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Abstract
We consider analytically weak solutions to semilinear stochastic partial differential
equations with non-anticipating coefficients driven by a cylindrical Brownian motion.
The solutions are allowed to take values in Banach spaces. We show that weak unique-
ness is equivalent to weak joint uniqueness, and thereby generalize a theorem by A.S.
Cherny to an infinite dimensional setting. Our proof for the technical key step is dif-
ferent from Cherny’s and uses cylindrical martingale problems. As an application, we
deduce a dual version of the Yamada–Watanabe theorem, i.e. we show that strong
existence and weak uniqueness imply weak existence and strong uniqueness.

Keywords Stochastic partial differential equation · Martingale problem · Weak
solution · Mild solution · Dual Yamada–Watanabe theorem · Weak uniqueness · Joint
weak uniqueness · Pathwise uniqueness · Strong uniqueness
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1 Introduction

The classical Yamada–Watanabe theorem [23] for finite dimensional Brownian
stochastic differential equations (SDEs) states that weak existence and strong (i.e.
pathwise) uniqueness implies strong existence and weak uniqueness (i.e. uniqueness
in law). Jacod [9] lifted this result to SDEs driven by semimartingales and extended it
by showing that weak existence and strong uniqueness is equivalent to strong existence
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and weak joint uniqueness, i.e. uniqueness of the joint law of the solution process and
its random driver.

In view of Jacod’s theorem, it is an interesting and natural questionwhether the con-
verse direction in the classical Yamada–Watanabe theorem holds, i.e. whether strong
existence and weak uniqueness imply weak existence and strong uniqueness. This
implication is nowadays often called the dual Yamada–Watanabe theorem. For finite
dimensional Brownian SDEs, A.S. Cherny [1,2] answered this question affirmatively
by proving that weak uniqueness is equivalent to weak joint uniqueness.

More recently, Cherny’s result and the dual Yamada–Watanabe theorem have been
generalized to several infinite dimensional frameworks. In [15,21] the theorems were
established for mild solutions to semilinear stochastic partial differential equations
(SPDEs) and in [17,18] for the variational framework.

In this short article we prove Cherny’s result for analytically weak solutions to the
Banach space valued semilinear SPDE

d Xt = (AXt + μt (X))dt + σt (X)dWt , X0 = x0, (1.1)

where A is a densely defined operator and μ and σ are progressively measurable
processes on the path space of continuous functions. Furthermore, we deduce the dual
theorem for our framework.

To the best of our knowledge, these results are new and extend previous ones in
several directions. For instance, we study Banach space valued equations, while in
[21] only Hilbert space valued equations are considered, and allow non-anticipating
coefficients, which are not covered in [15]. In particular, as we work with analytically
weak solutions instead of mild solutions, we require no geometric assumptions on the
underlying Banach space and only minimal assumptions on the linearity A.

The basic strategy of our proof, which is borrowed from the finite dimensional case
and also used in [15,17,18]1, is to construct an infinite dimensional Brownian motion
V , independent of X , such that the noise W can be recovered from the solution process
X and V . The technical challenge in this argument is the proof for the independence
of X and V . Cherny’s proof for this used additional randomness, an enlargement of
filtration and a conditioning argument. In [15,17,18] these ideas have been adapted to
the respective infinite dimensional frameworks. Our approach is different and appears
to us more straightforward and less technical. Namely, we transfer ideas from [3] for
one dimensional SDEs with jumps to our continuous infinite dimensional setting and
establish the independence with arguments based on cylindrical martingale problems.
More precisely, we provide martingale characterizations for weak solutions to SPDEs
and infinite dimensional Brownian motion, then show that the quadratic variations of
the corresponding test martingales vanish and finally deduce the desired independence
with help of changes of measure. In comparison with Cherny’s method, we work
directly with X and V without introducing more randomness. Furthermore, once the
martingale characterizations are established, the arguments are quite elementary.

The paper is structured as follows: In Sect. 2 we introduce our setting and state
our main results: Theorem 2.3 and Corollary 2.5. At the end of Sect. 2 we shortly

1 The proof in [21] is indirect in the sense that it uses the method of the moving frame to transfer results
from [18] for infinite dimensional SDEs to SPDEs.
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comment on possible applications of our results. The proof of Theorem 2.3 is given
in Sect. 3. To make the article as self-contained as possible, we added Appendix A,
where we collect some technical facts needed in our proofs.

Let us end the introduction with a short comment on notation and terminology: We
mainly follow the standard references [4,13]. A detailed construction and standard
properties of the stochastic integral can also be found in [15].

2 The Setting andMain Results

Let U be a real (separable) Banach space with separable topological dual U∗ and let
H be a real separable Hilbert space. We denote the corresponding norms of U and H
by ‖ · ‖U and ‖ · ‖H and the scalar product of H by 〈·, ·〉H . As usual, the topological
dual of H is identified with H via the Riesz representation. Moreover, we write

〈y, y∗〉U � y∗(y), (y, y∗) ∈ U × U∗.

