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Abstract

We consider the tail behavior of the product of two independent nonnegative random
variables X and Y . Breiman (1965) has considered this problem assuming that X is
regularly varying with index α and that E{Y α+ε} < ∞ for some ε > 0. We investigate
when the condition on Y can be weakened and apply our findings to analyze a class
of random difference equations.
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1 Introduction

Suppose that X and Y are two independent nonnegative random variables such that
P{X > x} is regularly varying of index −α, α ≥ 0, and that E{Y α+ε} < ∞ for some
ε > 0. Then

P{XY > x} ∼ E{Y α}P{X > x}, (1)

as x →∞, with f(x) ∼ g(x) denoting f(x) = g(x)(1 + o(1)). This result has been stated
first in Breiman [2] for α ∈ [0, 1] and is known as Breiman’s theorem; a more recent study
containing a proof for all α is in Cline and Samorodnitsky [5].
We are interested in extensions of (1), in particular in relaxing the condition E{Y α+ε} <
∞. Apart from its intrinsic interest, our motivation for this comes from the well known
random affine equation

R
d= MR + Q. (2)

This equation appears in many different applications, most notably in actuarial and fi-
nancial mathematics. If P (|M | > 1) > 0, then R typically has a power tail and this case
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is fairly well understood; classical papers are Kesten [14] and Goldie [10]. Unfortunately,
not many results are available when Q is light-tailed and |M | ≤ 1. Some partial results
can be found in Goldie & Grübel [11] and Maulik & Zwart [19]. A relatively clean case
seems to be when expQ is regularly varying with index −α and independent of M . After
taking exponents in (2) one may wonder whether the application of Breiman’s theorem is
justified, i.e. whether P{R > x} ∼ E{exp{αMR}}P{Q > x}. If |M | < 1− δ a.s. for some
δ > 0 then one can show that E{exp{(α+ε)MX}} < ∞ for some ε > 0, so that Breiman’s
theorem (1) can indeed be applied. However, assuming the existence of such a δ > 0 is
not very natural, and we are interested in to which extent the tail equivalence between R
and Q remains true without invoking such an assumption. To obtain an answer to this
question, the conditions under which Breiman’s theorem remains true need to be relaxed
along the lines above.
We now proceed with an informal presentation of our results. If X is regularly varying
with index −α, the most general conditions on Y under which (1) holds would be

E{Y α} < ∞ and P{Y > x} = o(P{X > x}). (3)

We show that this set of conditions on Y is in general not enough for (1) to hold. To obtain
sufficient conditions, we make additional assumptions on the slowly varying function L in
the representation P{X > x} = L(x)x−α. In particular, we consider three different cases:

1. If lim infx→∞ L(x) > 0, then (3) implies (1) without any further assumptions.

2. If L(x) is eventually decreasing to 0, then for x large enough, L(exp{x}) = P{U > x}
for some long-tailed random variable U . It turns out that the additional condition
U ∈ S∗ is crucial for (1) to hold if U has a finite mean. A similar type of assumption
has to be made if L(x) oscillates at infinity.

3. If the condition E{U} < ∞ in the previous case does not hold (which is the case
when E{Xα} = ∞ and limx→∞ xαP{X > x} = 0), then we also need to invoke an
additional condition to ensure validity of (1).

These three cases are respectively covered by Propositions 2.1–2.3 in Section 2. The neces-
sity of the additional regularity conditions is illustrated by a number of counterexamples
in Section 3.
The results of the present paper are related to several existing results in the literature.
Several researchers independently obtained that (1) always holds if P{X > x} ∼ cx−α and
E{Y α} < ∞, see e.g. Lemma 2.1 in [13] and Lemma 5.1 in [19]. Our Proposition 2 is an
extension of these results. Embrechts & Goldie [7] show that XY is regularly varying of
index −α if both X and Y are regularly varying of index −α, without providing explicit
asymptotics. Cline [3] contains a property of the class S(γ) which is strongly related to the
second case discussed above; we get back to this in Section 2. In addition, [3] investigates
the asymptotic behavior of P{XY > x} in various cases where P{XY > x}/P{X > x} →
∞.
This paper is organized as follows. Section 2 gives a number of sufficient conditions on L
in order for (1) to hold under (3). Counterexamples are provided in Section 3. In Section
4, we apply our results to obtain the tail behavior of R in the random difference equation
mentioned above. Some concluding remarks are given in Section 5.

