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PAOLA BONACINI - ALESSIO DEL PADRONE - MICHELE NESCI

In 1980, Faltings proved, by deep local algebra methods, a local result
regarding formal functions which has the following global geometric fact
as a consequence. Theorem. − Let k be an algebraically closed field (of
any characteristic). Let Y be a closed subvariety of a projective irreducible
variety X defined over k. Assume that X ⊂ Pn , dim(X) = d > 2 and Y
is the intersection of X with r hyperplanes of Pn , with r ≤ d − 1. Then,
every formal rational function on X along Y can be (uniquely) extended to
a rational function on X . Due to its importance, the aim of this paper is to
provide two elementary global geometric proofs of this theorem.

Introduction.

The aim of this work is to give two elementary global geometric
proofs of the following Theorem 1, which is a consequence of a local
result of Faltings [5] by means of the general local-global philosophy
explained in [9]. Faltings’ original proof is not so easy to follow, and
it is also not immediate that what he proved implies Theorem 1, which
is, on the other hand, useful for the applications. Hence we think that
giving elementary arguments could be of interest.

Entrato in redazione il 22 Maggio 2007.
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Theorem 1. Let k be an algebraically closed field (of any characteristic).
Let Y be a closed subvariety of a projective irreducible subvariety X
defined over k. Assume that X ⊂ P

n , dim(X ) = d > 2 and Y is the
intersection of X with r hyperplanes of P

n , with r ≤ d − 1. Then Y is
G3 in X .

If Y is a complete intersection of X with the hyperplanes Hi (i.e.
dim(Y ) = d−r ), this result was already proved geometrically by Hironaka
and Matsumura [[12], (4.3), (3.5)] (see also [[3], 9.25]). Faltings’ result,
as formulated in Theorem 1, is indeed useful in some applications.
For instance, Bădescu used it in an essential way to prove a relevant
strengthening of Fulton-Hansen connectedness Theorem (see [[1], (0.1)],
cf. also [[3], Chapter 11], or also Example 2 below).

In this work we present two global geometric proofs of 1. Both proofs
use, repeatedly, as a key tool a Theorem of Hironaka and Matsumura
([[12], (2.7)], see also Theorem 2 below) whose proof makes essential
use of Grothendieck’s existence Theorem [[8], (5.1.4)]. Indeed this
result, under the hypotheses of Theorem 1 and by means of geometric
constructions yielding suitable morphisms, reduces the problem to the
case of closed connected subvarieties of projective spaces of positive
dimension. This case is well known by another fundamental Theorem
of Hironaka and Matsumura ([[12] (3.3)], see also Theorem 3 below).
The first one is inspired by the proof of Hironaka and Matsumura of
the result, for the complete intersection case, mentioned above; in fact
what we do is to provide the necessary extra arguments (not completely
trivial) in order to make Hironaka-Matsumura’s proof work. As far as
the second proof is concerned, we use a standard construction (involving
a certain incidence variety).

The first section is devoted to recall some basic facts of formal
geometry and then to explain the common stategy of the two proofs,
which are based on two “projective geometry style” constructions. The
first proof is given in section 2, and the second is presented in section 3.
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University of Catania. We would also like to thank this institution for
their warm hospitality and for the excellent working atmosphere.
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1. Background material.

The main reference is the original work of Hironaka and Matsumura
[12], further material, together with a gentle introduction to “formal
geometry”, can be found in the textbook [3].

Let Z be a formal scheme (see [7], cf. also [10], [11], [3]). The ring
of formal rational functions on Z, K (Z), is defined as follows: for any
affine open subset U of Z, let [OZ(U )]0 be the total ring of fractions of
OZ(U ), and let MZ be the sheaf associated to the presheaf on Z defined
by U �→ [OZ(U )]0. Then K (Z): = H 0(Z,MZ). If Z is an ordinary
scheme, K (Z) is nothing but the usual ring of rational functions of Z.

As a special case, for any pair (X, Y ) with X a locally noetherian
scheme and Y a connected closed subscheme of X , we can consider
the formal completion Z := X /Y of X along Y . Then the completion
morphism X/Y −→ X gives rise to the canonical homomorphisms
H 0(X,OX ) −→ H 0(X/Y ,OX/Y ) and K (X ) −→ K (X/Y ).

We recall that for any open neighbourhood U of Y in X we have an
isomorphism of formal schemes U/Y

∼= X/Y . Moreover: X/Y
∼= X/(Y )red ,

that is X/Y depends just on the closed subset Y .
By [[12], Remark p. 57], when X is a reduced algebraic scheme (for

example an algebraic variety), then K (X/Y ) is a finite direct product of
fields. If Y is the disjoint union of two closed subsets Y1 and Y2, then
K (X/Y ) = K (X/Y1) × K (X/Y2). Hence, in order K (X/Y ) to be a field
we must have Y connected. Conversely, if X is an irreducible normal
projective variety, and Y is connected, then K (X /Y ) is a field.