The space of bounded linear operators H → U is denoted by L � L(H , U ) and the
corresponding operator norm is denoted by ‖ · ‖L . We defineC � C(R+, U ) to be the
space of continuous functions R+ → U . Let X = (Xt )t≥0 be the coordinate process
on C, i.e. X(ω) = ω for ω ∈ C, and set C � σ(Xt , t ∈ R+) and C � (Ct )t≥0, where
Ct �

⋂
s>t σ(Xu, u ∈ [0, s]) for t ∈ R+.

Let us shortly comment on the driving noise of the SPDEs under consideration
and on stochastic integration. We call a family W � (βk)k∈N of independent one
dimensional standard Brownian motions a standard R

∞-Brownian motion. It is well-
known (see, e.g. [13,Chapter 2]) that any standardR∞-Brownianmotion canbe seen as
a trace class Brownian motion in another Hilbert space: Let J be a one-to-one Hilbert–
Schmidt embedding of H into another separable Hilbert space (H , ‖ ·‖H , 〈·, ·〉H ) and
let (ek)k∈N be an orthonormal basis of H . The formula

W �
∞∑

k=1

βk Jek

defines a trace class H -valued Brownian motion with covariance J J ∗. Conversely,
any trace class H -valued Brownian motion with covariance J J ∗ has such a series
representation. Let σ = (σt )t≥0 be an H -valued progressively measurable process
such that a.s.

∫ t

0
‖σs‖2H ds < ∞, t ∈ R+. (2.1)

Then, σ̃ � 〈σ, ·〉H defines a progressively measurable process with values in
L2(H ,R), the space ofHilbert–Schmidt operators H → R, and ‖σ̃‖L2(H ,R) = ‖σ‖H .
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The stochastic integral of σ̃ w.r.t. a standard R
∞-Brownian motion W is defined by

∫ ·

0
〈σs, dWs〉H ≡

∫ ·

0
σ̃sdWs �

∫ ·

0
σ̃s J−1dW s ≡

∫ ·

0
〈σs, J−1dW s〉H ,

where the stochastic integrals on the r.h.s. are defined in the classical manner (see,
e.g. [13, Chapter 2]). We stress that this definition of the stochastic integral is inde-
pendent of the choice of H and J . It is also well-known (see, e.g. [4, Section 4.1.2])
that a standard R

∞-Brownian motion can be seen as a cylindrical Brownian motion
{B(x) : x ∈ H} defined by the formula

B(x) �
∞∑

k=1

〈x, ek〉H βk, x ∈ H .

Conversely, any cylindrical Brownian motion has such a series representation. For
a simple H -valued process σ = ∑m

k=1 f k xk , where f k are bounded real-valued
progressively measurable processes and xk ∈ H , the stochastic integral of σ w.r.t. B
can be defined by

∫ ·

0
〈σs, d Bs〉H �

m∑

k=1

∫ ·

0
f k
s d Bs(xk),

where the stochastic integrals on the r.h.s. are classical stochastic integrals w.r.t. one
dimensional continuous local martingales. This definition extends to more general
integrands by approximation, see [14] or [15]. In particular, for any H -valued pro-
gressively measurable process σ = (σt )t≥0 satisfying (2.1) it holds that

∫ ·

0
〈σs, dWs〉H =

∫ ·

0
〈σs, J−1dW s〉H =

∫ ·

0
〈σs, d Bs〉H .

In the following we fix H and J and identify the law of W with the law of W seen
as a probability measure on the canonical space of continuous functions R+ → H
equipped with the σ -field generated by the corresponding coordinate process (which
is its Borel σ -field when endowed with the local uniform topology).

The input data for the SPDE (1.1) is the following:

• Two processes defined on the filtered space (C, C,C): An U -valued progressively
measurable process μ = (μt )t≥0 and an L-valued progressively measurable pro-
cess σ = (σt )t≥0, i.e. σh is progressively measurable for every h ∈ H .

• A set I ∈ C such that for all ω ∈ I the following holds:

∫ t

0
‖μs(ω)‖U ds +

∫ t

0
‖σs(ω)‖2Lds < ∞, t ∈ R+.

• A densely defined operator A : D(A) ⊆ U → U with adjoint A∗ : D(A∗) ⊆
U∗ → U∗ whose domain D(A∗) is sequentially weak∗ dense in U∗.
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• An initial value x0 ∈ U .

Remark 2.1 Often enough U is itself a Hilbert space, or at least a reflexive Banach
space, and A is the generator of a C0-semigroup on U . In these cases A and A∗ are
densely defined and in particular D(A∗) is sequentially weak∗ dense.

In the following definition we introduce analytically and probabilistically weak
solutions to the SPDE (1.1) and two weak uniqueness concepts.