2 Extensions of Breiman’s theorem

In this section we investigate which assumptions, in addition to (3), are needed to guar-
antee (1). As described in the Introduction, we focus on additional assumptions on the
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slowly varying function L in P{X > x} = L(x)x−α. As a preliminary we develop a
representation of slowly varying functions in terms of long-tailed distribution functions.
Throughout the rest of the paper we use various properties of regularly varying functions
which all appear in the monograph [1]. In addition, we use the class of subexponential
distributions, denoted by S, and the class of long-tailed distributions which is denoted by
L; see [8] for details.

Lemma 2.1 Let L be slowly varying. Then L admits precisely one of the following four
representations.

(i) L(x) = c(x),

(ii) L(x) = c(x)/P{V > log x},
(iii) L(x) = c(x)P{U > log x},
(iv) L(x) = c(x)P{U > log x}/P{V > log x}.
In all representations, c(x) is a function converging to a constant c ∈ (0,∞). U and V
are two independent long-tailed random variables with hazard rates converging to 0.

Proof. By the representation theorem for slowly varying functions we can write for some
function c(x) → c ∈ (0,∞) and h(x) → 0,

L(x) = c(x) exp{
∫ x

1
h(u)/udu}.

Write h(u) = h+(u)−h−(u), with h+(u) the positive part of h(u) and h−(u) the negative
part. Both h+(u) and h−(u) converge to 0. A first issue is whether

∫ x
1 hi(u)/udu converges,

i = +,−. If this would be the case, then this can be incorporated in the function c(x),
so without loss of generality, we can assume that either hi(u) = 0 or the corresponding
integral diverges. This leads to the four cases above.
Suppose now that

∫ x
1 h+(u)/udu diverges. Then there exists a long-tailed random variable

V such that

exp{−
∫ x

1
h+(u)/udu} = exp{−

∫ log x

0
h+(ev)dv} = P{V > log x}.

A similar argument can be made for h−. ¥

We are now ready to give our first sufficient condition for (1).

Proposition 2.1 Assume that, in addition to (3), lim infx→∞ L(x) > 0. Then (1) holds.

Proof. The assumption on L implies that α > 0. By replacing X and Y by Xα and Y α

if α 6= 1, we can assume that α = 1. We can also assume without loss of generality that
P{Y = 0} = 0. Note that the asymptotic lower bound

lim inf
x→∞

P{XY > x}
P{X > x} ≥ E{Y }

always holds in view of Fatou’s lemma. To obtain an upper bound, write

P{XY > x} =
4∑

i=1

P{XY > x;Y ∈ Ai},
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with A1 = [0, ε), A2 = [ε,M), A3 = [M, g(x)x), and A4 = [g(x)x,∞). Here, g(x) ↓ 0
is chosen such that P{Y > g(x)x} = o(P{X > x}). Number the four terms as I1, ..., I4.
Then

I1 ≤ P{X > x/ε} ∼ εP{X > x}.
Furthermore, by the uniform convergence theorem for slowly varying functions we obtain
that

I2 ∼ E{Y ; ε < Y < M}P{X > x}.
The fourth term can be upper bounded as follows:

I4 ≤ P{Y > g(x)x} = o(P{X > x}).
Thus, it remains to consider

I3 = P{X > x}
∫ g(x)x

M

L(x/y)
L(x)

ydP{Y ≤ y}.

Since L(x) is bounded away from 0 uniformly in x we are in either in case (i) or (ii) of
Lemma 2.1. We thus have the upper bound, for y ≥ M ≥ 1,

L(x/y)
L(x)

≤ sup
y∈[M,g(x)x]

c(x/y)
c(x)

.

Consequently,

I3 ≤ P{X > x} sup
y∈[M,g(x)x]

c(x/y)
c(x)

E{Y ;Y > M} ∼ P{X > x}E{Y ; Y > M}.

Putting everything together, we obtain

lim sup
x→∞

P{XY > x}
P{X > x} ≤ ε + E{Y ; ε < Y < M}+ 2

L−(1/δ)
`

E{Y ;Y > M}.

The result now follows by letting ε ↓ 0 and M →∞. ¥

We now investigate what happens if lim inf L(x) = 0. It turns out that the situation is
more complicated in this case. Before we can state our results, we need to introduce a
number of additional definitions. A non-negative function f is in the class Sd (and in this
case one calls f a subexponential density) if it satisfies the property

lim
x→∞

∫ x

0

f(x− y)
f(x)

f(y)dy = 2
∫ ∞

0
f(u)du < ∞.

