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Let $G$ be the free group on two generators, and $L^{2}$ the Hilbert space of
square summable complex valued functions on $G$ . Let $\mathcal{L}$ and $\mathcal{R}$ be the $C^{*}-$

algebras generated respectively by the left and right regular representations
of $G$ on $L^{2}$ and let $\mathfrak{U}$ be the $c*$ -algebra generated by $\mathcal{L}$ and $\mathcal{R}$ jointly. In
[1] the authors provided a formula for computing the norm of certain opera-
tors in $X$ . In this paper the results of [1] are applied to the study of $\mathfrak{U}$ ,
which may be regarded as a $C^{*}$ -tensor product. (See the remark preceding
Lemma 4.) We prove that $\mathfrak{U}$ contains the compact operators $C$ in $L^{2}$ (Theorem
1) as its only closed two-sided ideal (Theorem 3), and that there is a derivation
of $\mathfrak{U}$ into $C$ which is not inner (Example 5). This investigation was suggested
by Jun Tomiyama and Masamichi Takesaki at the Japan-U. S. Seminar on $C^{*}-$

Algebras and Applications to Physics in Kyoto in May of 1974. Some related
papers are listed in the references.

\S 1. Notation and Terminology.

Let $S$ be a non-empty set. By $L^{2}(S)$ we mean the vector space of square
summable complex valued functions on $S$ . We prefer, however, to write the
elements of $L^{2}(S)$ as (generally) infinite linear combinations, identifying the
complex valued function $f$ on $S$ with the vector $\sum_{w\in S}f(w)w$ . Thus we have

$L^{2}(S)=$ $\{ \sum_{w\in S}\lambda_{w}w|\sum_{w\in S}|\lambda_{w}|^{2}<\infty\}$ .

$L^{2}(S)$ is a Hilbert space with inner product

$(\sum_{w\in S}\lambda_{w}w,\sum_{w\in S}\mu_{w}w)=\sum_{w\in S}\lambda_{w}\overline{\mu}_{w}$ ,

and resulting $l_{2}$ norm
$\Vert\sum_{w\in S}\lambda_{w}w\Vert_{2}=(\sum_{w\in S}|\lambda_{w}|^{2})^{\frac{1}{2}}$ .

By $L(S)$ we mean the subspace of $L^{2}(S)$ spanned by $S;i.e.,$ $L(S)$ consists of

\dagger Partially supported by National Science Foundation grant GP-19101.



590 C. A. AKEMANN and P. A. OSTRAND

all finite linear combinations $\sum_{i=1}^{n}\alpha_{i}x_{i}$ with $x_{i}$ in S.

Let $G$ be the free group on two generators. For simplicity of reference
we will abbreviate $L^{2}(G)$ to $L^{2}$ and $L(G)$ to L. $G$ acts on $L^{2}$ from either the
left or right. For $x$ in $G$ and $\Lambda=\sum_{w\in G}\lambda_{w}w$ in $L^{2}$ , let

$L_{x}(\Lambda)=\sum_{w\in G}\lambda_{w}xw$ , $R_{x}(\Lambda)=\sum_{w\in G}\lambda_{w}wx^{-1}$

These are the left and right regular representations of $G$ on $L^{2}$ . Each extends

by linearity to an action of $L$ on $L^{2}$ . For $A=\sum_{i=1}^{n}\alpha_{i}x_{i}$ in $L$ ,

$L_{A}=\sum_{i=1}^{n}\alpha_{i}L_{x_{i}}$ , $R_{A}=\sum_{i=1}^{n}\alpha_{i}R_{x_{i}}$ .

For each $A=\sum_{i=1}^{n}\alpha_{i}x_{i}$ in $L,$ $L_{A}$ and $R_{A}$ are bounded operators on $L^{2}$ , with

operator norm satisfying

$\Vert L_{A}\Vert=\Vert R_{A}\Vert\leqq\sum_{i=1}^{n}|\alpha_{i}|$ .

$\mathcal{L}$ and $\mathcal{R}$ denote the completions in operator norm of $\{L_{A}|A\in L\}$ and $\{R_{A}|A\in L\}$

respectively, and $\mathfrak{A}$ is the closed subalgebra of $\mathcal{B}$ , the bounded operators on
$L^{2}$ , generated by $\mathcal{L}\cup \mathcal{R}$ . $\mathfrak{A}$ is the principal object of study in this paper.