Examples 1. As basic examples we consider the case of (connected)
subvarieties Y of X = P

n , the complex projective space.

a) For Y = P ∈ X a point, say over k = C, we have X/Y = P
n
/P

∼=
A

n
/(0,...,0), and hence K (Pn

/P) ∼= C((x1, . . . , xn)) (the field of fraction
of the ring of formal power series C[[x1, . . . , xn]]).

b) In case Y is connected and positive dimensional, a fundamental result
of Hironaka and Matsumura, quoted below (see Theorem 3), asserts
that K (Pn

/Y ) ∼= K (Pn) = C(x1, . . . , xn).

A basic property of the ring of formal rational functions is given by
the following useful formula due to Hironaka and Matsumura (see [[12],
(2.7)], cf. also [[3], 9.11]):
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Theorem 2. Let f : X ′ −→ X be a proper surjective morphism of
irreducible algebraic varieties, and let Y ⊆ X be a closed subvariety of
X , then the canonical homomorphism

[K (X ′) ⊗K (X) K (X/Y )]0 −→ K (X ′
/ f −1(Y )

)

is an isomorphism.

Definition 1. Let X be a scheme, and let Y be a closed subscheme of
X . Following [[12], (2.9)] (see also [[11], V] [[3], 9.12]), we say that:
Y is G2 in X if K (X /Y ) is a finite module over K (X ); Y is G3 in X
if the canonical map K (X ) −→ K (X/Y ) is an isomorphism.

Remark 1. We recall some elementary facts from [[12], (2.10)] (see
also [[11], V] and [[3], Chapter 9]).

a) If X is connected and complete over an algebraically closed field,
then K (X/Y ) is a finite direct product of fields. Hence, if Y is G3
in X , then Y is necessarily connected. Moreover, G3 ⇒ G2.

b) Theorem 2 easily implies that, if Y a closed subvariety of an
irreducible variety X , then (X ′, f −1(Y )) is G3 if and only if (X, Y )

is G3 for every proper surjective morphism f : X ′ −→ X from an
irreducible variety X ′. See [[12], (2.7)], cf. also [[11], V] and [[3],
9.9, 9.13(i)].

c) The following elementary fact will be useful. Let X be an irreducible
variety with two “nested” closed subsets Y2 ⊂ Y1 ⊂ X . Assuming
K (X/Y1) a field, then (X, Y1) is G3 if (X, Y2) is G3. Indeed:

K(X)
∼= ��

� �

���������������
K(X/Y2)

K(X/Y1)
� �

����������������

The following fundamental Theorem, also due to Hironaka and
Matsumura (see [[12], (3.3)]), completely explains what happens in case Y
is a closed subscheme of a projective space X = P

n (as already remarked,
in order Y to be G3 in X , we must have Y connected).

Theorem 3. Let Y be a connected closed subscheme of X = P
n . Then,

Y is G3 in X if (and only if) dim(Y ) > 0.
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Remark 2. Let X be a projective irreducible variety defined over the
field of complex numbers k = C, and let Y be a connected positive
dimensional closed subvariety of X . Using results of Chow and Serre’s
GAGA one can show that for every connected open subset U of X (in the
complex topology of X ) containing Y , one has the following inclusions
(see e.g. [2], Chapter 10)

K (X ) ⊆ M(U ) ⊆ K (X/Y ),

where we denote by M(U ) the set of all meromorphic functions on U . In
particular, if Y is G3 in X then one gets that K (X ) = M(U ). Therefore
Theorem 3 implies the following analytic result of Severi-Barth: For
every closed connected subvariety Y of P

n
C

of dimension ≥ 1, every
meromorphic function ξ defined in a complex connected neighborhood
U of Y in P

n
C

can be (uniquely) extended to a meromorphic (and hence,
rational) function on P

n
C

. Severi proved this result in [13] in the case
when Y is a nonsingular hypersurface of P

n
C

, and Barth generalised it to
every closed connected subset Y of P

n
C

of positive dimension in [4].

As we shall see in Proposition 1, the pairs (X, Y ) as in the statement of
Theorem 1 share a fundamental property. They are universally connected,
that is:

Definition 2. Let X be a variety over an algebraically closed field k ,
and let Y be a closed subvariety of X . We say that the pair (X, Y )

is universally connected if f −1(Y ) is connected in X ′ for every proper
surjective morphism f : X ′ −→ X from an irreducible variety X ′.