If f(x) = P{U > x} for some random variable U , we say that U ∈ S∗. Both classes Sd

and S∗ have been introduced by Klüppelberg [16, 17].
In addition, recall that a non-negative random variable T is in the class S(γ), γ ≥ 0 if, as
x →∞,

P{T > x + y}
P{T > x} → e−γy and

P{T + T ′ > x}
P{T > x} → 2E{eγT } < ∞,

with T ′ an i.i.d. copy of T . Note that S(0) = S. It is shown in [17] that, for γ > 0,
T ∈ S(γ) if and only if eγxP{T > x} is in Sd. A recent interesting paper on these classes
of distributions is Foss & Korshunov [9].

We are now ready to state our second result.
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Proposition 2.2 Assume in addition to (3) that α > 0 and that L admits representation
(iii) or (iv) of Lemma 2.1. If either L(ex) ∈ Sd or the auxiliary random variable U ∈ S∗,
then (1) holds.

Proof. If L(ex) ∈ Sd then, according to Theorem 2.1 of Klüppelberg [17], log X ∈ S(γ)
and the result then follows from [3]; see the discussion below Theorem 1 in that paper.
For the other case, we proceed similarly as in the proof of the previous proposition. It
remains to estimate I3. Define c∗(x) = supy∈[M,g(x)x]

c(x/y)
c(x) . Then

I3 = P{X > x}
∫ g(x)x

M

L(x/y)
L(x)

ydP{Y ≤ y}

≤ P{X > x}c∗(x)
∫ g(x)x

M

P{U > log x− log y}
P{U > log x} ydP{Y ≤ y}.

We need to show that

lim
M→∞

lim sup
x→∞

∫ g(x)x

M

P{U > log x− log y}
P{U > log x} ydP{Y ≤ y} = 0. (4)

Denote s(x) = P{Y > x}/P{X > x} → 0. Integrating by parts, we obtain

∫ g(x)x

M
P{U > log x− log y}ydP{Y ≤ y} =

− P{Y > g(x)x}P{U > − log g(x)}xg(x) + P{Y > M}MP{U > log x− log M}

+
∫ xg(x)

M
P{U > log x−log y}P{Y > y}dy+

∫ xg(x)

M
P{Y > y}ydyP{U > log x−log y}.

We continue by bounding all terms on the right hand side of this expression. The first
term is non-positive and can therefore be discarded. To bound the second term, note that

lim
x→∞

P{Y > M}MP{U > log x− log M}
P{U > log x} = P{Y > M}M.

For the third term, we have,

lim sup
x→∞

∫ xg(x)
M P{U > log x− log y}P{Y > y}dy

P{U > log x}

≤ lim sup
x→∞

sup
y≥M

s(y)

∫ x
M P{U > log x− log y}P{U > log y}d log y

P{U > log x} ≤ sup
y≥M

s(y)2E{U},

since U ∈ S∗. Finally we have, for the fourth term,

lim sup
x→∞

∫ xg(x)
M P{Y > y}ydyP{U > log x− log y}

P{U > log x}

≤ lim sup
x→∞

sup
y≥M

c(y)s(y)

∫ x
M P{U > log y}dyP{U > log x− log y}

P{U > log x} ≤ 2 sup
y≥M

c(y)s(y),

since U ∈ S∗ and therefore also subexponential. Putting everything together, we see that

lim sup
x→∞

∫ g(x)x

M

P{U > log x− log y}
P{U > log x} ydP{Y ≤ y} ≤ P{Y > M}M+sup

y≥M
s(y)2E{U}+2 sup

y≥M
c(y)s(y).
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This converges to 0 if M →∞, which implies (4). ¥

Note finally that the two assumptions U ∈ S∗ and L(ex) ∈ Sd are equivalent if case (iii)
of Lemma 2.1 applies. However, in general, the two assumptions are not implied by one
another.

We continue by investigating a third case, which occurs when the auxiliary random variable
U has infinite mean, in which case U cannot be in S∗. Put

m(x) =
∫ x

0
tα−1P{X > t}dt.

It is clear that since E{Xα} = ∞ if E{U} = ∞, we have m(x) →∞.

Proposition 2.3 Assume in addition to (3), that α > 0 and that

P{Y > x}
P{X > x}m(x) → 0. (5)

Let L admit representation (iii) or (iv) of Lemma 2.1, with U ∈ D. Then (1) holds.

Proof. By considering Xα and Y α when α 6= 1, it suffices to prove the result for α = 1.
We proceed similarly as in the proof of the previous proposition. It remains to estimate
I3. Define c∗(x) = supy∈[M,g(x)x]

c(x/y)
c(x) . Then

I3 = P{X > x}
∫ g(x)x

M

L(x/y)
L(x)

ydP{Y ≤ y}.