In $L^{2}$ we have a convolution operation. For $A=\sum_{xeG}\alpha_{x}x$ and $\Lambda=\sum_{=uG}\lambda_{u}u$ ,

$A\Lambda=\sum_{weG}(\sum_{x\in G}\alpha_{x}\lambda_{x^{-1}w})w$ .
$ A\Lambda$ is always well defined in the sense that each coefficient is finite (in fact
$\leqq\Vert A\Vert_{2}\Vert\Lambda\Vert_{2}$ by the Schwarz inequality). But $ A\Lambda$ is not generally in $L^{2}$ . When
$A\Lambda\in L^{2}$ for every $\Lambda\in L^{2}$ we say that $A$ is a convolver of $L^{2}$ .

Clearly each $A\in L$ is a convolver and

$ L_{A}(\Lambda)=A\Lambda$

for each $\Lambda$ in $L^{2}$ . More generally, if $\varphi\in X$ , then $A=\varphi(e)$ is a convolver ( $e$ is
the identity of $G$), and

$\varphi(\Lambda)=A\Lambda$

for each $\Lambda$ in $L^{2}$ . This follows from [7, p. 788-9] but may easily be verified
directly. Let

$\mathcal{U}=\{\varphi(e)|\varphi\in \mathcal{L}\}$ .
For each $A\in \mathcal{U}$ let $L_{A}$ be the linear operator given by

$ L_{A}(\Lambda)=A\Lambda$ .
For $A\in \mathcal{U}$ define the operator norm of $A$ by
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$\Vert A\Vert=\Vert L_{A}\Vert$ .
Then

$X=\{L_{A}|A\in \mathcal{U}\}$ ,

and the mapping $A\rightarrow L_{A}$ is an isometry of $\mathcal{U}$ (with operator norm) onto $\mathcal{L}$ .
$\mathcal{U}$ represents $\mathcal{R}$ inasimilar manner. ForA $=\sum_{x\in G}\alpha_{x}xinL^{2}$ , let $\hat{A}=\sum_{x^{\prime}\subset G}\alpha_{x}x^{-1}$ .

For $A\in \mathcal{U}$ define the operator $R_{A}$ on $L^{2}$ by

$R_{A}(\Lambda)=\Lambda\hat{A}$ .
Then

$\mathcal{R}=\{R_{A}|A\in \mathcal{U}\}$

and the mapping $A\rightarrow R_{A}$ is an isometry of $\mathcal{U}$ onto $\mathcal{R}$ . (For $\theta\in \mathcal{R},$ $\theta=R_{A}$ where
$ A=\theta(e).)\wedge$

Thus in a sense $\mathcal{U}$ is an abstract formulation of either regular representa-
tion of $G$ on $L^{2}$ . It also provides a convenient way to describe the algebra $\mathfrak{A}$ ,
namely, as the closure in $\mathcal{B}$ of

$\{ \sum_{l=1}^{n}L_{A_{i}}R_{B_{i}}|A_{i}, B_{i}\in \mathcal{U}\}$ .

Tensor product spaces play an important role in our study of $\mathfrak{U}$ . Let
$L\otimes L$ denote the usual algebraic tensor product of $L$ with itself. Each element
of $L\otimes L$ can be expressed uniquely in the form

$\sum_{i=1}^{n}\lambda_{i}x_{l}\otimes y_{i}$

with $x_{i},$ $y_{i}\in G$ . In particular for $A=\sum_{i=1}^{n}\alpha_{i}x_{i}$ and $B=\sum_{j=1}^{t}\beta_{j}y_{j}$ in $L$ ,

$A\otimes B=\sum_{i=1}^{n}\sum_{f=1}^{t}\alpha_{i}\beta_{j}x_{i}\otimes y_{j}$ .

In $L\otimes L$ we have the usual $l_{2}$ norm. For $\Lambda=\sum_{i=1}^{n}\lambda_{i}x_{i}\otimes y_{i}$ ,

$\Vert\Lambda\Vert_{2}=(\sum_{t=1}^{n}|\lambda_{i}|^{2})^{\frac{1}{2}}$ .

We note that $\Vert A\otimes B\Vert_{2}=\Vert A\Vert_{2}\Vert B\Vert_{2}$ for each $A,$ $B\in L$ .
$L^{2}\otimes L^{2}$ denotes the completion of $L\otimes L$ in the $l_{2}$ norm. This may be

formally represented

$L^{2}\otimes L^{2}=$
$\{ \sum_{x,y\in G}\lambda_{x,y}x\otimes y|\sum_{x,y\in G}|\lambda_{x,y}|^{2}<\infty\}$ ,

with
$\Vert\sum_{x.y\in G}\lambda_{x,y}x\otimes y\Vert_{2}=(\sum_{x,y\in G}|\lambda_{x,y}|^{2})^{\frac{1}{2}}$ .
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$L\otimes L$ acts on $L^{2}\otimes L^{2}$ from the left. For $u,$ $v\in G$ , and $\Lambda=\sum_{x.y\in G}\lambda_{x,y}x\otimes y$ in
$L^{2}\otimes L^{2}$ ,

$(u\otimes v)\Lambda=\sum_{x.y\in G}\lambda_{x,y}(ux)\otimes(vy)$ .