Definition 2.2 (i) We call (B, W ) a driving system, if B = (�,F , (Ft )t≥0,P) is
a filtered probability space with right-continuous and complete filtration which
supports a standard R

∞-Brownian motion W .
(ii) We call (B, W , X) aweak solution to the SPDE (1.1), if (B, W ) is a driving system

and X is a continuous U -valued adapted process on B such that a.s. X ∈ I and
for all y∗ ∈ D(A∗) a.s.

〈X , y∗〉U = 〈x0, y∗〉U +
∫ ·

0
〈Xs, A∗y∗〉U ds

+
∫ ·

0
〈μs(X), y∗〉U ds +

∫ ·

0
〈σs(X)∗y∗, dWs〉H .

(2.2)

The process X is called a solution process on the driving system (B, W ).
(iii) We say that weak (joint) uniqueness holds for the SPDE (1.1), if for any two

weak solutions (B1, W 1, X1) and (B2, W 2, X2) the laws of X1 and X2 (the laws
of (X1, W 1) and (X2, W 2)) coincide. The law of a solution process is called a
solution measure.

Our main result is the following:

Theorem 2.3 Weak uniqueness holds if and only if weak joint uniqueness holds.

The proof of this theorem is given in Sect. 3 .We also provide a dualYamada–Watanabe
theorem for our framework. To formulate it we need more terminology.

Definition 2.4 (i) We say that strong existence holds for the SPDE (1.1), if there exists
a weak solution (B, W , X) such that X is adapted to the completion of the natural
filtration of W .

(ii) We say that strong uniqueness holds for the SPDE (1.1), if any two solution
processes on the same driving system are indistinguishable.

The classical Yamada–Watanabe theorem for theMarkovian version of our framework
is given by [12, Theorem 5.3].

Corollary 2.5 (Dual Yamada–Watanabe Theorem) Weak Uniqueness and strong exis-
tence imply strong uniqueness and weak existence.

Proof Due to Theorem 2.3, it suffices to show that weak joint uniqueness and strong
existence imply strong uniqueness. To prove this, we follow the proof of [9, Theo-
rem 8.3]. Let P be the unique joint law of a solution process and its driver, and letW be
the unique law of a trace class H -valued Brownian motion with covariance J J ∗. As
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strong existence holds, [10, Lemmata 1.13, 1.25] imply the existence of a measurable
map F : C(R+, H) → C = C(R+, U ) such that

P(dx, dw) = δF(w)(dx)W(dw).

Let ((�,F , (Ft )t≥0,P), W ) be a driving system which supports two solution pro-
cesses X and Y . Recalling that joint weak uniqueness holds, we obtain

P
(
X = F(W )

) = P
(
Y = F(W )

) =
∫∫

1{x=F(w)}P(dx, dw) = 1.

Consequently, strong uniqueness holds and the proof is complete. �

Let us relate weak solutions to so-called mild solutions, which are also frequently

used in the literature (see, e.g. [15,21]). Let L2 be the space of radonifying operators
H → U . The following proposition is a direct consequence of [15, Theorem 13].

Proposition 2.6 Assume that U is 2-smooth and that A is the generator of a C0-
semigroup (St )t≥0 on U. Let (B, W ) be a driving system which supports a continuous
U-valued adapted process X such that a.s.

∫ t

0
‖St−sσs(X)‖2L2

ds < ∞, t ∈ R+.

Then, X is a solution process on (B, W ) if and only if a.s. X ∈ I and a.s.

Xt = St X0 +
∫ t

0
St−sμs(X)ds +

∫ t

0
St−sσs(X)dWs, t ∈ R+.

This proposition shows that certain results from the literature are special cases of
ours. For instance, Theorem 2.3 generalizes [21, Theorem 1.3], and Corollary 2.5
generalizes [21, Theorem 1.6].

We end this section with a comment on a possible application of our results. It is
interesting to prove strong uniqueness for SPDEs. Similar to the finite dimensional
case,Corollary 2.5 shows that stronguniqueness canbededuced fromweakuniqueness
and strong existence. This strategy is e.g. interesting for equations of the type

d Xt = (AXt + μt (X))dt + dWt , (2.3)

whoseweak properties can be deduced viaGirsanov’s theorem from the corresponding
properties of the Ornstein–Uhlenbeck equation

d Xt = AXt dt + dWt ,

see [13, Appendix I] for such an argument. In other words, by the Yamada–Watanabe
theorems (Corollary 2.5 and [12, Theorem5.3]), typically strong existence and unique-
ness are equivalent for (2.3).More generally,Girsanov’s theoremcan be used to deduce
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weak properties for equations of the type

d Xt = (AXt + σt (X)μt (X))dt + σt (X)dWt

from the corresponding properties of the equation

d Xt = AXt dt + σt (X)dWt .