≤ P{X > x}c∗(x)
∫ g(x)x

M

P{U > log x− log y}
P{U > log x} ydP{Y ≤ y}.

We split the integral into two integrals (according to the intervals [M,
√

x] and [
√

x, g(x)x])
and estimate both of them separately, For the first integral we have

∫ √
x

M

P{U > log x− log y}
P{U > log x} ydP{Y ≤ y} ≤ P{U > log

√
x}

P{U > log x}
∫ √

x

M
ydP{Y ≤ y}

≤ sup
x

P{U > x/2}
P{U > x}

∫ ∞

M
ydP{Y ≤ y}.

As M goes to infinity the latter goes to 0. We integrate the second integral by parts to
obtain

∫ g(x)x

√
x

P{U > log x− log y}ydP{Y ≤ y} =

− P{Y > g(x)x}P{U > − log g(x)}xg(x) + P{Y >
√

x}√xP{U > log x− log
√

x}

+
∫ xg(x)

√
x

P{U > log x−log y}P{Y > y}dy+
∫ xg(x)

√
x

P{Y > y}ydyP{U > log x−log y}.

The first term is non-positive. For the second term we have, since E{Y } < ∞,

lim
x→∞

P{Y >
√

x}√xP{U > log
√

x}
P{U > log x} = 0.
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The third term satisfies

∫ xg(x)√
x

P{U > log x− log y}P{Y > y}dy

P{U > log x} = o(1)

∫ xg(x)√
x

P{U > log x− log y}P{X>y}
m(y) dy

P{U > log x}

=
o(1)

m(
√

x)

∫ xg(x)√
x

P{U > log x− log y}P{U > log y}d log y

P{U > log x}

= o(1)
1

m(
√

x)
P{U > log

√
x}

P{U > log x}
∫ xg(x)

√
x

P{U > log x− log y}d log y

= o(1)
m(
√

x)−m(1/g(x))
m(
√

x)
P{U > log

√
x}

P{U > log x} → 0.

Finally, for the fourth term we have,

∫ xg(x)√
x

P{Y > y}ydyP{U > log x− log y}
P{U > log x}

≤ o(1)

∫ x√
x P{U > log y}dyP{U > log x− log y}

P{U > log x} → 0,

since U ∈ S. ¥

Note that that it is not sufficient to assume just P{Y >x}
P{X>x} → 0. This is illustrated with a

counterexample in the next section.

For completeness, we finally state a well known result for α = 0.

Proposition 2.4 (Embrechts & Goldie [7]). Suppose in addition to (3) that α = 0 and
that in particular log X ∈ S. Then (1) holds.

That it is difficult to remove the assumption log X ∈ S is illustrated in the next section.

3 Counterexamples

In the previous section, we saw that Breiman’s theorem can be extended in a number of
cases, but that the minimal conditions (3) were not achieved. The goal of the present
section is to illustrate that it is hard or even impossible to weaken the assumptions made
in Propositions 2.2–2.4. In the next three subsections, we give a counterexample related
to each of these three propositions.

3.1 A counterexample related to Proposition 2.2

In this section we construct independent non-negative random variables X and Y such
that X is regularly varying, Y satisfies (3), but for which (1) fails.
Since α > 0, we can take α = 1 without loss of generality. Let a(x) be a distribution tail
which is long-tailed, but not in S∗. Assume that

∫∞
0 a(x)dx < ∞ and

lim sup
x→∞

∫ x

0

a(y)a(x− y)
a(x)

dy = ∞.
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(All known examples of distributions in L\S satisfy this property.) Since a(x) is long-
tailed but not in S∗ there exists a function h(x) such that h(x) →∞, a(x− h(x)) ∼ a(x)
and

lim sup
x→∞

∫ x−h(x)

h(x)

a(y)a(x− y)
a(x)

dy = ∞.

Set now L(x) = a(log x). From the previous considerations, it follows that there ex-
ists a function d(x) such that we have d(x) → ∞, d(x) = o(

√
x), L(x/d(x)) ∼ L(x),∫∞

1 L(x)/xdx < ∞, and

lim sup
x→∞

∫ x/d(x)

d(x)

L(y)L(x/y)
yL(x)

dy =: lim sup
x→∞

r(x) = ∞.

Let xn, n ≥ 1 be a sequence such that xn →∞ and r(xn) →∞.
We are now ready to define X and Y . Let X be a random variable with tail L(x)/x.
Observe that X has finite mean. Set for x ≥ 0, s(x) =

√
r(xn) when x ∈ [d(xn), d(xn+1)).