This leads to the usual operator norm on $L\otimes L$ which we call the $\alpha$ -norm.
$\Vert A\Vert_{\alpha}=\sup\{\Vert A\Lambda\Vert_{2}|\Lambda\in L^{2}\otimes L^{2}, \Vert\Lambda\Vert_{2}=1\}$ .

This is a cross-norm on $L\otimes L$ , meaning that

$|1A\otimes B\Vert_{\alpha}\leqq\Vert A\Vert\Vert B\Vert$

for each $A,$ $B\in L$ . (See [9, p. 111].) Thus we may extend by continuity to an
action of $\mathcal{U}\otimes \mathcal{U}$ on $L^{2}\otimes L^{2}$ . ( $\mathcal{U}\otimes \mathcal{U}$ is the algebraic tensor product of $\mathcal{U}$ with
itself.) $\mathcal{U}\otimes_{a}\mathcal{U}$ denotes the closure of $\mathcal{U}\otimes \mathcal{U}$ in the algebra of all bounded
operators on $L^{2}\otimes L^{2}$ .

We are now prepared to prove some theorems.

\S 2. Results.

Recall that $C$ denotes the algebra of compact operators on $L^{2}$ .
THEOREM 1. $C\subset \mathfrak{U}$ .
To prove Theorem 1 it is sufficient to show that $\mathfrak{A}$ is irreducible and that

$C\cap \mathfrak{A}\neq\{0\}$ . (See [2, 4.1.10].) The irreducibility of $\mathfrak{A}$ is a consequence of [7,

pp. 788-9]. To complete the proof we will show that $\mathfrak{A}$ contains the orthogonal
projection $P$ of $L^{2}$ onto the one-dimensional subspace of $L^{2}$ spanned by $e$ , the
identity of $G$ . To that end fix an integer $n\geqq 3$ and let $X$ be a free subset of
$G$ of cardinality $n$ (meaning that $X$ freely generates a subgroup of $G$). Define
$A\in \mathfrak{U}$ by

$ A=\frac{1}{2}\Sigma$
$\Sigma L_{x^{-1}y}R_{x^{-1}y}$ .

$nx\in Xy\in X$

We shall show $\Vert A-P\Vert<4/n$ . Since $n\geqq 3$ is arbitrary, it follows that $P\in \mathfrak{A}$ .
The short proof of the following lemma was suggested to us by Marek Borejko.
We Prst establish some notation.

Let $D=\{x^{-1}y:x, y\in X\}$ and let $S$ be the subgroup of $G$ generated by $D$ .
Let $T$ be an abelian subgroup of $S$ and let $S/T$ denote the left coset space.
Let $\phi$ be the representation of $S$ on $L^{2}(S/T)$ defined by left multiplication and
extend $\phi$ to $L(S)$ . Let $B=\sum_{x\in X}\sum_{y\in X}x^{-1}y$ and $\overline{B}=\phi(B)$ .

LEMMA 2. $\Vert\overline{B}\Vert\leqq 4(n-1)$ .
PROOF OF LEMMA 2. Since $T$ is abelian, the trivial representation on $T$ is

weakly contained (in the sense of [3]) in the left regular representation of $T$ .
By Theorem 4.2 of [3] and [6, p. 121] $\phi$ is weakly contained in the left
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regular representation of $S$ . Thus $\Vert\overline{B}\Vert\leqq\Vert\sum_{x\in X}\sum_{y\in X}L_{x^{-1}y}\Vert=4(n-1)$ , where the
last equality is Theorem IV. $J$ of [1].

PROOF OF THEROEM 1. For each word $w$ of $G$ let $G_{w}=\{zwz^{-1}|z\in S\}$ and
let $H_{w}=L(G_{w})$ . It is apparent that $L$ is the direct sum of the distinct ortho-
gonal subspaces $H_{w}$ , each of which is invariant under $A-P$. Thus it suffices
to show that $A-P$ restricted to $H_{w}$ is of norm $<4\sqrt{3}/n$ for each $w\in G$ . Since
$(A-P)(e)=0$ we need only consider $w\neq e$ , in which case $A-P=A$ on $H_{w}$ .

