On a theorem of Erdős, Rubin, and Taylor on choosability of complete bipartite graphs

Alexandr Kostochka *
University of Illinois at Urbana-Champaign, Urbana, IL 61801 and Institute of Mathematics, Novosibirsk 630090, Russia
kostochk@math.uiuc.edu

Submitted: April 10, 2002; Accepted: August 13, 2002.
MR Subject Classifications: 05C15, 05C65

Abstract

Erdős, Rubin, and Taylor found a nice correspondence between the minimum order of a complete bipartite graph that is not r-choosable and the minimum number of edges in an r-uniform hypergraph that is not 2 -colorable (in the ordinary sense). In this note we use their ideas to derive similar correspondences for complete k partite graphs and complete k-uniform k-partite hypergraphs.

1 Introduction

Let $m(r, k)$ denote the minimum number of edges in an r-uniform hypergraph with chromatic number greater than k and $N(k, r)$ denote the minimum number of vertices in a k-partite graph with list chromatic number greater than r.

Erdős, Rubin, and Taylor [6, p. 129] proved the following correspondence between $m(r, 2)$ and $N(2, r)$.

Theorem 1 For every $r \geq 2, m(r, 2) \leq N(2, r) \leq 2 m(r, 2)$.
This nice result shows close relations between ordinary hypergraph 2-coloring and list coloring of complete bipartite graphs. Note that $m(r, 2)$ was studied in $[2,3,4,9,10]$. Using known bounds on $m(r, 2)$, Theorem 1 yields the corresponding bounds for $N(2, r)$:

$$
c 2^{r} \sqrt{\frac{r}{\ln r}} \leq N(2, r) \leq C 2^{r} r^{2}
$$

[^0]Theorem 1 can be extended in a natural way in two directions: to complete k-partite graphs and to k-uniform k-partite hypergraphs. In this note we present these extensions (using the ideas of Erdős, Rubin, and Taylor).

A vertex t-coloring of a hypergraph H is panchromatic if each of the t colors is used on every edge of G. Thus, an ordinary 2-coloring is panchromatic. Some results on the existence of panchromatic colorings for hypergraphs with few edges can be found in [8]. Let $p(r, k)$ denote the minimum number of edges in an r-uniform hypergraph not admitting any panchromatic k-coloring. Note that $p(r, 2)=m(r, 2)$. The first extension of Theorem 1 is the following.

Theorem 2 For every $r \geq 2$ and $k \geq 2, p(r, k) \leq N(k, r) \leq k p(r, k)$.
It follows from Alon's results in [1] that for some $c_{2}>c_{1}>0$ and every $r \geq 2$ and $k \geq 2$,

$$
\exp \left\{c_{1} r / k\right\} \leq N(k, r) \leq k \exp \left\{c_{2} r / k\right\}
$$

Therefore, by Theorem 2 we get reasonable bounds on $p(r, k)$ for fixed k and large r :

$$
\exp \left\{c_{1} r / k\right\} / k \leq p(r, k) \leq k \exp \left\{c_{2} r / k\right\}
$$

Note that the lower bound on $p(r, k)$ with $c_{1}=1 / 4$ follows also from Theorem 3 of the seminal paper [5] by Erdős and Lovász.

We say that a k-uniform hypergraph G is k-partite, if $V(G)$ can be partitioned into k sets so that every edge contains exactly one vertex from every part. Let $Q(k, r)$ denote the minimum number of vertices in a k-partite k-uniform hypergraph with list chromatic number greater than r. Note that $Q(2, r)=N(2, r)$.

Theorem 3 For every $r \geq 2$ and $k \geq 2, m(r, k) \leq Q(k, r) \leq k m(r, k)$.
From [4] and [7] we know that

$$
c_{1} k^{r}\left(\frac{r}{\ln r}\right)^{1-1 /\left\lfloor 1+\log _{2} k\right\rfloor} \leq m(r, k) \leq c_{2} k^{r} r^{2} \log k
$$

Thus, Theorem 3 yields that

$$
c_{1} k^{r}\left(\frac{r}{\ln r}\right)^{1-1 /\left\lfloor 1+\log _{2} k\right\rfloor} \leq Q(k, r) \leq c_{2} k^{r+1} r^{2} \log k
$$

2 Proof of Theorem 2

Let $H=(V, E)$ be an r-uniform hypergraph not admitting any panchromatic k-coloring with $E=\left\{e_{1}, \ldots, e_{p(r, k)}\right\}$. Consider the complete k-partite graph $G=(W, A)$ with parts W_{1}, \ldots, W_{k} and $W_{i}=\left\{w_{i, 1}, \ldots, w_{i,|E|}\right\}$ for $i=1, \ldots, k$. The ground set for lists will be V. Recall that every e_{i} is an r-subset of V. For every $i=1, \ldots, k$ and $j=1, \ldots,|E|$, assign to $w_{i, j}$ the list $L\left(w_{i, j}\right)=e_{j}$.