Observe that s(x) → ∞. Let g(x) = P{X > x}/(xs(x)) = L(x)/(x2s(x)) be the density
of Y . Since s(x) → ∞ it can be shown by using Karamata’s theorem that P{Y > x} =
o(P{X > x}).
Then

P{XY > x; d(x) < Y < x/d(x)}
P{X > x} =

∫ x/d(x)

d(x)

L(y)L(x/y)
ys(y)L(x)

dy

≥
∫ x/d(x)

d(x)

L(y)L(x/y)
ys(d(x))L(x)

dy =
r(x)

s(d(x))
.

This is at least
√

r(xn) at the points xn, n ≥ 1. We conclude that

lim sup
x→∞

P{XY > x; Y > d(x)}
P{X > x} = ∞,

implying that (1) does not hold. This illustrates that the condition U ∈ S∗ in Proposition
2.2 cannot be weakened in general. We would like to remark that in the above construction
one can additionally assume that both a(x) and

∫∞
x a(u)du are subexponential, but for

which a(x) /∈ S∗, see Denisov et al. [6] for an example of such a distribution tail.

3.2 A counterexample related to Proposition 2.4

We use the same notation as in the previous subsection but now assume that α = 0. Let
a(x) be a distribution tail which is long-tailed, but not in S. In addition assume that

lim sup
x→∞

∫ x

0

a(x− y)
a(x)

da(y) = ∞.

(All known examples of distributions in L\S satisfy this property.) Since a(x) is long-tailed
there exists a function h(x) such that h(x) →∞, a(x− h(x)) ∼ a(x) and

lim sup
x→∞

∫ x−h(x)

h(x)

a(x− y)
a(x)

da(y) = ∞.
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Set now L(x) = a(log x). From the previous considerations, it follows that there exists a
function d(x) such that we have d(x) →∞, d(x) = o(

√
x), L(x/d(x)) ∼ L(x), and

lim sup
x→∞

∫ x/d(x)

d(x)

L(x/y)
L(x)

dL(y) =: lim sup
x→∞

r(x) = ∞.

Let xn, n ≥ 1 be a sequence such that xn →∞ and r(xn) ↑ ∞.
We are now ready to define X and Y . Let X be a random variable with tail L(x). Set
for x ≥ 0, s(x) =

√
r(xn) when x ∈ [d(xn), d(xn+1)). Let P{Y > x} = P{X > x}/s(x) =

L(x)/s(x). Since s(x) ↑ ∞, P{Y > x} = o(P{X > x}). Conditioning on values of X we
obtain

P{XY > x; d(x) < X < x/d(x)}
P{X > x} =

∫ x/d(x)

d(x)

L(x/y)
s(x/y)L(x)

dL(y)

≥
∫ x/d(x)

d(x)

L(x/y)
s(d(x))L(x)

dL(y) =
r(x)

s(d(x))
.

This is at least
√

r(xn) at the points xn, n ≥ 1. We conclude that

lim sup
x→∞

P{XY > x; X > d(x)}
P{X > x} = ∞,

implying that (1) does not hold.

3.3 A counterexample related to Proposition 2.3

In this section we show that the condition P{Y > x} = o(P{X > x}/m(x)) in Proposition
2.3 cannot be weakened to the more appealing condition P{Y > x} = o(P{X > x}). To
construct a counterexample, we let

fX(x) =
1

x2 log x

be the density of X. In that case P{X > x} ∼ 1
x log x and P{U > x} ∼ 1

x . Further, let

fY (y) =
{

fY (
√

xn+1), xn ≤ y <
√

xn+1
1

y2 log y log log y
,

√
xn+1 ≤ y < xn+1

be the density of Y . Here, xn = exp{en2}. It is clear that

P{Y > x} =
∫ ∞

x
fY (y)dy <

∫ ∞

x

1
y2 log y log log y

dy

∼ 1
x log x log log x

= o(P{X > x}).

Also,

E{Y } =
∞∑

n=0

(∫ √
xn+1

xn

+
∫ xn+1

√
xn+1

)
yfY (y)dy

=
∞∑

n=0

fY (
√

xn+1)
xn+1 − x2

n

2
+

∞∑

n=0

(
log log log xn+1 − log log log

√
xn+1

)
.

9



The first sum can be bounded by

∑
fY (

√
xn+1)xn+1 =

∑ 1
log

√
xn+1 log log

√
xn+1

<
∑ 2

en2 < ∞.