Fix $w\neq e$ in $G$ , and let $T=\{z\in S|zwz^{-1}=w\}$ . In any free group elements
which commute with a given non-trivial element also commute with each other.
Thus $T$ is an abelian subgroup of $S$ . For each $y,$ $z\in S,$ ywy‘ $=zwz^{-1}$ if and
only if $yT=zT$. Thus the mapping $\theta:H_{w}\rightarrow L(S/T)$ defined by $\theta(zwz^{-1})=zT$

is an isometry. Moreover,

$ A|H_{w}=\frac{1}{n^{2}}\theta^{-1}\overline{B}\theta$ .
Thus by Lemma 2 we have

$\Vert A|H_{w}\Vert=\frac{1}{n^{2}}\Vert\overline{B}\Vert<4/n$ ,

and Theorem 1 is proved.
THEOREM 3. $C$ is the only ProPer non-zero closed two-sided ideal in $\mathfrak{U}$ .
We first need some notation and a lemma.
Define a linear mapping $\theta$ : $\mathcal{U}\otimes \mathcal{U}\rightarrow \mathfrak{A}$ by

$\theta(\sum_{t=1}^{n}A_{i}\otimes B_{i})=\sum_{i=1}^{n}L_{A_{i}}R_{B_{i}}$ .
It is clear that

$\theta((A_{1}+A_{2})\otimes B-A_{1}\otimes B-A_{2}\otimes B)$

$=\theta(A\otimes(B_{1}+B_{2})-A\otimes B_{1}-A\otimes B_{2})$

$=\theta(\lambda(A\otimes B)-(\lambda A)\otimes B)$

$=\theta(\lambda(A\otimes B)-A\otimes(\lambda B))$

$=0$

for all appropriate $A,$ $A_{1},$ $A_{2},$ $B,$ $B_{1},$ $B_{2},$ $\lambda$ . Thus $\theta$ is well defined. Moreover
$\mathcal{U}$ is central simple [8] and therefore $\mathcal{U}\otimes \mathcal{U}$ is simple[4, p. 91]. Then $\theta$ is
an isomorphism. Thus $\theta$ induces a norm on $\mathcal{U}\otimes \mathcal{U}$ given by

$\Vert\sum_{i=1}^{n}A_{i}\otimes B_{i}\Vert=\Vert\sum_{i=1}^{n}L_{A_{i}}R_{B_{i}}\Vert$ .

This is a $c*$ -cross norm on $\mathcal{U}\otimes \mathcal{U}$ . But the $\alpha$ -norm on $\mathcal{U}\otimes \mathcal{U}$ is the minimal
$C*$ -cross norm on $\mathcal{U}\otimes \mathcal{U}$ [ $9$ , p. 116]. Thus
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$\Vert\sum_{i=1}^{n}A_{i}\otimes B_{i}\Vert_{\alpha}\leqq\Vert\theta(\sum_{i=1}^{n}A_{i}\otimes B_{i})\Vert$ .

Let $\varphi$ be the inverse mapping of $\theta$ . Then $\varphi$ is a $*$ -isomorphism of a dense
$*$ -subalgebra of $\mathfrak{U}$ onto a dense $*$ -subalgebra of $\mathcal{U}\otimes_{\alpha}\mathcal{U}$ , and $\Vert\varphi\Vert=1$ . By [2,

p. 18] $\varphi$ extends to a $*$ -homomorphism of $\mathfrak{U}$ onto $\mathcal{U}\otimes_{a}\mathcal{U}$ .
REMARK. Via the isomorphism $\theta,$ $\mathfrak{U}$ can be regarded as a $C^{*}$ -tensor pro-

duct of $\mathcal{U}$ with itself; $i.e.,$ $\mathcal{U}$ is the completion of $\mathcal{U}\otimes \mathcal{U}$ with respect to a
$c*$ -cross norm on $\mathcal{U}\otimes \mathcal{U}$ .

We now come to the heart of the argument.
LEMMA 4. The kernel of $\varphi$ is $C$.
PROOF OF LEMMA 4. $C$ has no non-trivial closed ideals [2, 4.1] so either

$\varphi(C)=0$ or $\varphi$ is 1-1 on C. $\mathcal{U}$ is simple and therefore $\mathcal{U}\otimes_{\alpha}\mathcal{U}$ is simple [9, $p$ .
117]. Since $\varphi(C)$ is an ideal of $\mathcal{U}\otimes_{\alpha}\mathcal{U}$ and contains no unit, $\varphi(C)=0$ .

Conversely, fix $A$ in the kernel of $\varphi$ and $\epsilon>0$ . There is a $B=\sum_{i=1}^{n}\beta_{i}L_{x_{i}}R_{y_{i}}$

in $\mathfrak{U}$ with $\Vert A-B\Vert<\epsilon$ . Since $\varphi(A)=0$ and $\Vert\varphi\Vert=1$ , we have $\Vert\varphi(B)\Vert_{\alpha}<\epsilon$ . To
complete the proof we will find $C\in C$ such that $\Vert B-C\Vert<\sqrt{2\Vert}\varphi(B)\Vert_{\alpha}$ . Because
$C$ is closed and $\epsilon>0$ is arbitrary, this implies that $A\in C$.

