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Abstract

Erdős, Rubin, and Taylor found a nice correspondence between the minimum
order of a complete bipartite graph that is not r-choosable and the minimum number
of edges in an r-uniform hypergraph that is not 2-colorable (in the ordinary sense).
In this note we use their ideas to derive similar correspondences for complete k-
partite graphs and complete k-uniform k-partite hypergraphs.

1 Introduction

Let m(r, k) denote the minimum number of edges in an r-uniform hypergraph with chro-
matic number greater than k and N(k, r) denote the minimum number of vertices in a
k-partite graph with list chromatic number greater than r.

Erdős, Rubin, and Taylor [6, p. 129] proved the following correspondence between
m(r, 2) and N(2, r).

Theorem 1 For every r ≥ 2, m(r, 2) ≤ N(2, r) ≤ 2m(r, 2).

This nice result shows close relations between ordinary hypergraph 2-coloring and list
coloring of complete bipartite graphs. Note that m(r, 2) was studied in [2, 3, 4, 9, 10].
Using known bounds on m(r, 2), Theorem 1 yields the corresponding bounds for N(2, r):

c 2r

√
r

ln r
≤ N(2, r) ≤ C 2rr2.
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Theorem 1 can be extended in a natural way in two directions: to complete k-partite
graphs and to k-uniform k-partite hypergraphs. In this note we present these extensions
(using the ideas of Erdős, Rubin, and Taylor).

A vertex t-coloring of a hypergraph H is panchromatic if each of the t colors is used
on every edge of G. Thus, an ordinary 2-coloring is panchromatic. Some results on
the existence of panchromatic colorings for hypergraphs with few edges can be found
in [8]. Let p(r, k) denote the minimum number of edges in an r-uniform hypergraph not
admitting any panchromatic k-coloring. Note that p(r, 2) = m(r, 2). The first extension
of Theorem 1 is the following.

Theorem 2 For every r ≥ 2 and k ≥ 2, p(r, k) ≤ N(k, r) ≤ k p(r, k).

It follows from Alon’s results in [1] that for some c2 > c1 > 0 and every r ≥ 2 and
k ≥ 2,

exp{c1r/k} ≤ N(k, r) ≤ k exp{c2r/k}.
Therefore, by Theorem 2 we get reasonable bounds on p(r, k) for fixed k and large r:

exp{c1r/k}/k ≤ p(r, k) ≤ k exp{c2r/k}.
Note that the lower bound on p(r, k) with c1 = 1/4 follows also from Theorem 3 of the
seminal paper [5] by Erdős and Lovász.

We say that a k-uniform hypergraph G is k-partite, if V (G) can be partitioned into k
sets so that every edge contains exactly one vertex from every part. Let Q(k, r) denote
the minimum number of vertices in a k-partite k-uniform hypergraph with list chromatic
number greater than r. Note that Q(2, r) = N(2, r).

Theorem 3 For every r ≥ 2 and k ≥ 2, m(r, k) ≤ Q(k, r) ≤ k m(r, k).

From [4] and [7] we know that

c1k
r
(

r

ln r

)1−1/b1+log2 kc
≤ m(r, k) ≤ c2k

rr2 log k.

Thus, Theorem 3 yields that

c1k
r
(

r

ln r

)1−1/b1+log2 kc
≤ Q(k, r) ≤ c2k

r+1r2 log k.

2 Proof of Theorem 2

Let H = (V, E) be an r-uniform hypergraph not admitting any panchromatic k-coloring
with E = {e1, . . . , ep(r,k)}. Consider the complete k-partite graph G = (W, A) with parts
W1, . . . , Wk and Wi = {wi,1, . . . , wi,|E|} for i = 1, . . . , k. The ground set for lists will be
V . Recall that every ei is an r-subset of V . For every i = 1, . . . , k and j = 1, . . . , |E|,
assign to wi,j the list L(wi,j) = ej .
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Assume that G has a coloring f from the lists. Since G is a complete k-partite graph,
every color v is used on at most one part. Then f produces a k-coloring gf of V as follows:
we let gf (v) be equal to the index i such that v = f(wi,j) for some j or be equal to 1 if
there is no such wi,j at all. Since for every j all vertices in {w1,j, w2,j, . . . , wk,j} must get
different colors, gf is a panchromatic k-coloring of H , a contradiction. This proves that
N(k, r) ≤ k p(r, k).

Now, consider a complete k-partite graph G = (W, A) with parts W1, . . . , Wk and
|W | < p(r, k). Let L be an arbitrary r-uniform list assignment for W . Let H = (V, E)
be the hypergraph with V =

⋃
w∈W L(w) and E = {L(w) | w ∈ W}. Since |E| = |W | <

p(r, k), there exists a panchromatic k-coloring g of H . Define the coloring fg of W as
follows: if w ∈ Wi, choose in the edge L(w) of H any vertex v with g(v) = i and let
fg(w) = v. Then vertices in different Wi cannot get the same color, and f is a coloring
from the lists of vertices in G. This proves that N(k, r) ≥ p(r, k).

3 Proof of Theorem 3

Let H = (V, E) be an r-uniform hypergraph not admitting any k-coloring with E =
{e1, . . . , em(r,k)}. Consider the complete k-partite k-uniform hypergraph G = (W, A) with
parts W1, . . . , Wk and Wi = {wi,1, . . . , wi,|E|} for i = 1, . . . , k. The ground set for lists will
be V . Recall that every ei is an r-subset of V . For every i = 1, . . . , k and j = 1, . . . , |E|,
assign wi,j the list L(wi,j) = ej .

Assume that G has a coloring f from the lists. Note that no color v is present on every
Wi, since otherwise G would have an edge with all vertices of color v. Thus, f produces
a k-coloring gf of V as follows: we let gf(v) be equal to the smallest i such that v is not
a color of any vertex in Wi. Assume that gf is not a proper coloring, i.e., that some ej is
monochromatic of some color i under gf . But some v′ ∈ ej must be f(wi,j), and therefore
gf(v

′) 6= i, a contradiction. This proves that Q(k, r) ≤ k m(r, k).
Now, consider a complete k-partite k-uniform hypergraph G = (W, A) with parts

W1, . . . , Wk and |W | < Q(r, k). Let L be an arbitrary r-uniform list for W . Let H =
(V, E) be the hypergraph with V =

⋃
w∈W L(w) and E = {L(w) | w ∈ W}. Since

|E| = |W | < Q(r, k), there exists a k-coloring g of H . Define the coloring fg of W as
follows: if w ∈ Wi, choose the next number i′ after i in the cyclic order 1, 2, . . . , k such
that there is a vertex v′ ∈ L(w) with g(v′) = i′ and let fg(w) = v′. Since L(w) is not
monochromatic in g, we have i′ 6= i. On the other hand, no v with g(v) = i′ will be used
to color a w ∈ Wi′ . Thus fg is a proper coloring of G. This proves that Q(k, r) ≥ m(r, k).
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[3] P. Erdős, On a combinatorial problem, I, Nordisk. Mat. Tidskrift, 11 (1963), 5–10.
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