To bound the second sum, note that

log log log xn+1 − log log log
√

xn+1 = log
n2

n2 − log 2
∼ log 2

n2
.

Thus, the second sum is finite as well and we conclude that E{Y } < ∞. Summing up all
these facts, we have: U is regularly varying random variable, P{Y > x} = o(P{X > x}),
and E{Y } < ∞. Now we will show that (1) does not hold.
It is sufficient to show that

lim
M→∞

lim inf
x→∞

∫ g(x)x

M

P{U > log x− log y}
P{U > log x} ydP{Y ≤ y} > 0. (6)

We have,

∫ g(xn)xn

M

P{U > log xn − log y}
P{U > log xn} ydP{Y ≤ y} >

∫ g(xn)xn

√
xn

P{U > log xn − log y}
P{U > log xn} ydP{Y ≤ y}

= log xn

∫ g(xn)xn

√
xn

1
log xn − log y

dy

y log y log log y
> log xn

∫ g(xn)xn

√
xn

1
log xn − log y

dy

y log xn log log xn

=
1

log log xn

∫ g(xn)xn

√
xn

1
log xn − log y

dy

y
=

log log
√

xn − log log 1
g(xn)

log log xn
.

Now note that we can choose g(x) which tends to 0 very slowly, e.g. g(x) > 1/ log x. In
that case,

log log
√

xn − log log 1
g(xn)

log log xn
→ 1.

Therefore, (6) holds which implies that (1) does not hold.

4 Application to a random difference equation

Let R be a random variable satisfying (2), let 0 ≤ M ≤ 1, P{M = 1} = 0, and let Q be
independent of M . Throughout this section, we assume that 0 ≤ M ≤ 1, P{M = 1} = 0,
P{Q > x} = g(x)e−αx, with α > 0 and g(log x) slowly varying. Our main interest is in
obtaining the tail behavior of R. Before we proceed with our analysis, we mention some
related work on this problem. Without dependence and non-negativity assumptions on
Q and M , logarithmic asymptotics for R have been obtained by Goldie & Grübel [11].
Precise asymptotics in the present setting, with Q exponentially distributed, have been
obtained in Maulik & Zwart [19].
The goal of this section is to relax the assumption on Q made in [19], and to give an
illustration of the applicability of the results obtained in previous sections: in the next
four subsections, we give applications of the four Propositions 2.1–2.4.

4.1 An application of Proposition 2.1

If the function g(x) is bounded away from 0 it is straightforward to obtain the tail behavior
of R, as shown by the following result.
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Proposition 4.1 Assume that lim infx→∞ g(x) > 0. Then

P{R > x} ∼ E{eαMR}P{Q > x} (7)

if and only if E{eαMQ} < ∞.

Proof. The proof is similar to the proof of Theorem 5.1 in [19]. Along the lines of Propo-
sition 5.1 of that paper, it can be shown that E{eαMR} < ∞ if and only if E{eαMQ} < ∞.
Taking exponents on both sides in (2) we obtain exp{R} = exp{MR} exp{Q}. We see that
all conditions of Proposition 2.1, with L(x) = g(log x), are satisfied, providing the result. ¥

As we shall see below, the case in which g(x) → 0 is more challenging.

4.2 An application of Proposition 2.2

If g(x) → 0, the main difficulty is to show that MR is sufficiently light-tailed. In the
setting of Proposition 2.2 this is possible under reasonable assumptions:

Proposition 4.2 Suppose Q ∈ S(α), α > 0. Then P{R > x} ∼ E{eαMR}P{Q > x}.

Proof. Since E{eαQ} < ∞ and R
d= MR + Q, the statement follows from Proposition 2.2

after we have verified that

P{MR > x} = o(P{Q > x}). (8)

For this, we first use a similar bounding procedure as in Proposition 5.1 of [19]: Let
Mn, n ≥ 0 and Qn, n ≥ 0 be mutually independent i.i.d. copies of M and Q respectively.
Then we can write MR

d=
∑∞

k=1 Qk
∏k

i=1 Mi. Define the sequence of random times τ̄k, k ≥
0, as follows. Let τ̄0 = 0, and, for k ≥ 1,

τ̄k = inf{n > τ̄k−1 : Mn ≤ η}.