According to a result of Bădescu and Schneider (see [[2] (2.7)],
cf. also [[3], 9.22]), universally connected pairs can be characterized by
means of formal rational functions as follows:

Theorem 4. Let X be an irreducible variety, and let Y be a closed
subvariety of X . the following conditions are equivalent:

(i) (X, Y ) is universally connected,

(ii) K (X/Y ) is a field and K (X ) is algebraically closed in K (X /Y ),

(iii) K (X /Y ) is a field and the algebraic closure of K (X ) in K (X /Y ) is
purely inseparable over K (X ).

Remark 3. By Example 1, b) we see that if (X, Y ) is G3 (with X
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irreducible) then (X ′, f −1(Y )) is still G3, hence by Remark 1, a), (X, Y )

is universally connected. Notice also that, If (X, Y ) is a universally
connected pair, then Y is G3 in X if and only if Y is G2 in X .

Examples 2. Let us recall some basic known examples and results.

a) A point Y = {P} in P
n is never G2 (and in particular, nor G3) by

Example 1, a).

b) Let f : X ′ −→ X be a proper surjective morphism of irreducible
algebraic varieties, and let Y ⊆ X and Y ′ ⊆ X ′ be closed
subvarieties such that f (Y ′) ⊆ Y . Assume that K (X/Y ), K (X ′

/Y ′),
and K (X ′

/ f −1(Y )
) are fields. If Y ′ is G3 in X ′, then Y is G3 in X

([[3], 9.23]).

c) If Y ′ is G2 in X ′, and if f : X ′ −→ X is a non constant dominant
morphism of irreducible algebraic varieties, then dim f (Y ′) > 0.

d) Bădescu (see [[1], (0.1)], cf. also [[3], 11.1]) proved the following
strengthening (and generalization) of Fulton-Hansen connectedness
Theorem ([6]): for any proper morphism f : X ′ −→ P

n(e)×P
n(e) from

an irreducible variety X ′, such that dim f (X ) > n, then f −1(�Pn(e)) is
G3 in X ′ . Here P

n(e) denotes the n-dimensional weighted projective
space of weights e = (e0, . . . , en), with ei ≥ 0, i = 0, . . . , n. Theorem
1 above plays an important role in the proof of this result.

Both our proofs follow the pattern suggested by the two facts below.
The first shows, as promised, that the pairs (X, Y ) as in Theorem 1 are
universally connected.

Proposition 1. Let Y be a closed subvariety of a projective irreducible
subvariety X . Assume that X ⊂ P

n , dim X = d > 2 and Y is a set-
theoretic intersection of X with r hyperplanes of P

n , with r ≤ d − 1.
Then (X, Y ) is universally connected.

Proof. Let f : X ′ → X be a proper surjective morphism. We have to prove
that f −1(Y ) is connected. By the Stein factorization we may assume
that f is finite. In this case f ∗(OX(1)) is ample (and generated by its
global sections) in which case the proposition follows from a result of
Grothendieck (see [[9] Éxposé XIII, Corollaire 2.2], (cf. also [[3], Ch. 7,
Corollary 7.7]). �
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A way to prove that a universally connected pair (X, Y ) is G3 is
suggested by the following simple observation (cf. [[3], Proposition 9.23]):

Lemma 1. Let X be an irreducible projective variety, and let Y be a closed
subvariety of X . Assume (X, Y ) is universally connected. Then (X, Y )

is G3 if and only if there is a surjective proper morphism f : X ′ → X
and a closed subvariety Y ′′ ⊂ X ′ such that f (Y ′′) ⊂ Y and (X ′, Y ′′) is
G3.

Proof. The necessity is trivial. For the converse: being (X, Y ) universally
connected K (X ′

/ f −1(Y )
) is a field, hence, using part b) of Remarks 1 we

get that (X ′, f −1(Y )) is G3. Then, by Example 2, b), (X, Y ) is G3. �

2. First proof of Theorem 1.

We show that an idea of Hironaka and Matsumura to prove the
theorem in the case when dim(Y ) = dim(X ) − r (i.e. if Y is a complete
intersection in X , see [[12], (4.3)]) can be suitably modified to yield a
proof of Theorem 1 in general. Our surjective proper morphism, as in
Lemma 1, is going to be a projection to X from the closure of the graph
of a suitable linear projection of X .

Let H1, . . . , Hr in P
n be the hyperplanes cutting Y on X in P

n , i.e.
Y = X ∩ H1 ∩ . . .∩ Hr (set-theoretically); we can always assume that the
Hi are all distinct.