It is interesting to note that the strong uniqueness properties of (2.3) turn out to be
quite subtle for general non-anticipating μ, in fact more subtle than for Markovian μ.
For a Hilbert space setting and suitable linearities A, it was proven in [5,6] that the
Markovian equation

d Xt = (AXt + μ(Xt ))dt + dWt

satisfies strong existence for every (locally) bounded μ. This remarkable result is not
true for non-anticipating μ. Indeed, Tsirel’son’s example ([19, Section V.18]) shows
that even for bounded non-anticipating μ the SPDE (2.3) might not satisfy strong
uniqueness.

3 Proof of Theorem 2.3

The if implication is obvious. Thus, wewill only prove the only if implication.Assume
that weak uniqueness holds for the SPDE (1.1).

Let X be a solution process to the SPDE (1.1) which is defined on a driving system
((�∗,F∗, (F∗

t )t≥0,P
∗), W ). We take a second driving system ((�o,Fo, (Fo

t )t≥0,

Po), B) and set

� � �∗ × �o, F � F∗ ⊗ Fo, P � P∗ ⊗ Po.

Define Ft to be theP-completion of the σ -field
⋂

s>t (F∗
s ⊗Fo

s ). In the following the
filtered probability space B = (�,FP, (Ft )t≥0,P) will be our underlying space. We
extend X , W and B to B by setting

X(ω∗, ωo) ≡ X(ω∗), W (ω∗, ωo) ≡ W (ω∗), B(ω∗, ωo) ≡ B(ωo)

for (ω∗, ωo) ∈ �. It is easy to see that (B, W ) and (B, B) are again driving systems
and that X is a solution process on (B, W ).

For a closed linear subspace Ho of H we denote by prHo the orthogonal projection
onto Ho. For (ω, t) ∈ C × R+ we define

φt (ω) � prker(σt (ω)) ∈ L(H), ψt (ω) � IdH − φt (ω) ∈ L(H).

Let us summarize some basic properties of φ and ψ :

φ2 = φ, ψ2 = ψ, σφ = 0U , σψ = σ, φψ = ψφ = 0H . (3.1)
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The following lemma follows from an approximation argument (see the proof of [15,
Lemma 9.2] for details).

Lemma 3.1 The processes φ = (φt )t≥0 and ψ = (ψt )t≥0 are progressively measur-
able as processes on the canonical space (C, C,C).

By Lemma 3.1, we can define a sequence V = (V k)k∈N of continuous local mar-
tingales via

V k �
∫ ·

0
〈φt (X)ek, dWt 〉H +

∫ ·

0
〈ψt (X)ek, d Bt 〉H , k ∈ N.

The following lemma is the technical core of the proof. We postpone its proof till the
proof of Theorem 2.3 is complete.

Lemma 3.2 The process V is a standard R
∞-Brownian motion. Moreover, V is inde-

pendent of X, i.e. the σ -fields σ(V t , t ∈ R+) and σ(Xt , t ∈ R+) are independent,
where V is defined by the formula

V �
∞∑

k=1

V k Jek .

For every k ∈ N, Proposition A.4 in Appendix A and (3.1) yield that

∫ ·

0
〈φt (X)ek, dVt 〉H =

∫ ·

0
〈φt (X)φt (X)ek, dWt 〉H +

∫ ·

0
〈ψt (X)φt (X)ek, d Bt 〉H

=
∫ ·

0
〈φt (X)ek, dWt 〉H ,

and consequently,

βk =
∫ ·

0
〈ψt (X)ek, dWt 〉H +

∫ ·

0
〈φt (X)ek, dVt 〉H , k ∈ N.

By the construction of the stochastic integral, the law of the second term is determined
by the law of (X , V ), cf. [10, Proposition 17.26] for a similar argument in a finite
dimensional setting. In the following we explain that the same is true for the first term,
borrowing some ideas from the proof of [15, Lemma 9.2]. In fact, we even show that
its law is determined by the law of X . Define

H(t, ω, x, y∗) � ‖σt (ω)∗y∗ − ψt (ω)x‖H , (t, ω, x, y∗) ∈ R+ × C × H × U∗.

Lemma 3.3 For every T > 0 and x ∈ H there exists a sequence (sm)m∈N of progres-
sively measurable U∗-valued processes on (C, C,C) such that

H(t, ω, x, sm
t (ω)) ≤ 1

m , (t, ω, m) ∈ [0, T ] × C × N.
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Proof We verify the prerequisites of [15, Proposition 8.8] for X = U∗ endowed
with the norm topology: The process H(·, ·, x, y∗) is progressively measurable by
Lemma 3.1. It is clear that y∗ �→ H(t, ω, x, y∗) is continuous. Finally, we show that
{y∗ ∈ U∗ : H(t, ω, x, y∗) < 1/m} �= ∅ for every m ∈ N. Fix (t, ω) ∈ R+ × C and
note that

ψt (ω)(H) = ker(σt (ω))⊥ = σt (ω)∗(U∗) ⊆ H ,

cf. [22, Satz III.4.5]. Thus, there exists a sequence (y∗
m)m∈N ⊂ U∗ such that

lim
m→∞ ‖σt (ω)∗y∗

m − ψt (ω)x‖H = 0.