Take η small enough to that P{M > η}E{eαQ} < 1 and write

MR
d=

∞∑

k=1

Qk

k∏

i=1

Mi =
∞∑

k=1

τ̄k∑

n=τ̄k−1+1

Qn

n∏

i=1

Mi ≤ M1

∞∑

k=1

ηk−1
τ̄k∑

n=τ̄k−1+1

Qn. (9)

Set Ck =
∑τ̄k

n=τ̄k−1+1 Qn. The sequence {Ck, k ≥ 1} is i.i.d. and since Qn ∈ S(α), we have,
using a well known result on geometric random sums (see e.g. Cline [4])

P{Ck > x} ∼ cηP{Q > x}, (10)

with cη a finite constant. Set Rη =
∑∞

k=1 ηk−1Ck. Observe that R is stochastically

dominated by Rη and that Rη
d= ηRη + C1. This is an equation similar to the original

equation (2), but with Q replaced by C1 and M replaced by η. We see that

E{esRη} =
∞∏

n=1

E{esηn−1Cn},

from which it simply follows that there exists a δ > 0 such that E{e(α+δ)ηRη} < ∞.
Consequently, by the classical version of Breiman’s theorem, we obtain that

P{Rη > x} ∼ E{eαRη}P{C1 > x} ∼ E{eαRη}cηP{Q > x}.
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Since M < 1 a.s. and since P{Q > x/ζ} = o(P{Q > x}) we conclude from the tail
asymptotics for Rη that for any ζ < 1,

P{MRη > x} ≤ P{M > ζ}P{Rη > x}+ P{Rη > x/ζ}
ζ↑1
= o(P{Q > x}).

Since R is stochastically dominated by Rη, we arrive at (8). ¥

4.3 An application of Proposition 2.3

To check the sufficient condition of Proposition 2.3 requires more work. We therefore focus
on a special case. To save space, we leave out some of the details which are straightforward
or which overlap with similar arguments given before.

Proposition 4.3 Assume that P{1−M ≤ x} = h(1/x)xγ, for some γ > 0 and a function
h which is slowly varying at infinity. Assume in addition that P{Q > x} ∼ `(x)x−βe−αx,
with ` a slowly varying function and β ∈ (0, 1). Then E{eαMR} < ∞ and P{R > x} ∼
E{eαMR}P{Q > x} if β + γ > 1.

The proof of this proposition relies on the following lemma:

Lemma 4.1 Under the assumptions of the above proposition, for any η ∈ [0, 1),

P{MQ > x | M > η} ∼ 1
P{M > η}Γ(1 + γ)(α)−γh(x)`(x)x−γ−βe−αx.

Proof. Note that the tail 1/(1 − M) is regularly varying at infinity with index −γ.
Therefore, P{1/(1−M) > x} ∼ P{1/(1−M) > x + 1} = P{M/(1−M) > x} for x →∞.
Consequently, if we define Y = (1−M)/M , then P{Y ≤ x} ∼ P{1−M ≤ x} = h(1/x)xγ

as x ↓ 0. Let w(s) be the LST of Y . By Fellers Tauberian theorem (see Theorem 1.7.1.’
in [1]), we obtain that, as s →∞,

w(s) ∼ Γ(1 + γ)h(s)s−γ . (11)

We see that M = 1/(Y + 1), so that

P{MQ > x} = P{Q > x(Y + 1)}
= e−αxx−β`(x)

∫ ∞

0

`(x(y + 1))
`(x)

(y + 1)−βe−αxydP{Y ≤ y}

Now, note that, for some ε > 0,
∫ ∞

0

`(x(y + 1))
`(x)

(y + 1)−βe−αxydP{Y ≤ y} ∼
∫ 1

0

`(x(y + 1))
`(x)

(y + 1)−βe−αxydP{Y ≤ y}+ o(e−εx)

∼
∫ 1

0
(y + 1)−βe−αxydP{Y ≤ y}+ o(e−εx)

∼
∫ ∞

0
(y + 1)−βe−αxydP{Y ≤ y}+ o(e−εx).
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In the first step, we used the fact that the contribution of the integral from the interval
[1,∞) is exponentially small, and in the second step we applied the uniform convergence
theorem for slowly varying functions. From (11), we obtain, as x →∞,

Γ(1 + γ)h(x)(αx)−γ ∼ w(αx)

=
∫ ∞

0
e−αxydP{Y ≤ y}

∼
∫ ∞

0
(y + 1)−βe−αxydP{Y ≤ y}.