Let us consider the (n − r)-plane H = H1 ∩ . . . ∩ Hr ⊇ Y and let
L ⊂ H be a (n − d − 1)-plane choosen in such a way that L does not
contain any irreducible component of Y . Choose a d -plane M ∼= P

d ,
disjoint from L , and let us consider the linear projection:

π : P
n − − → M,

of center L . Setting U := P
n \ L we find a morphism πU : U → M . Note

that XU := X ∩ U �= ∅ is an open (and so dense) subset of X , and let
us consider the morphism:

gU := (πU )|XU : XU → M,

together with its graph:


U = {
(x, y) ∈ XU × M | y = gU (x)

} ⊆ XU × M ⊆ X × M.
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Let 
 be the closure of 
U in X × M . So we get the commutative
diagrams:

ΓU

(p1)U

∼=
��

(p2)U

����

XU

gU

����
��

��
��

��
�

M

X ′ := Γ
f :=p1 �� ��

p2

����

X

g

���
�

�
�

�
�

M

in which (p1)U is an isomorphism and (p2)U is dominant by the choice
of L . So, since p1 and p2 are projective morphism, we see that p1 and p2

are surjective. Moreover, being 
U
∼= XU , we have that 
 is irreducible

and p1 is a birational regular map, this is our morphism f as in Lemma
1, and X ′ = 
.

Now we need to find a closed subvariety Y ′′ ⊂ X ′ = 
 which
is G3 in X ′ such that f (Y ′′) ⊂ Y . To this end, let us consider
Y ′ := πU (H ∩ U ) = H ∩ M (because H ⊃ L ). It is a d − r -plane
in M ∼= P

d , and since d − r ≥ 1, we infer that Y ′ is G3 in M by
Theorem 3. Therefore Y ′′ := p2

−1(Y ′) is G3 in 
 by Theorem 2.
Clearly, by construction: f (Y ′′) = p1(p2

−1(H ∩ M)) ⊆ H ∩ X = Y .
Now, since Y ′′ is G3 in X ′, by Lemma 1 and Proposition 1, Y is

G3 in X . This finishes the first proof of Theorem 1.

3. Second proof of Theorem 1.

This second proof makes use of a suitable incidence variety. Specif-
ically, under the notation of Theorem 1, let h1, . . . , hr in P

n be lin-
ear forms defining the distinct hyperplanes H1, . . . , Hr such that, set-
theoretically Y = X ∩ H1 ∩ . . . ∩ Hr . Recall that by hypothesis we have
r + 1 ≤ d = dim(X ). Let us consider the projective space:

P := P(H 0(O⊕(r+1)
Pn (1))) ∼= P

(n+1)(r+1)−1.

Taken a global section σ ∈ H 0(OPn(1)), let us denote by V (σ ) the zero
locus of σ in P

n , which is a hyperplane in P
n in the case that σ is

nonzero, and coincides with P
n otherwise. Let Z ⊂ X × P be the closed

incidence subvariety given by:

Z
{
(x, [σ0, . . . , σr ]) ∈ X × P | x ∈ X ∩ V (σ0) ∩ . . . ∩ V (σr)

}
.
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Let us consider the two projections:

Z
f �� ��

g

����

X

P

and note that f is surjective and all its fibres are linear subspaces of
P of the same dimension. Since X is irreducible, we deduce that Z
is also irreducible. The proper morphism g is also surjective because
r + 1 ≤ d , and hence X ∩ V (σ0) ∩ . . . ∩ V (σr) �= ∅ for each point
[σ0, . . . , σr ] ∈ H 0(O⊕(r+1)

Pn (1)) \ {0}. Moreover,

g−1([σ0, . . . , σr ]) = Y × {[σ0, . . . , σr ]} ⊂ f −1(Y )

for each point [σ0, . . . , σr ] ∈ H 0(O⊕(r+1)
Pn (1)) such that σ0, . . . , σr generate

the same vector space as h1, . . . , hr .
As in the first proof, the theorem will be proved once we show

that g−1(L) ⊆ f −1(Y ) for some connected closed subset L ⊂ P , with
dim(L) ≥ 1. We show that we can take for L a suitable line. Let us
consider the points of P defined by:

q1 := [h1, . . . , hr , 0] and q2 := [0, h1, . . . , hr ],

and let us denote by L ⊂ P the line joining the two points. Since any
point of L is of type λq1 +µq2 = [λs1, λs2 +µs1, . . . , λsr +µsr−1, µsr ],
we easily see that:

g−1(L) = Y × L ⊆ f −1(Y ) ⊂ Z .

This concludes the second proof.

REFERENCES
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