We conclude that {y∗ ∈ U∗ : H(t, ω, x, y∗) < 1/m} �= ∅ for every m ∈ N. In
summary, the claim follows from [15, Proposition 8.8]. �


Fix T > 0 and x ∈ H and let (sm)m∈N be as in Lemma 3.3. Then, Proposition A.2
in Appendix A yields that

sup
t∈[0,T ]

∣
∣
∣

∫ t

0
〈ψs(X)x, dWs〉H −

∫ t

0
〈σs(X)∗sm

s (X), dWs〉H

∣
∣
∣ → 0

in probability as m → ∞. Define Z = {Z(y∗) : y∗ ∈ U∗} by

Z(y∗) �
∫ ·

0
〈σt (X)∗y∗, dWt 〉H , y∗ ∈ U∗.

Since
∫ ·

0
〈σs(X)∗sm

s (X), dWs〉H =
∫ ·

0
〈d Zs, s

m
s (X)〉U

by Proposition A.4 in Appendix A, the construction of the stochastic integral implies
that the law of

∫ ·
0〈σs(X)∗sm

s (X), dWs〉H is determined by the finite dimensional dis-
tributions of (X , Z). Thus, also the law of

∫ ·
0〈ψs(X)ek, dWs〉H is determined by the

finite dimensional distributions of (X , Z).

Lemma 3.4 For every (finite) random time T : C → R+ and y∗ ∈ D(A∗) there exists
a measurable map F : C → R such that a.s. ZT (X)(y∗) = F(X).

Proof We define

F(ω) � 〈ω(T (ω)), y∗〉U − 〈x0, y∗〉U −
∫ T (ω)

0
〈ω(s), A∗y∗〉U ds

−
∫ T (ω)

0
〈μs(ω), y∗〉U ds,

set to be +∞ if the last integral diverges. The claim now follows from the definition
of a weak solution. �
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Lemma 3.4 shows that the finite dimensional distributions of {Z(y∗) : y∗ ∈ D(A∗)}
are determined by the law of X . We now adapt an argument from the proof of [12,
Lemma 4.1] to extend this observation to {Z(y∗) : y∗ ∈ U∗}. Define the localizing
sequence

Tm � inf
(

t ∈ R+ :
∫ t

0
‖σs(X)‖2Lds ≥ m

)
, m ∈ N.

Recall that D(A∗) is assumed to be sequentially weak∗ dense. Thus, for every y∗ ∈ U∗
there exists a sequence (y∗

k )k∈N ⊂ D(A∗) such that y∗
k → y∗ in the weak∗ topology.

Fix T > 0 and m > 0 and let λ\ be the Lebesgue measure on [0, T ]. As (y∗
k )k∈N is

bounded by the uniform boundedness principle, the dominated convergence theorem
yields that

lim
k→∞E

[ ∫ T ∧Tm

0
〈h(s), σs(X)∗y∗

k 〉H ds
]

= E
[ ∫ T ∧Tm

0
〈h(s), σs(X)∗y∗〉H ds

]

for every h ∈ L2(P ⊗ λ\, H). This means that

σ(X)∗y∗
k1[0,Tm ] → σ(X)∗y∗1[0,Tm ]

weakly in L2(P⊗λ\, H) as k → ∞. By Mazur’s lemma ([22, Korollar III.3.9]), there
exists a sequence (x∗

k )k∈N in the convex hull of (y∗
k )k∈N (and thus in D(A∗)) such that

σ(X)∗x∗
k1[0,Tm ] → σ(X)∗y∗1[0,Tm ]

strongly in L2(P ⊗ λ\, H) as k → ∞. Hence, Proposition A.2 in Appendix A yields
that

sup
s∈[0,T ]

∣
∣Zs∧Tm (x∗

k ) − Zs∧Tm (y∗)
∣
∣ → 0

in probability as k → ∞. Finally, we conclude from Lemma 3.4 that the finite dimen-
sional distributions of (X , Z) are determined by the law of X .

In summary, the law of (X , W ) is determined by the law of (X , V ) and hence, by
Lemma 3.2, it is determined by the law of X . The proof is complete. �


It remains to prove Lemma 3.2:

Proof of Lemma 3.2: Step 1. Recall that each V k is a continuous local martingale by the
definition of the stochastic integral. Denote the quadratic variation process by [·, ·]. For
i, j ∈ N and t ∈ R+, using Proposition A.3 in Appendix A and the self-adjointness
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of φ and ψ , we obtain

[V i , V j ]t =
[ ∫ ·

0
〈φs(X)ei , dWs〉H ,

∫ ·

0
〈φs(X)e j , dWs〉H

]

t

+
[ ∫ ·

0
〈ψs(X)ei , d Bs〉H ,

∫ ·

0
〈ψs(X)e j , d Bs〉H

]

t

=
∫ t

0
〈φs(X)ei , φs(X)e j 〉H ds +

∫ t

0
〈ψs(X)ei , ψs(X)e j 〉H ds

=
∫ t

0
〈(φs(X) + ψs(X))ei , e j 〉H ds = t1{i= j}.