Before proceeding we must introduce some special notation associated with
$G$ as the free group on two generators, say $a$ and $b$ . Each element $w\neq e$ in
$G$ can be written uniquely in the form $w=w_{1}^{e_{1}}w_{2}^{e_{2}}\cdots w_{t}^{e_{t}}$ where $w_{1},$ $\cdots$ , $w_{t}\in\{a, b\}$ ,
and $\epsilon_{1},$

$\cdots$ , $\epsilon_{t}\in\{-1,1\}$ , and for each $1\leqq i<t$ either $w_{i}\neq w_{i+1}$ or $\epsilon_{i}=\epsilon_{i+1}$ . We
call any such product a reduced product. If $w=w_{1}^{e_{1}}\cdots w_{t}^{e_{t}}$ is a reduced product
then $t$ is the length of $w$ , denoted $|w|$ . In particular $|e|=0$ . For each integer
$i\geqq 1$ , let

$S_{i}=\{w\in G||w|<i\}$ and $T_{i}=\{w\in G||w|\geqq i\}$ .
Let $w=w_{1}^{e_{1}}\cdots w_{t}^{\epsilon_{t}}$ be a reduced product. For each $0\leqq i\leqq t$ let

$f_{i}(w)=w_{1}^{e_{1}}w_{2}^{e_{2}}\cdots w_{i}^{e_{i}}$ $(f_{0}(w)=e)$

and
$g_{i}(w)=w^{-1}f_{i}(w)=w_{t}^{-e_{t}}w_{t-1}^{-e_{t-1}}\cdots w_{i+1}^{-\epsilon_{i+1}}$ $(g_{t}(w)=e)$ .

We note that $f_{i},$ $g_{i}$ : $T_{i}\rightarrow G$ and for each $w\in T_{i}$ we have

$f_{i}(w)g_{i}(w)^{-1}=w$ .
Returning now to the problem at hand, we must find a $C\in C$ such that

$\Vert B-C\Vert<\sqrt{2}\Vert\varphi(B)\Vert_{a}$ , where $B=\sum_{i=1}^{n}\beta_{i}L_{x_{i}}R_{y_{i}}$ . Let

$P=\max\{|x_{i}|, |y_{i}||1\leqq i\leqq n\}$ .

Let $P$ be the orthogonal projection of $L^{2}$ onto $L^{2}(S_{6p})$ , and let $C=BP$. Then
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$C$ is certainly in $C$. Note that $B-C=0$ on $L^{2}(S_{6p})$ and $B-C=B$ on $L^{2}(T_{6p})$ .
Thus

$\Vert B-C\Vert=\sup\{\Vert B\Lambda\Vert_{2}|\Lambda\in L(T_{6p}), \Vert\Lambda\Vert_{2}=1\}$ .

Now fix $\Lambda=\sum_{l=1}^{n}\lambda_{i}w_{i}$ in $L(T_{6p})$ with $\Vert\Lambda\Vert_{2}=1$ . We may presume that the $w_{i}$

are distinct. For each $z\in G$ , let

$I(z)=\{(i, ])|1\leqq i\leqq n, 1\leqq j\leqq t, x_{i}w_{j}y_{i}^{-1}=z\}$ ,

and let $H=\{z\in G|I(z)\neq\emptyset\}$ . $H$ is finite. For each $z\in H$ let

$\mu_{z}=\sum_{(i,j)\in I(z)}\beta_{i}\lambda_{j}$ .
Then

$B\Lambda=\sum_{l=1}^{n}\beta_{i}\sum_{=j1}^{t}\lambda_{j}x_{i}w_{f}y_{i}^{-1}=\sum_{z\in H}\mu_{z^{Z}}$ ,

so
$\Vert B\Lambda\Vert_{2}=(\sum_{z\in G}|\mu_{z}|^{2})^{\frac{1}{2}}$ .

We will now construct a $\Gamma\in L\otimes L$ with $\Vert\Gamma\Vert_{2}=1$ such that $\Vert B\Lambda\Vert_{2}\leqq\sqrt{2}\Vert\varphi(B)\Gamma\Vert_{2}$ .
It will then follow that $\Vert B-C\Vert\leqq\sqrt{2}\Vert\varphi(B)\Vert_{\alpha}$ as desired.

For each $z\in G$ let $K_{z}$ be the subspace of $L\otimes L$ spanned by $\{u\otimes v|uv^{-1}=z\}$ .
Note that the $K_{z}$ constitute a decomposition of $L\otimes L$ into orthogonal subspaces.

