma 7. $B A-A B \in \mathcal{C}$ for all $A \in \mathfrak{X}$.
Proof. Recall that a and b denote the free generators of G. Let $D=$ $L_{a-1} B L_{a}-B$. Recall that S_{k} denotes the finite dimensional subspace of L^{2} spanned by $\left\{z \in G||z|<k\}\right.$, and T_{k} is its orthogonal complement. Let P_{k} denote the orthogonal projection of L^{2} onto S_{k}. Then $D P_{k} \in \mathcal{C}$.

Let i be a positive integer and $k \geqq 2^{i}+1$. Note that $D-D P_{k}=0$ on S_{k} and $D-D P_{k}=D$ on T_{k}. Thus

$$
\left\|D-D P_{k}\right\|=\sup \left\{\|D \Lambda\|_{2} \mid \Lambda \in T_{k},\|\Lambda\|_{2}=1\right\}
$$

For each $w \in T_{k}, D w=L_{a-1} B L_{a} w-B w=\left(\beta_{a w}-\beta_{w}\right) w$. Moreover $|w|,|a w| \geqq 2^{i}$ and $||w|-|a w||=1$. Thus $\left|\beta_{a w}-\beta_{w}\right| \leqq 1 / 2^{i}$. Then for each $\Lambda \in T_{k}$,

$$
\|D \Lambda\|_{2} \leqq\|\Lambda\|_{2} / 2^{i},
$$

so

$$
\left\|D-D P_{k}\right\| \leqq 1 / 2^{i}
$$

Thus $D \in \mathcal{C}$. Then

$$
B L_{a}-L_{a} B=L_{a} D \in \mathcal{C}
$$

and

$$
B L_{a-1}-L_{a-1} B=-D L_{a-1} \in \mathcal{C}
$$

Proceeding in similar fashion we can show that $B L_{x \varepsilon}-L_{x \varepsilon} B$ and $B R_{x \varepsilon}-R_{x \varepsilon} B \in \mathcal{C}$ for $x=a, b$ and $\varepsilon=1,-1$. For any $u, v \in G$,

$$
B L_{u v}-L_{u v} B=\left(B L_{u}-L_{u} B\right) L_{v}+L_{u}\left(B L_{v}-L_{v} B\right) .
$$

Thus by the obvious induction on $|w|, B L_{w}-L_{w} B \in \mathcal{C}$ for every $w \in G$. Similarly $B R_{w}-R_{w} B \in \mathcal{C}$ for all w. Finally

$$
B L_{u} R_{v}-L_{u} R_{v} B=\left(B L_{u}-L_{u} B\right) R_{v}+L_{u}\left(B R_{v}-R_{v} B\right) .
$$

Thus $B L_{u} R_{v}-L_{u} R_{v} B \in \mathcal{C}$ for every $u, v \in G$. Then

$$
B\left(\sum_{i=1}^{n} \alpha_{i} L_{u_{i}} R_{v_{i}}\right)-\left(\sum_{i=1}^{n} \alpha_{i} L_{u_{i}} R_{v_{i}}\right) B
$$

is in \mathcal{C} for all $u_{i}, v_{i} \in G$. By continuity, $B A-A B$ is in \mathcal{C} for all $A \in \mathfrak{A}$.

Proof of Example 5. Define $\varphi: \mathfrak{A} \rightarrow \mathcal{C}$ by

$$
\varphi(A)=B A-A B
$$

φ is clearly a derivation and $\varphi(\mathfrak{A}) \subset \mathcal{C}$ by Lemma 7. Suppose φ were an inner derivation. Then there would be a $C \in \mathfrak{H}$ such that $\varphi(A)=C A-A C$ for all $A \in \mathfrak{A}$. This would imply that $B-C$ commutes with each $A \in \mathfrak{A}$. Since \mathfrak{A} is irreducible, $B-C$ would be a multiple of the identity, which is in \mathfrak{A}, and therefore $B \in \mathfrak{A}$, contradicting Lemma 6. Thus φ is not inner.

References

[1] C.A. Akemann and P.A. Ostrand, Computing norms in group C^{*}-algebras, to appear in Amer. J. Math.
[2] J. Dixmier, Les C^{*}-algebres et leurs representations, Gauthier-Villars, Paris, 1964.
[3] J. M. G. Fell, Weak containment and induced representations of groups, Canad. J. Math., 14 (1962), 237-268.
[4] I. N. Herstein, Non-commutative Rings, John Wiley, New York, 1968.
[5] B. Johnson and S. Parrott, Operators commuting with a von Neuman algebra modulo the set of compact operators, J. Functional Analysis, 11 (1972), 39-61.
[6] G. Mackey, The Theory of Group Representations, University of Chicago Notes, 1955.
[7] F. J. Murray and J. von Neuman, On rings of operators IV, Ann. of Math., 44 (1943), 716-808.
[8] R.T. Powers, Simplicity of the $C *$-algebra associated with the free group on two generators, preprint.
[9] M. Takesaki, On the cross-norm of the direct product of $C *$-algebras, Tohoku Math. J., 16 (1964), 111-122.
[10] J. Tomiyama, Tensor products and projections of norm 1 in von Neumann algebras, Copenhagen University Lecture Notes, 1970.

Charles A. Akemann
 Department of Mathematics University of California Santa Barbara 93106
 U.S. A.

Phillip A. Ostrand
Department of Mathematics University of California Santa Barbara 93106 U.S. A.

[^0]: \dagger Partially supported by National Science Foundation grant GP-19101.