Lévy’s characterization implies that V is a standard R
∞-Brownian motion.

Step 2. In this step we prepare the proof of the independence of V , or more precisely
V , and X . LetC2

b (R) be the set of bounded twice continuously differentiable functions
with bounded first and second derivative.

Lemma 3.5 Let Y be a continuous adapted H-valued process starting at Y 0 = 0H .
For h ∈ H set Y (h) � 〈Y , h〉H . The following are equivalent:

(i) Y is a trace class Brownian motion with covariance J J∗.
(ii) For all f ∈ C2

b (R) with inf x∈R f (x) > 0 and f (0) = 1, and all h ∈ H the
process

M f � f (Y (h)) exp
(

− 〈J J ∗h, h〉H

2

∫ ·

0

f ′′(Y s(h))ds

f (Y s(h))

)
(3.2)

is a martingale.

Proof By the classical martingale problem for (one dimensional) Brownian motion
(see, e.g. [20, Theorem 4.1.1]) and [7, Proposition 4.3.3], (ii) holds if and only if Y (h)

is a one dimensional Brownian motion with covariance 〈J J ∗h, h〉H for all h ∈ H .
This yields the claim. �


For f = g(〈·, y∗〉U ) with g ∈ C2(R) and y∗ ∈ D(A∗) we define

L f (X, t) � g′(〈Xt , y∗〉U )
(〈Xt , A∗y∗〉U + 〈μt (X), y∗〉U

)

+ 1
2g′′(〈Xt , y∗〉U )〈σt (X)∗y∗, σt (X)∗y∗〉H .

Furthermore, we set

X �
{

f = g(〈·, y∗〉U ) : g ∈ C2(R), y∗ ∈ D(A∗)
}
.

The following is a version of [12, Theorem 3.6] for our framework.
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Lemma 3.6 A probability measure Q′ on (C, C,C) is the law of a solution process to
the SPDE (1.1) if and only if Q′(I,X0 = x0) = 1 and for all f ∈ X the process

K f � f (X) − f (x0) −
∫ ·

0
L f (X, s)ds (3.3)

is a local (CQ′
,Q′)-martingale, where CQ′

denotes the Q′-completion of C. Further-
more, for every solution process X to the SPDE (1.1) the process K f ◦ X is a local
martingale on the corresponding driving system.

Proof The structure of the proof is classical and similar to the finite dimensional case
(see, e.g. [11, Chapter 5.4]). Let Q′ be a solution measure to the SPDE (1.1) and let
(B, W , X) be a weak solution such that B = (�,F , (Ft )t≥0,P) and Q′ = P ◦ X−1.
Take f = g(〈·, y∗〉U ) ∈ X. Then, Itô’s formula yields that

K f ◦ X =
∫ ·

0
g′(〈Xs, y∗〉U )d

( ∫ s

0
〈σu(X)∗y∗, dWu〉H

)
. (3.4)

Hence, K f ◦ X is a local martingale. Due to [8, Remark 10.40], the local martingale
property transfers to the canonical space (C, CQ′

,CQ′
,Q′) and the only if implication

follows.
Conversely, let Q′ be as in the statement of the lemma. Then, using the hypoth-

esis with g(x) = x and g(x) = x2 and similar arguments as in the proof of [11,
Proposition 5.4.6], for every y∗ ∈ D(A∗) it follows that

Y(y∗) � 〈X, y∗〉U − 〈X0, y∗〉U −
∫ ·

0
〈Xs, A∗y∗〉U ds −

∫ ·

0
〈μs(X), y∗〉U ds (3.5)

is a local (CQ′
,Q′)-martingale with quadratic variation

[Y(y∗), Y(y∗)] =
∫ ·

0
〈σs(X)∗y∗, σs(X)∗y∗〉H ds.

As D(A∗) is supposed to be weak∗ dense in U∗, it separates points of U . Thus, we
deduce from [16, Theorem 3.1] that, possibly on an extension of the filtered probability
space (C, CQ′

,CQ′
,Q′), there exists a standard R

∞-Brownian motion W such that

Y(y∗) =
∫ ·

0
〈σs(X)∗y∗, dWs〉H , y∗ ∈ D(A∗).