For each $1\leqq i\leqq t$ define $\Gamma_{j}\in K_{w_{j}}$ by

$\Gamma_{j}=\frac{1}{\sqrt{4p}}\sum_{k=p}^{5p-1}f_{k}(w_{j})\otimes g_{k}(w_{j})$

and define $\Gamma\in L\otimes L$ by

$\Gamma=\sum_{j=1}^{t}\lambda_{j}\Gamma_{f}$ .

Clearly $\Vert\Gamma_{j}\Vert_{2}=1$ for each $j$ . Since the subspaces $K_{w_{j}}$ are orthogonal, $\Vert\Gamma\Vert_{2}$

$=(\sum_{j=1}^{t}|\lambda_{j}|^{2})^{\frac{1}{2}}=\Vert\Lambda\Vert_{2}=1$ .
Let $z\in H$ and $(i, j)\in I(z)$ . Then

$(x_{i}\otimes y_{i})\Gamma_{j}=\frac{1}{\sqrt{4p}}\sum_{k=p}^{5p-1}(x_{i}f_{k}(w_{f}))\otimes(y_{i}g_{k}(w_{j}))$ .

Note that $x_{i}w_{j}y_{i}^{-1}=z$ and $|w_{j}|\geqq 6l$ . Thus for each $p\leqq k\leqq 5p-1,$ $x_{i}f_{k}(w_{j})$ is
an “initial portion” of $z$ whose length depends only on the amount of cancella-
tion in the product $x_{i}w_{j}$ when $x_{i}$ and $w_{j}$ are written as reduced products.
This is independent of $k$ for all $k\geqq p$ . Thus there exists an integer $r(i, j)$

with $|r(i, $]) $|\leqq p$ such that
$x_{i}f_{k}(w_{j})=f_{k+r(i,j)}(z)$
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for all $p\leqq k\leqq 5p-1$ . Also
$y_{i}g_{k}(w_{j})=g_{k+r(i,j)}(z)$

for each $k$ , since
$y_{i}g_{k}(w_{j})=y_{i}w_{j}^{-1}f_{k}(w_{f})$

$=(y_{i}w_{j}^{-1}x_{i}^{-1})(x_{i}f_{k}(w_{j}))$

$=z^{-1}f_{k+r(i,j)}(z)$

$=g_{k+r(t,j)}(z)$ .
Then

$(x_{i}\otimes y_{i})\Gamma_{j}=\frac{1}{\sqrt{4p}}\sum_{k=p+\gamma(i.j)}^{\perp}f_{k}(z)\otimes g_{k}(z)5p-1(i,j)$

In particular we note that $(x_{i}\otimes y_{i})\Gamma_{j}\in K_{z}$ for each $(i, j)\in I(z)$ . Now let $Q_{z}$

denote the orthogonal projection of $K_{z}$ onto the subspace spanned by
$\{f_{k}(z)\otimes g_{k}(z)|2p\leqq k\leqq 4p-1\}$ , and let

$\Delta_{z}=\frac{1}{\sqrt{4p}}\sum_{k=2p}^{4p-1}f_{k}(z)\otimes g_{k}(z)$ .

Then $\Vert\Delta_{z}\Vert_{2}^{2}=\frac{1}{2}$ and $Q_{z}((x_{i}\otimes y_{i})\Gamma_{j})=\Delta_{z}$ for each $(i, j)\in I(z)$ .
Finally we estimate $\Vert\varphi(B)\Gamma\Vert_{2}$ .

$\varphi(B)\Gamma=\sum_{t=1}^{n}\beta_{i}\sum_{j=1}^{t}\lambda_{j}(x_{i}\otimes y_{i})\Gamma_{j}$

$=\Sigma$ $( \Sigma \beta_{i}\lambda_{j}x_{i}\otimes y_{i}\Gamma_{f})$ .
$z\in H(i.j)\in I(z)$

Since $x_{i}\otimes y_{i}\Gamma_{j}\in K_{z}$ for each $(i, j)\in I(z)$ ,

$\Vert\varphi(B)\Gamma\Vert_{2}^{2}=\sum\Vert$ $\Sigma$ $\beta_{i}\lambda_{j}x_{i}\otimes y_{i}\Gamma_{j}\Vert_{2}^{2}$

$z\in H(i,j)\in I(z)$

$\geqq\sum_{z\in H}\Vert Q_{z}(\sum_{(i.j)\in I(z)}\beta_{i}\lambda_{j}x_{i}\otimes y_{i}\Gamma_{j})\Vert_{2}^{2}$