Assume that G has a coloring f from the lists. Since G is a complete k-partite graph, every color v is used on at most one part. Then f produces a k-coloring g_{f} of V as follows: we let $g_{f}(v)$ be equal to the index i such that $v=f\left(w_{i, j}\right)$ for some j or be equal to 1 if there is no such $w_{i, j}$ at all. Since for every j all vertices in $\left\{w_{1, j}, w_{2, j}, \ldots, w_{k, j}\right\}$ must get different colors, g_{f} is a panchromatic k-coloring of H, a contradiction. This proves that $N(k, r) \leq k p(r, k)$.

Now, consider a complete k-partite graph $G=(W, A)$ with parts W_{1}, \ldots, W_{k} and $|W|<p(r, k)$. Let L be an arbitrary r-uniform list assignment for W. Let $H=(V, E)$ be the hypergraph with $V=\bigcup_{w \in W} L(w)$ and $E=\{L(w) \mid w \in W\}$. Since $|E|=|W|<$ $p(r, k)$, there exists a panchromatic k-coloring g of H. Define the coloring f_{g} of W as follows: if $w \in W_{i}$, choose in the edge $L(w)$ of H any vertex v with $g(v)=i$ and let $f_{g}(w)=v$. Then vertices in different W_{i} cannot get the same color, and f is a coloring from the lists of vertices in G. This proves that $N(k, r) \geq p(r, k)$.

3 Proof of Theorem 3

Let $H=(V, E)$ be an r-uniform hypergraph not admitting any k-coloring with $E=$ $\left\{e_{1}, \ldots, e_{m(r, k)}\right\}$. Consider the complete k-partite k-uniform hypergraph $G=(W, A)$ with parts W_{1}, \ldots, W_{k} and $W_{i}=\left\{w_{i, 1}, \ldots, w_{i,|E|}\right\}$ for $i=1, \ldots, k$. The ground set for lists will be V. Recall that every e_{i} is an r-subset of V. For every $i=1, \ldots, k$ and $j=1, \ldots,|E|$, $\operatorname{assign} w_{i, j}$ the list $L\left(w_{i, j}\right)=e_{j}$.

Assume that G has a coloring f from the lists. Note that no color v is present on every W_{i}, since otherwise G would have an edge with all vertices of color v. Thus, f produces a k-coloring g_{f} of V as follows: we let $g_{f}(v)$ be equal to the smallest i such that v is not a color of any vertex in W_{i}. Assume that g_{f} is not a proper coloring, i.e., that some e_{j} is monochromatic of some color i under g_{f}. But some $v^{\prime} \in e_{j}$ must be $f\left(w_{i, j}\right)$, and therefore $g_{f}\left(v^{\prime}\right) \neq i$, a contradiction. This proves that $Q(k, r) \leq k m(r, k)$.

Now, consider a complete k-partite k-uniform hypergraph $G=(W, A)$ with parts W_{1}, \ldots, W_{k} and $|W|<Q(r, k)$. Let L be an arbitrary r-uniform list for W. Let $H=$ (V, E) be the hypergraph with $V=\bigcup_{w \in W} L(w)$ and $E=\{L(w) \mid w \in W\}$. Since $|E|=|W|<Q(r, k)$, there exists a k-coloring g of H. Define the coloring f_{g} of W as follows: if $w \in W_{i}$, choose the next number i^{\prime} after i in the cyclic order $1,2, \ldots, k$ such that there is a vertex $v^{\prime} \in L(w)$ with $g\left(v^{\prime}\right)=i^{\prime}$ and let $f_{g}(w)=v^{\prime}$. Since $L(w)$ is not monochromatic in g, we have $i^{\prime} \neq i$. On the other hand, no v with $g(v)=i^{\prime}$ will be used to color a $w \in W_{i^{\prime}}$. Thus f_{g} is a proper coloring of G. This proves that $Q(k, r) \geq m(r, k)$.

Acknowledgment. I thank both referees for the helpful comments.

References

[1] N. Alon, Choice number of graphs: a probabilistic approach, Combinatorics, Probability and Computing, 1 (1992), 107-114.
[2] J. Beck, On 3-chromatic hypergraphs, Discrete Math. 24 (1978), 127-137.
[3] P. Erdős, On a combinatorial problem, I, Nordisk. Mat. Tidskrift, 11 (1963), 5-10.
[4] P. Erdős, On a combinatorial problem, II, Acta Math. Hungar., 15 (1964), 445-447.
[5] P. Erdős, L. Lovász, Problems and Results on 3-chromatic hypergraphs and some related questions, In Infinite and Finite Sets, A. Hajnal et. al., editors, Colloq. Math. Soc. J. Bolyai, 11, North Holland, Amsterdam, 609-627, 1975.
[6] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI (1979), 125-157.
[7] A.V. Kostochka. Coloring uniform hypergraphs with few colors, submitted.
[8] A.V. Kostochka and D. R. Woodall, Density conditions for panchromatic colourings of hypergraphs, Combinatorica, 21 (2001), 515-541,
[9] J. Radhakrishnan and A. Srinivasan, Improved bounds and algorithms for hypergraph two-coloring, Random Structures and Algorithms, 16 (2000), 4-32.
[10] J. Spencer, Coloring n-sets red and blue, J. Comb.Theory Ser. A, 30 (1981), 112113.

[^0]: *This work was partially supported by the NSF grant DMS-0099608 and the Dutch-Russian Grant NWO-047-008-006.