Due to (3.5), we conclude the if implication. The proof is complete. �

Define M f and K g as in (3.2) and (3.3) with Y replaced by V and X replaced by

X . It follows from Lemma 3.5 and Step 1 that M f is a martingale. Similarly, because
X is a solution process to the SPDE (1.1), K g is a local martingale by Lemma 3.6.
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We now show that [M f , K g] = 0. Itô’s formula yields that

d M f
t = exp

(
− 〈J J ∗h, h〉H

2

∫ t

0

f ′′(V s(h))ds

f (V s(h))

)
f ′(V t (h))dV t (h). (3.6)

Using Proposition A.3 in Appendix A, we deduce from (3.1) that

[
V (h),

∫ ·

0
〈σs(X)∗y∗, dWs〉H

]
=

[ ∫ ·

0
〈φs(X)J ∗h, dWs〉H ,

∫ ·

0
〈σs(X)∗y∗, dWs〉H

]

=
∫ ·

0
〈σs(X)φs(X)J ∗h, y∗〉U ds = 0.

In view of (3.4) and (3.6), we conclude that [M f , K g] = 0.
Step 3: We are in the position to follow the proof of [3, Theorem 2.3]. More precisely,
we deduce the independence of V and X from [M f , K g] = 0. For n ∈ N set

Tn � inf(t ∈ R+ : |K g
t | ≥ n), K g,n � K g

·∧Tn
.

As K g has continuous paths, K g,n is bounded on bounded time intervals and conse-
quently, K g,n is a martingale. Step 2 yields that [M f , K g,n] = [M f , K g]·∧Tn = 0.
Hence, by integration by parts, the process M f K g,n is a local martingale and a true
martingale, because it is bounded on bounded time intervals. Next, fix a bounded
stopping time S and define a measure Q′ on (�,F) as follows:

Q′(G) � EP
[
M f

S 1G
]
, G ∈ F .

As M f
0 = 1, the optional stopping theorem shows that Q′ is a probability measure.

Since M f , K g,n and M f K g,n are P-martingales, we deduce again from the optional
stopping theorem that for every bounded stopping time T

EQ′[
K g,n

T

] = EP
[
M f

S K g,n
T

]

= EP
[
M f

S 1{S≤T }EP
[
K g,n

T |FS∧T
] + K g,n

T 1{T <S}EP
[
M f

S |FS∧T
]]

= EP
[
M f

S K g,n
S∧T1{S≤T } + K g,n

T M f
S∧T1{T <S}

]

= EP
[
M f

S∧T K g,n
S∧T

] = 0.

Thus, because T was arbitrary and Tn ↗ ∞ as n → ∞, K g is a local Q′-martingale.
As g was arbitrary, we deduce from Lemma 3.6 and [8, Remark 10.40] thatQ′ ◦ X−1 is
a solution measure to the SPDE (1.1). The weak uniqueness assumption now implies
that P ◦ X−1 = Q′ ◦ X−1. Next, fix a set F ∈ σ(Xt , t ∈ R+) such thatP(F) > 0 and
set

Q∗(G) � P(G, F)

P(F)
, G ∈ F .
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Clearly,Q∗ is a probability measure on (�,F). RecallingP(F) = Q′(F), we obtain

EQ∗[
M f

S

] = Q′(F)

P(F)
= 1.

Thus, because S was arbitrary, M f is a Q∗-martingale. Since f was arbitrary,
Lemma 3.5 yields that V is a trace class Q∗-Brownian motion with covariance J J ∗.
Consequently, for every G ∈ σ(V t , t ∈ R+) we have

P(G, F) = Q∗(G)P(F) = P(G)P(F).

Since this equality holds trivially whenever F ∈ σ(Xt , t ∈ R+) satisfies P(F) = 0,
we conclude that V and X are independent. The proof is complete. �
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A Some Facts for Stochastic Integrals

In the following all processes are defined on a fixed filtered probability space (with
complete right-continuous filtration). Let W and B be two standard R

∞-Brownian
motions and let φ = (φt )t≥0, ψ = (ψt )t≥0 and φn = (φn

t )t≥0 be H -valued progres-
sively measurable processes such that a.s.

∫ t

0

(‖φs‖2H + ‖ψs‖2H + ‖φn
s ‖2H

)
ds < ∞, t ∈ R+.

We start with a basic property of stochastic integrals, which we use throughout the arti-
cle without further reference. Recall that [·, ·] denotes the quadratic variation process.

Proposition A.1

[ ∫ ·

0
〈φs, dWs〉H ,

∫ ·

0
〈ψs, dWs〉H

]
=

∫ ·

0
〈φs, ψs〉H ds.

The following proposition is a direct consequence of [15, Proposition 4.1].
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Proposition A.2 If for some T > 0

∫ T

0
‖φs − φn

s ‖2H ds → 0 as n → ∞

in probability, then

sup
t∈[0,T ]

∣
∣
∣

∫ t

0
〈φs, dWs〉H −

∫ t

0
〈φn

s , dWs〉H

∣
∣
∣ → 0 as n → ∞

in probability as well.

The next proposition follows from [18, Proposition 4.7].