$=\Sigma\Vert$ $\sum$ $\beta_{i}\lambda_{j}\Delta_{z}\Vert_{2}^{2}$

$z\in H(i.j)\in I(z)$

$=\sum_{z\in 1f}\Vert\mu_{z}\Delta_{z}\Vert_{2}^{2}$

$=\frac{1}{2}\sum_{z\in H}|\mu_{z}|^{2}$

$=\frac{1}{2}\Vert B\Lambda\Vert_{2}^{2}$ .
Thus

$\Vert B\Lambda\Vert_{2}\leqq\sqrt{2}$I $\varphi(B)\Gamma\Vert_{2}$ ,
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and the lemma is proved.
The proof of Theorem 3 is now a triviality.
PROOF OF THEOREM 3. As noted earlier, $\mathcal{U}\otimes_{\alpha}\mathcal{U}$ is simple. The kernel

of $\varphi$ is simple and $\mathfrak{U}$ is irreducible. Thus the kernel of $\varphi$ is the only non-
trivial two-sided closed ideal of $\mathfrak{U}$ .

Our final result is an example associated with the algebra $\mathfrak{U}$ .
EXAMPLE 5. $\mathfrak{U}$ has a derivation which is not inner.
To construct this derivation we need an auxiliary operator on $L^{2}$ . For

each $w\in G$ define the real number $\beta_{w}$ as follows. $\beta_{e}=1$ . For $w\neq e$ there is a
unique non-negative integer $i$ such that $2^{i}\leqq|w|<2^{i+1}$ , where $|w|$ is the length
of $w$ as previously defined. Define

$\beta_{w}=\left\{\begin{array}{ll}\frac{|w|}{2^{i}}-1 & if i is even\\2-\frac{|w|}{2^{i}} & if i is odd.\end{array}\right.$

The numbers $\beta_{w}$ have these properties.

(1) $0\leqq\beta_{w}\leqq 1$ for all $w\in G$ .
(2) $\beta_{w}=0$ if $|w|=2^{i}$ for some even $i$ .
(3) $\beta_{w}=1$ if $|w|=2^{i}$ for some odd $i$ .

(4) $|\beta_{w}-\beta_{v}|\leqq\frac{1}{2^{i}}$ if $|w|,$ $|v|\geqq 2^{i}$ and $||w|-|v||=1$ .

Now define the linear operator $B$ on $L^{2}$ by

$B(\sum_{w\in G}\lambda_{w}w)=\sum_{w\in G}\lambda_{w}\beta_{w}w$ .

Clearly $B$ is a bounded operator on $L^{2}$ with $\Vert B\Vert=1$ , and $B^{*}=B$ . To complete

the construction we need two key facts about $B$ which we present as lemmas.
LEMMA 6. $B\not\in \mathfrak{A}$ .
PROOF. Let $A=\sum_{i=1}^{n}\alpha_{i}L_{x_{i}}R_{y_{i}}$ . We may presume without loss of generality

that the pairs $(x_{i}, y_{i})$ are distinct and that $x_{1}=y_{1}=e$ (with $\alpha_{1}$ possibly $0$). We

shall show that $\Vert A-B\Vert\geqq\frac{1}{2}$ , thus establishing that $B\not\in \mathfrak{A}$ .
Let $2\leqq i\leqq n$ . If either $x_{t}$ or $y_{i}$ is $e$ then the other is not $e$ and clearly

$x_{t}wy_{i}^{-1}\neq w$ for every $w\in G$ . Suppose $x_{i},$ $y_{l}\neq e$ . Then there are at most two
words $w$ of any given length such that $x_{i}wy_{i}^{-1}=w$ . To see this, suppose that
$x_{i}wy_{i}^{-1}=w$ and $x_{i}vy_{i}^{-1}=v$ . Then $x_{i}=wy_{i}w^{-1}=vy_{i}v^{-1}$ . Then $v^{-1}w$ commutes
with $y_{i}$ . If $H=\{z\in G|zy_{i}=y_{i}z\}$ then $v^{-1}w\in H$ so $vH=wH$. Conversely if
$x_{i}wy_{i}^{-1}=w$ and $vH=wH$ then $x_{i}vy_{i}^{-1}=v$ . Thus $\{w\in G|x_{i}wy_{i}^{-1}=w\}$ is either
empty or is a coset of the abelian subgroup $H$, and every such coset contains
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at most two words of any given length.
For each $t\geqq 1$ there are 4 $\cdot$

$3^{t-1}$ words of length $t$. For all but at most $2n$

words $w$ of length $t,$ $x_{i}wy_{i}^{-1}\neq w$ for all $2\leqq i\leqq n$ . Thus we can choose words
$v,$ $w$ such that $\beta_{v}=0,$ $\beta_{w}=1$ and $x_{i}vy_{i}^{-1}\neq v,$ $x_{i}wy_{i}^{-1}\neq w$ for all $2\leqq i\leqq n$ . Then

$\Vert A-B\Vert\geqq\Vert(A-B)v\Vert_{2}\geqq|\alpha_{1}-\beta_{v}|=|\alpha_{1}|$

and
$\Vert A-B\Vert\geqq\Vert(A-B)w\Vert_{2}\geqq|\alpha_{1}-\beta_{w}|=|\alpha_{1}-1|$ .