The last equivalence can be obtained by noting that the main contribution to the asymp-
totics of the integral comes from y ∈ [0, δ], with δ arbitrarily small, implying that (y+1)−β

can be made arbitrary close to 1 for y ∈ [0, δ]. Combining these results, we obtain the
statement of the lemma for η = 0. The extension to general η is straightforward. ¥

Proof of Proposition 4.3
Let Mη be a random variable distributed as M | M > η. Since c`(x)h(x)x−γ−β ∈ Sd

for any constant c > 0, we have by Theorem 2.1 of [17] and the above lemma, that
MηQ ∈ S(α) for any η < 1. Now we proceed similarly, but slightly different as in the
proof of Proposition 4.2; the notation introduced in that proof is used here as well. We
can bound MR in a similar but slightly more precise way as in (9) to obtain

MR
d=

∞∑

k=1

Qk

k∏

i=1

Mi =
∞∑

k=1

τ̄k∑

n=τ̄k−1+1

Qn

n∏

i=1

Mi ≤
∞∑

k=1

ηk−1
τ̄k∑

n=τ̄k−1+1

MnQn. (12)

Define C̄k =
∑τ̄k

n=τ̄k−1+1 MnQn. It is clear that C̄k, k ≥ 1 is an i.i.d. sequence. Let

Mη
i , i ≥ 1 be an i.i.d sequence independent of everything else such that Mη

1
d= M1 | M1 > η.

Then, we see that

C̄1

d≤
τ̄1∑

n=1

Mη
nQn.

Since Mη
nQn ∈ S(α), we can proceed as in the proof of Proposition 4.2: Since τ̄1 is

independent of the sequence (Mη
n), C̄1 has the same tail behavior as Mη

1 Q1. As before, R
is stochastically smaller than Rη =

∑∞
n=1 ηn−1C̄n, and as before one can derive that Rη

has the same tail behavior of C̄1. We conclude that P{MR > x} = O(P{MQ > x}). This
enables us to apply Proposition 2.3: Define X = exp{Q}. Then

m(x) =
∫ x

0
tα−1P{X > t}dt

=
∫ x

0
t−1`(log t)(log t)−βdt

∼
∫ log x

log t=0
`(log t)(log t)−βd log t

∼ 1
1− β

(log x)1−β`(log x),

where we applied Karamata’s theorem in the last step. Thus, m(x)/P{X > x} ∼
1

1−β xα log x. Writing Y = exp{MR} we see that, as x →∞,

P{Y > x} = O(P{exp{MQ} > x})
= O(x−α(log x)−γ−β`(log x)h(log x)),
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which implies the condition (5) since γ + β > 1. We thus conclude from Proposition 2.3
that (1) holds for our choice of X and Y , which implies our assertion. ¥

4.4 An application of Proposition 2.4

If α = 0, Q is heavy-tailed. Results for regularly varying Q can be found in [12, 15, 20].
Here we focus on the case that the tail of Q is lighter than any power tail.

Proposition 4.4 If Q ∈ S and in the domain of attraction of the Gumbel law, then

P{R > x} ∼ P{Q > x}.

This result is fundamentally different from the case in which Q is regularly varying
with index −α, in which case it is known from the above references that P{R > x} ∼

1
1−E{Mα}P{Q > x}.

Proof. By using the same arguments as in Proposition 4.2 (note that Q ∈ S(0)) we obtain
that P{R > x} ≤ P{Rη > x}, with Rη =

∑∞
n=1 ηn−1Cn, with P{C1 > x} ∼ c(η)P{Q > x}.

This implies that C1 is subexponential and in the domain of attraction of the Gumbel dis-
tribution as well. This allows us to apply Lemma A3.27 of [8] to obtain that P{Rη > x} ∼
P{C1 > x}. Thus, P{MR > x} is asymptotically smaller than c(η)P{MQ > x}. Since Q
is in the domain of attraction of the Gumbel law, the tail of Q is also of rapid variation,
implying that P{MQ > x} = o(P{Q > x}). Hence also P{MR > x} = o(P{Q > x}). The
proof is now completed by applying Proposition 2.4. ¥

5 Concluding remarks

In this paper, we derived several extensions of Breiman’s theorem, by introducing specific
assumptions on the slowly varying function L. An interesting question which we did not
resolve is whether the condition that the slowly varying function L is also of Π-variation
(see Chapter 3 of [1]) would be sufficient for (1) to hold. That the assumptions on L
are in some sense necessary was illustrated in Section 3. In Section 4, we applied our
results in Section 2 to analyze the equation R

d= MR + Q. We assumed that Q and M
are independent, which may be too restrictive in some applications. It would therefore be
interesting to extend Breiman’s theorem to the case where X and Y are dependent. A
partial result in this direction has recently been obtained in Maulik & Resnick [18].
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