Proposition A.3 If W and B are independent, then

[ ∫ ·

0
〈φs, dWs〉H ,

∫ ·

0
〈ψs, d Bs〉H

]
= 0.

Finally, we also provide a simple chain rule, which can be proven by first checking
it for simple processes and then using an approximation argument.

Proposition A.4 Let g = (gt )t≥0 be an L-valued progressively measurable process
and let θ∗ = (θ∗

t )t≥0 be a U∗-valued progressively measurable process such that a.s.

∫ t

0

(‖gs‖2L + ‖g∗
s θ∗

s ‖2H
)
ds < ∞, t ∈ R+,

and define a cylindrical local martingale Z = {Z(y∗) : y∗ ∈ U∗} by

Z(y∗) �
∫ ·

0
〈g∗

s y∗, dWs〉H , y∗ ∈ U∗.

Then, the stochastic integrals

∫ ·

0
〈g∗

s θ∗
s , dWs〉H ,

∫ ·

0
〈d Zs, θ

∗
s 〉U

are well-defined (where the second integral is defined as in [14]) and

∫ ·

0
〈g∗

s θ∗
s , dWs〉H =

∫ ·

0
〈d Zs, θ

∗
s 〉U .

References

1. Cherny, A.S.: On the uniqueness in law and the pathwise uniqueness for stochastic differential equa-
tions. Teoriya Veroyatnostei i ee Primeneniya 46(3), 483–497 (2001)

123



Journal of Theoretical Probability

2. Cherny, A.S.: On the uniqueness in law and the pathwise uniqueness for stochastic differential equa-
tions. Theory of Probab. & Its Appl. 46(3), 406–419 (2002)

3. Criens, D.: A dual Yamada-Watanabe theorem for Lévy driven stochastic differential equations. Elec-
tron. Commun. Probab. 26(18), 1–10 (2021)

4. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press,
2nd edition (2014)

5. Da. Prato, G., Flandoli, F., Priola, E., Röckner,M.: Strong uniqueness for stochastic evolution equations
in Hilbert spaces perturbed by a bounded measurable drift. Ann. Probab. 41(5), 3306–3344 (2013)

6. Da. Prato, G., Flandoli, F., Priola, E., Röckner,M.: Strong uniqueness for stochastic evolution equations
with unbounded measurable drift term. J. Theor. Probab. 28, 1571–1600 (2015)

7. Ethier, S.N.,Kurtz, T.G.:Markov processes: characterization and convergence.Wiley,NewYork (2005)
8. Jacod, J.: Calcul stochastique et problèmes de martingales. Springer, Berlin (1979)
9. Jacod, J.: Weak and strong solutions of stochastic differential equations. Stochastics 3(1–4), 171–191

(1980)
10. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, Berlin Heidelberg (2002)
11. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, 2nd edn. Springer, New York

(1991)
12. Kunze, M.C.: On a class of martingale problems on Banach spaces. Electron. J. Probab. 18(104), 1–30

(2013)
13. Liu,W., Röckner,M.: Stochastic Partial Differential Equations: An Introduction. Springer International

Publishing (2015)
14. Mikulevicius, R., Rozovskii, B.L.: Normalized stochastic integrals in topological vector spaces. Sémi-

naire de Probabilités XXXII, Eds. M. Yor, M. Émery and M. Ledoux, Springer Berlin Heidelberg,
137–165 (1998)

15. Ondreját, M.: Uniqueness for stochastic evolution equations in Banach spaces. DISS Math. 426, 1–63
(2004)

16. Ondreját, M.: Integral representations of cylindrical local martingales in every separable Banach space.
Infinite Dimens. Anal. Quantum Probab. Relat. Topics 10(3), 365–379 (2007)

17. Qiao, H.: A theorem dual to Yamada-Watanabe theorem for stochastic evolution equations. Stoch.
Dyn. 10(03), 367–374 (2010)

18. Rehmeier, M.: On Cherny’s results in infinite dimensions: a theorem dual to Yamada-Watanabe. Stoch.
Part. Differ. Equ. Anal. Comput. 9, 33–70 (2021)

19. Rogers, L.C.G.,Williams, D.: Diffusions,Markov Processes, andMartingales. Volume 2 - Itô Calculus.
Cambridge University Press, 2nd edition (2000)

20. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin Heidelberg
(1979)

21. Tappe, S.: The dual Yamada–Watanabe theorem for mild solutions to stochastic partial differential
equations. arXiv:2006.13038v1 (2020)

22. Werner, D.: Functional analysis, 7th edn. Springer, Berlin Heidelberg (2011)
23. Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math.

Kyoto Univ. 11(1), 155–167 (1971)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2006.13038v1

	On a Theorem by A.S. Cherny for Semilinear Stochastic Partial Differential Equations
	Abstract
	1 Introduction
	2 The Setting and Main Results
	3 Proof of Theorem 2.3
	A Some Facts for Stochastic Integrals
	References