Thus $\Vert A-B\Vert\geqq\frac{1}{2}$ .
LEMMA 7. $BA-AB\in C$ for all $A\in \mathfrak{U}$ .
PROOF. Recall that $a$ and $b$ denote the free generators of $G$ . Let $D=$

$L_{a^{-1}}BL_{a}-B$ . Recall that $S_{k}$ denotes the finite dimensional subspace of $L^{2}$

spanned by $\{z\in G||z|<k\}$ , and $T_{k}$ is its orthogonal complement. Let $P_{k}$

denote the orthogonal projection of $L^{2}$ onto $S_{k}$ . Then $DP_{k}\in C$.
Let $i$ be a positive integer and $k\geqq 2^{i}+1$ . Note that $D-DP_{k}=0$ on $S_{k}$ and

$D-DP_{k}=D$ on $T_{k}$ . Thus

$\Vert D-DP_{k}\Vert=\sup\{\Vert D\Lambda\Vert_{2}|\Lambda\in T_{k}, \Vert\Lambda\Vert_{2}=1\}$ .
For each $w\in T_{k},$ $Dw=L_{a^{-1}}BL_{a}w-Bw=(\beta_{aw}-\beta_{w})w$ . Moreover $|w|,$ $|aw|\geqq 2^{i}$

and $||w|-|aw||=1$ . Thus $|\beta_{aw}-\beta_{w}|\leqq 1/2^{i}$ . Then for each $\Lambda\in T_{k}$ ,

$|1D\Lambda\Vert_{2}\leqq\Vert\Lambda\Vert_{2}/2^{i}$

so
$\Vert D-DP_{k}\Vert\leqq 1/2^{i}$

Thus $D\in C$. Then
$BL_{a}-L_{a}B=L_{a}D\in C$

and
$BL_{a^{-1}}-L_{a^{-1}}B=-DL_{a^{-1}}\in C$ .

Proceeding in similar fashion we can show that $BL_{x^{\epsilon}}-L_{x^{\epsilon}}B$ and $BR_{x^{\epsilon}}-R_{x^{\epsilon}}B\in C$

for $x=a,$ $b$ and $\epsilon=1,$ $-1$ . For any $u,$ $v\in G$ ,

$BL_{uv}-L_{uv}B=(BL_{u}-L_{u}B)L_{v}+L_{u}(BL_{v}-L_{v}B)$ .
Thus by the obvious induction on $|w|,$ $BL_{w}-L_{w}B\in C$ for every $w\in G$ . Simi-
larly $BR_{w}-R_{w}B\in C$ for all $w$ . Finally

$BL_{u}R_{v}-L_{u}R_{v}B=(BL_{u}-L_{u}B)R_{v}+L_{u}(BR_{v}-R_{v}B)$ .
Thus $BL_{u}R_{v}-L_{u}R_{v}B\in C$ for every $u,$ $v\in G$ . Then

$B(\sum_{i=1}^{n}\alpha_{i}L_{u_{i}}R_{v_{i}})-(\sum_{i=1}^{n}\alpha_{i}L_{u_{i}}R_{v_{t}})B$

is in $C$ for all $u_{i},$ $v_{i}\in G$ . By continuity, $BA$–AB is in $C$ for all $A\in \mathfrak{A}$ .
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PROOF OF EXAMPLE 5. DePne $\varphi$ : $\mathfrak{U}\rightarrow C$ by

$\varphi(A)=BA-AB$ .
$\varphi$ is clearly a derivation and $\varphi(\mathfrak{U})\subset C$ by Lemma 7. Suppose $\varphi$ were an inner
derivation. Then there would be a $C\in \mathfrak{U}$ such that $\varphi(A)=CA-AC$ for all
$A\in \mathfrak{U}$ . This would imply that $B-C$ commutes with each $A\in \mathfrak{U}$ . Since $\mathfrak{U}$ is
irreducible, $B-C$ would be a multiple of the identity, which is in $\mathfrak{U}$ , and there-
fore $B\in \mathfrak{U}$ , contradicting Lemma 6. Thus $\varphi$ is not inner.
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